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A natural duality for De Morgan algebras

Exercise
Use the Lattice-based Duality Theorem to find a natural duality
for the class A = ISP(M) of De Morgan Algebras.

I De Morgan algebras. M = 〈{0,a,b,1};∨,∧,g,0,1〉, where
〈{0,a,b,1};∨,∧,0,1〉 is isomorphic to D2 and g is as
shown below.

0

1

a

b

I In order to apply the Lattice-based Duality Theorem we
need to find the lattice of subuniverses of M2.

I Unfortunately, there are 55 subuniverses of M2.

I There is a better way, and that is the topic of this lecture.
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Alter egos

We shall move now to the setting where structures are allowed
on both sides. To simplify things, we restrict to total structures.

An alter ego of a total structure

Let M = 〈M; G1,R1〉 be a total structure (possibly infinite). Then
M∼ = 〈M; G2,R2,T〉 is an alter ego of M if it is compatible with M,
that is,

I G2 is a set of operations on M, each of which is a
homomorphism with respect to M,

I R2 is a set of relations on M, each of which is a
subuniverse of the appropriate power of M, and

I T is a compact Hausdorff topology on M with respect to
which the operations g ∈ G1 are continuous and the
relations r ∈ R1 are closed,
i.e., MT := 〈M; G1,R1,T〉 is a topological structure.
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The idea behind piggybacking

Assume that M = 〈M; G1,R1〉 has a reduct M[ in the class D of
bounded distributive lattices, that is, there exist operations ∨, ∧,
0 and 1 in G1 such that M[ := 〈M;∨,∧,0,1〉 belongs to D. As
usual, define A = ISP(M). It follows that

I we have a forgetful functor [ : A→D,

I for each ω ∈D(M[,D) and A ∈ A, we may define a map

ΦA
ω : A(A,M)→D(A[,D)

by ΦA
ω(x) := ω ◦ x , for all x ∈ A(A,M).

The idea is to use some or all of the maps ΦA
ω and the fact that

D∼ = 〈{0,1};6,T〉 yields a duality on D to define an alter ego M∼
that yields a duality on A.
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Some notation

Let M∼ = 〈M; G2,R2,T〉 be an alter ego go M.

I Clo1(M∼) denotes the set of unary term functions of M∼.

Since M∼ is compatible with M, we have Clo1(M∼) ⊆ End(M).

I Let Ω ⊆D(M[,D). We define

Ω ◦ Clo1(M∼) := {ω ◦ u | ω ∈ Ω & u ∈ Clo1(M∼) } ⊆ {0,1}M .

I If Ω = {ω}, then we write simply ω ◦ Clo1(M∼).

I We say that Ω ◦ Clo1(M∼) separates the points of M if, for all
a,b ∈ M with a 6= b, there exits ω ∈ Ω and u ∈ Clo1(M∼)
with ω(u(a)) 6= ω(u(b)).

8 / 36



Some notation

Let M∼ = 〈M; G2,R2,T〉 be an alter ego go M.

I Clo1(M∼) denotes the set of unary term functions of M∼.

Since M∼ is compatible with M, we have Clo1(M∼) ⊆ End(M).

I Let Ω ⊆D(M[,D). We define

Ω ◦ Clo1(M∼) := {ω ◦ u | ω ∈ Ω & u ∈ Clo1(M∼) } ⊆ {0,1}M .

I If Ω = {ω}, then we write simply ω ◦ Clo1(M∼).

I We say that Ω ◦ Clo1(M∼) separates the points of M if, for all
a,b ∈ M with a 6= b, there exits ω ∈ Ω and u ∈ Clo1(M∼)
with ω(u(a)) 6= ω(u(b)).

8 / 36



Some notation

Let M∼ = 〈M; G2,R2,T〉 be an alter ego go M.

I Clo1(M∼) denotes the set of unary term functions of M∼.

Since M∼ is compatible with M, we have Clo1(M∼) ⊆ End(M).

I Let Ω ⊆D(M[,D). We define

Ω ◦ Clo1(M∼) := {ω ◦ u | ω ∈ Ω & u ∈ Clo1(M∼) } ⊆ {0,1}M .

I If Ω = {ω}, then we write simply ω ◦ Clo1(M∼).

I We say that Ω ◦ Clo1(M∼) separates the points of M if, for all
a,b ∈ M with a 6= b, there exits ω ∈ Ω and u ∈ Clo1(M∼)
with ω(u(a)) 6= ω(u(b)).

8 / 36



Some notation

Let M∼ = 〈M; G2,R2,T〉 be an alter ego go M.

I Clo1(M∼) denotes the set of unary term functions of M∼.

Since M∼ is compatible with M, we have Clo1(M∼) ⊆ End(M).

I Let Ω ⊆D(M[,D). We define

Ω ◦ Clo1(M∼) := {ω ◦ u | ω ∈ Ω & u ∈ Clo1(M∼) } ⊆ {0,1}M .

I If Ω = {ω}, then we write simply ω ◦ Clo1(M∼).

I We say that Ω ◦ Clo1(M∼) separates the points of M if, for all
a,b ∈ M with a 6= b, there exits ω ∈ Ω and u ∈ Clo1(M∼)
with ω(u(a)) 6= ω(u(b)).

8 / 36



Some further notation

Recall that Ω ⊆D(M[,D).

I For ω1, ω2 ∈ Ω, define

(ω1, ω2)−1(6) := { (a,b) ∈ M2 | ω1(a) 6 ω2(b) }.

I Define

maxM Ω−1(6) := { s ⊆ M2 | s 6 M2 with s maximal

in (ω1, ω2)−1(6) for some ω1, ω2 ∈ Ω }
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D-based Piggyback Duality Theorem

Theorem (D-based Piggyback Duality Theorem)
Let M be a D-based total structure with reduct M[ in D. Then
an alter ego M∼ of M dualises M provided that there is a finite
subset Ω of D(M[,D) such that

(0) each ω ∈ Ω is continuous with respect to the topologies
on M∼ and D∼,

(1) Ω ◦ Clo1(M∼) separates the points of M, and
(2) M∼ entails every relation in maxM Ω−1(6).

Remark 1
When M is finite, this gives us a recipe for M∼ = 〈M; G2,R2,T〉:

I choose G2 = End(M),
I choose Ω ⊆D(M[,D) so that Ω ◦ End(M) separates the

points of M. (The choice Ω = D(M[,D) always works.)
I choose R2 = maxM Ω−1(6).
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Remarks continued

Assume that M is finite.

Remark 1
The theorem gives us a recipe for M∼ = 〈M; G2,R2,T〉:

I choose G2 = End(M),
I choose Ω ⊆D(M[,D) so that Ω ◦ End(M) separates the

points of M. (The choice Ω = D(M[,D) always works.)
I choose R2 = maxM Ω−1(6).

Remark 2
I Choose Ω = D(M[,D). Then M∼ := 〈M; maxM Ω−1(6),T〉

yields a duality on A = ISP(M).
I To minimise the size of R2 = maxM Ω−1(6) we should use

G2 = End(M) and choose Ω ⊆D(M[,D) as small as
possible.
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De Morgan algebras again

A natural duality for De Morgan algebras
The class of De Morgan Algebras equals A = ISP(M), where
M = 〈{0,a,b,1};∨,∧,g,0,1〉:

0

1

a

b
g

0

1

a

b

f

Choose f to be the automorphism of M shown on the right and
let ω : M[ → D be the map with kernel {0,a | b,1}.

It is clear that ω ◦ {idM , f} separates the points of M.

It remains to calculate maxM{ω}−1(6), i.e., the maximal
De Morgan subuniverses of

(ω, ω)−1(6) = { (a,b) ∈ M2 | ω(a) 6 ω(b) }.
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De Morgan algebras again

A very useful result

Lemma
Let A = 〈A;∨,∧,g,0,1〉, where g is either

I an endomorphism of A[, or
I a dual-endomorphism of A[.

Let L be a {0,1}-sublattice of A[, then there is a largest
subuniverse L◦ of A satisfying L◦ ⊆ L.

Indeed,

L◦ := L\{a ∈ L | (∃k > 1) gk (a) /∈ L }.

Since (ω, ω)−1(6) := { (a,b) ∈ M2 | ω(a) 6 ω(b) } is a
{0,1}-sublattice of M[, it follows from the lemma that there
is a unique De Morgan subuniverse of M2 that is maximal
in (ω, ω)−1(6), namely (ω, ω)−1(6)◦.
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De Morgan algebras again

Calculating maxM{ω}−1(6)

0 M

1

a

b
g

a M∼ := 〈M; f ,4,T〉

b

0

1
f

ω : M[ → D is the map with kernel {0,a | b,1}. Hence

(ω, ω)−1(6) = {0,a} × {0,a,b,1} ∪ {b,1} × {b,1}
= M2\{b0,ba,10,1a}
= {00,0a,0b,01,a0,aa,ab,a1,bb,b1,1b,11}

Hence

(ω, ω)−1(6)◦ = {00,0b,a0,aa,ab,a1,bb,1b,11}

= 4
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De Morgan algebras again

0 M

1

a

b
g

a M∼

b

0

1
f

Theorem (Cornish and Fowler)
M∼ := 〈M; f ,4,T〉 yields a duality on the class A = ISP(M)
of De Morgan algebras.

(The duality is strong.)

I The dual category X = IScP+(M∼) is the category of
Priestley spaces with a continuous order-reversing
map f satisfying f 2 = id.

I Surprisingly, this is precisely the same as the restricted
Priestley duality for De Morgan algebras.
(More on this later.)
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Natural dualities for Gödel algebras of degree n

Let Cn = 〈Cn;∨,∧,→,0,1〉 be the n-element chain regarded as
a Heyting algebra. Thus,

a→ b =

{
1 if a 6 b,
0 if a > b.

The class Gn := ISP(Cn) is the class of Gödel algebras of
degree n.

I Define ω : C[
n → D by ω = χ{1}.

I For all a < b in Cn, there exists u ∈ End(Cn) with
u(a) < u(b) = 1.

I Hence ω ◦ End(Cn) separates the points of Cn.
I Thus C∼n := 〈Cn; End(Cn),maxCn

{ω}−1(6),T〉 yields a
duality on Gn.
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Natural dualities for Gödel algebras of degree n

Cn 2

ω... 0

1

Now let r 6 C2
n with r ⊆ (ω, ω)−1(6).

Claim: r is the graph of a
partial endomorphism of Cn. Let (a,b), (a, c) ∈ r . Then

(a,b), (a, c) ∈ r =⇒ (1,b → c) = (a,b)→ (a, c) ∈ r
=⇒ 1 = ω(1) 6 ω(b → c)

=⇒ ω(b → c) = 1
=⇒ b → c = 1
=⇒ b 6 c and c 6 b, by symmetry
=⇒ b = c

Hence r is the graph of a partial endomorphism of Cn.
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Natural dualities for Gödel algebras

We now know that C∼n := 〈Cn; End(Cn),H,T〉 yields a duality
on Gn, where H is the set of proper partial endomorphisms
of Cn.

In fact, H can be removed without destroying the duality, i.e.,

End(Cn) entails every h ∈ H.

The shortest proof of this uses three straightforward general
results.
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Three easy exercises for you

Let M be a finite algebra.

Corollary 8.1.4
An alter ego M∼ of M entails an algebraic relation s provided
M∼ yields a duality on some isomorphic copy of the algebra s.

Exercise 2.3
Assume that M∼ is an alter ego of M that yields a duality on
A ∈ ISP(M), then M∼ yields a duality on every retract of A.

Exercise 2.4
M∼ = 〈M; End(M),T〉 yields a duality on the algebra M.

Time permitting, I will explain how it follows easily from these
results that C∼n = 〈Cn; End(M),T〉 entails every partial
endomorphism of Cn.
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Natural dualities for Gödel algebras of degree n

Theorem (Davey, a long time ago)
C∼n := 〈Cn; End(Cn),T〉 yields a duality on the class Gn of Gödel
algebras of degree n.

Hence, Cn is endo-dualisable.

I For n > 4, this duality is not strong.

I It can be made strong by adding back the partial
endomorphisms.

I It provides a good example of when a non-full duality might
be easier to use that a full or strong duality.
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Outline

Another homework exercise

Piggyback dualities

Applications of the D-based Piggyback Duality Theorem

A Strong Piggyback Duality Theorem
D-based Piggyback Strong Duality Theorem

Applications of the Strong Piggyback Duality Theorem

Some exercises for you
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D-based Piggyback Strong Duality Theorem

Notation
I Denote the functors that give the Priestley duality between

the category D = ISP(D) of bounded distributive lattices
and the category P = IScP+(D∼) of Priestley spaces by

H : D→ P and K : P→D.

I Thus, on objects, we have

H(A) = D(A,D) and K (X) = P(X,D∼),

for all A ∈D and X ∈ P.
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D-based Piggyback Strong Duality Theorem

Theorem (Davey, Haviar, Priestley 2015)
Let M be a total structure with reduct M[ in D, let M∼ be an alter
ego of M and define A := ISP(M) and X := IScP+(M∼). Assume
that the structure on M∼ includes an order relation 6 such that
M∼

[ := 〈M;6,T〉 is a Priestley space, and there exists
ω ∈D(M[,D) ∩P(M∼

[,D∼) such that
(1) ω ◦ Clo1(M∼) separates the points of M,
(2) M∼ entails each (binary ) relation in maxM{ω}−1(6), and

(3) if x 
 y in M∼
[, then there exists t ∈ Clo1(M) such that

ω(t(x)) = 1 and ω(t(y)) = 0.

Then
(a) M∼ fully dualises M,
(b) M is injective in A and M∼ is injective in X, and
(c) D(A)[ ∼= H(A[) and E(X)[ ∼= K (X[), for all A ∈ A, X ∈ X.
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De Morgan algebras yet again

0 M

1

a

b
g

a M∼ := 〈M; f ,4,T〉

b

0

1
f

ω : M[ → D is the map with kernel {0,a | b,1}.

We already know that M∼ satisfies conditions (1) and (2) of the
D-based Piggyback Strong Duality Theorem.
(3) if x 64 y in M∼

[, then there exists t ∈ Clo1(M) such that
ω(t(x)) = 1 and ω(t(y)) = 0.

There are 7 pairs to check. Some examples:

b 64 a: ω(b) = 1 & ω(a) = 0
b 64 1: ω(g(b)) = 1 & ω(g(1)) = 0
0 64 1: ω(g(0)) = 1 & ω(g(1)) = 0
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De Morgan algebras yet again

0 M

1

a

b
g

a M∼

b

0

1
f

Theorem (Cornish and Fowler)

I M∼ := 〈M; f ,4,T〉 yields a strong duality between the
category A = ISP(M) of De Morgan algebras and the
category X = IScP+(M∼).

I The underlying ordered space of the natural dual is the
Priestley dual:

D(A)[ ∼= H(A[) and E(X)[ ∼= K (X[),

for all A ∈ A and all X ∈ X.
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Piggyback duality for Ockham algebras

Ockham algebras
A = 〈A;∨,∧,g,0,1〉 is an Ockham algebra if A[ ∈D and g is
a lattice-dual endomorphism of A[. We denote the equational
class of Ockham algebras by O.

I Let γ : N0 → N0 be the successor function: γ(n) := n + 1
and let c denote Boolean complementation on {0,1}.

I Define M1 := 〈{0,1}N0 | ∨,∧,g,0,1〉, where
I ∨ and ∧ are defined pointwise, 0 and 1 are the constant

maps onto 0 and 1, respectively, and,
I for all a ∈ {0,1}N0 we have g(a) := c ◦ a ◦ γ. Thus, g is

given by shift left and then negate; for example,

g(0110010 . . . ) = (001101 . . . ).

Then M1 is an Ockham algebra. Moreover, O = ISP(M1).
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Piggyback duality for Ockham algebras

An alter ego MT
2 = 〈{0,1}N0 ;u,4,T〉

I u : {0,1}N0 → {0,1}N0 is the left shift operator, given by
u(a) := a ◦ γ. Thus, for example,

u(0110010 . . . ) = (110010 . . . ).

Then u ∈ End(M1).
I 4 is the alternating order on {0,1}N0 , that is, for all

a,b ∈ {0,1}N0 ,

a 4 b ⇐⇒ a(0) 6 b(0) & a(1) > b(1) & a(2) 6 b(2) & · · · .

I T is the product topology on {0,1}N0 coming from the
discrete topology on {0,1}.
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Piggyback duality for Ockham algebras

Let ω := π0 : {0,1}N0 → {0,1}.

Then, π0 ∈D(M[
1,D) ∩P((M[

2)T,D∼).

We now check Conditions (1)–(3) of the D-based Piggyback
Strong Duality Theorem.

(1) The set π0 ◦ Clo1(M2) separates the points of
M = {0,1}N0 : indeed, let a,b ∈ {0,1}N0 with a 6= b, then

a 6= b
=⇒ (∃n ∈ N0) a(n) 6= b(n)

=⇒ (∃n ∈ N0) un(a)(0) = (a ◦ γn)(0) 6= (b ◦ γn)(0) = un(b)(0)

=⇒ (∃n ∈ N0) (π0 ◦ un)(a) 6= (π0 ◦ un)(b).

As u is in Clo1(M2), so is un. Hence π0 ◦ Clo1(M2)
separates the points of M, that is, Condition (1) holds.
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Piggyback duality for Ockham algebras

(2) We must find the binary relations r on M which form
substructures of M2

1 that are maximal in (π0, π0)−1(6).
We have

(π0, π0)−1(6) = { (a,b) ∈ ({0,1}N0)2 | a(0) 6 b(0) }.

Let r be a subalgebra of M2
1 with r ⊆ (π0, π0)−1(6). Then

(a,b) ∈ r =⇒ (∀n ∈ N0) (gn(a),gn(b)) ∈ r
=⇒ (∀n ∈ N0) gn(a)(0) 6 gn(b)(0)

=⇒ a(0) 6 b(0) & a(1) > b(1) & a(2) 6 b(2) & · · ·
⇐⇒ a 4 b.

Thus r ⊆ 4. Since 4 forms a subalgebra of M2
1 and

4 ⊆ (π0, π0)−1(6), it follows that (π0, π0)−1(6)◦ = 4.
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Piggyback duality for Ockham algebras

(3) We must prove that π0 ◦ Clo1(M1) separates the relation 4,
that is, if a 64 b in M[

2, then there exists t ∈ Clo1(M1) such
that π0(t(a)) = 1 and π0(t(b)) = 0. We have

a 64 b in M[
2

⇐⇒ (∃n ∈ N0)

{
a(n) = 1 & b(n) = 0, if n is even
a(n) = 0 & b(n) = 1, if n is odd

=⇒ (∃n ∈ N0) gn(a)(0) = 1 & gn(b)(0) = 0
=⇒ (∃n ∈ N0) π0(gn(a)) = 1 & π0(gn(b)) = 0

as required, with t(v) := gn(v).
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Piggyback duality for Ockham algebras

Theorem (Goldberg 1981/1983)
Let M1 := 〈{0,1}N0 | ∨,∧,g,0,1〉 and MT

2 = 〈{0,1}N0 ; u,4,T〉.
I MT

2 yields a strong duality between
the category O = ISP(M1) of Ockham algebras and
the category Y = IScP+(M∼

T
2) of Ockham spaces.

I The underlying ordered space of the natural dual is
the Priestley dual:

D(A)[ ∼= H(A[) and E(X)[ ∼= K (X[),

for all A ∈ A and all X ∈ X.
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Two-for-one piggyback duality for Ockham algebras

We get a second strong duality for free simply by swapping the
topology from one structure to the other.

Theorem (Davey, Haviar, Priestley 2015)
Let M1 := 〈{0,1}N0 | ∨,∧,g,0,1〉 and M2 = 〈{0,1}N0 ; u,4〉.

Then

I MT
2 := 〈{0,1}N0 ; u,4,T〉 strongly dualises M1, and

I MT
1 := 〈{0,1}N0 ;∨,∧,¬,0,1,T〉 strongly dualises M2.

Note that

I ISP(M2) consists of ordered sets equipped with an
order-reversing map, and

I IScP+(MT
1) consists of Boolean-topological Ockham

algebras.
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Some homework exercises for you

Some theory

I Prove the claims in Corollary 8.1.4, Exercise 2.3 and
Exercise 2.4.

Some practice
In each case, use the useful lemma and compare your answer
to the duality we have already found.

I Use the two-element set Ω = D(K[,D) to obtain a duality
for Kleene algebras via the Piggyback Duality Theorem.

I Use the two-element set Ω = D(M[,D) to obtain a duality
for De Morgan algebras via the Piggyback Duality
Theorem.
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