Lecture 3: From dualities to full and strong dualities

Brian A. Davey

TACL 2015 School Campus of Salerno (Fisciano) 15–19 June 2015

1/29

The standard setup

- Let <u>M</u> be a finite algebra let A := ISP(<u>M</u>) be the prevariety (= quasivariety) it generates.
- Let $\mathbf{M} = \langle M; G, H, R, T \rangle$ be an alter ego of \mathbf{M} , that is,
 - ► G is a set of operations on M, each of which is a homomorphism with respect to M,
 - ► *H* is a set of partial operations on *M*, each of which is a homomorphism with respect to <u>M</u>,
 - *R* is a set of relations on *M*, each of which is a subuniverse of the appropriate power of <u>M</u>, and
 - T is the discrete topology on *M*.
- Define $\mathcal{A} := \mathsf{ISP}(\underline{M})$: the algebraic category of interest.
- ▶ Define $\mathfrak{X} := IS_c P^+(\underline{M})$: the potential dual category for \mathcal{A} .

Outline

Natural dualities: the basics

A Natural duality for Kleene algebras

Full and strong dualities

2/29

The standard setup

► The natural hom-functors D: A → X and E: X → A are defined by

 $D(\mathbf{A}) := \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \leq \underline{\mathbf{M}}^{\mathbf{A}}$ and $E(\mathbf{X}) := \mathfrak{X}(\mathbf{X}, \underline{\mathbf{M}}) \leq \underline{\mathbf{M}}^{\mathbf{X}}$.

For all $\mathbf{A} \in \mathcal{A}$, the naturally embedding

 $e_{\mathsf{A}} \colon \mathsf{A} o ED(\mathsf{A}) = \mathfrak{X}(\mathcal{A}(\mathsf{A}, \underline{\mathsf{M}}), \underline{\mathsf{M}})$

is defined by evaluation: $(\forall a \in A) \ e_A(a) \colon \mathcal{A}(A, \underline{M}) \to \underline{M}$ is given by

$$(\forall x \in \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})) \ e_{\mathbf{A}}(a)(x) := x(a)$$

For all $\mathbf{X} \in \mathfrak{X}$, the naturally embedding

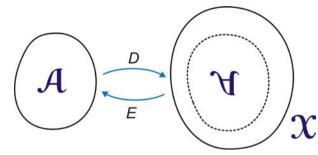
 $\varepsilon_{\mathbf{X}} \colon \mathbf{X} \to DE(\mathbf{X}) = \mathcal{A}(\mathfrak{X}(\mathbf{X}, \mathbf{M}), \mathbf{M})$

is defined by evaluation: $(\forall x \in X) \in {\bf X}(x) : {\mathfrak X}({\bf X}, {\bf M}) \to {\bf M}$ is given by

 $(\forall \alpha \in \mathfrak{X}(\mathsf{X}, \mathbf{M})) \varepsilon_{\mathsf{X}}(x)(\alpha) := \alpha(x).$

Duality

If $e_{\mathbf{A}} : \mathbf{A} \to ED(\mathbf{A})$ is surjective and therefore an isomorphism, for all \mathbf{A} in \mathcal{A} , then we say that \underline{M} yields a duality on \mathcal{A} (or that \underline{M} dualises \underline{M}).



Theorem (2.2.7 Second Duality Theorem)

Assume that $\mathbf{M} = \langle M; G, R, T \rangle$ is a total structure with R finite. If (IC) holds, then \mathbf{M} yields a duality on \mathcal{A} and is injective in \mathfrak{X} .

6/29

The NU Duality Theorem

The following useful result is an immediate corollary.

Theorem (NU Duality Theorem)

Assume that \underline{M} is a finite algebra that has a (k+1)-ary NU term. Then $\underline{M} := \langle M; R_k, \mathfrak{T} \rangle$ yields a duality on \mathcal{A} and is injective in \mathfrak{X} .

Lattices have a ternary NU term, namely the median

 $m(x,y,z) := (x \wedge y) \vee (y \wedge z) \vee (z \wedge x).$

Thus we obtain the most widely used result in the theory.

Theorem (Lattice-based Duality Theorem)

Let \underline{M} be a finite lattice-based algebra. Then $\underline{M} := \langle M; R_2, \mathfrak{T} \rangle$ yields a duality on \mathcal{A} and is injective in \mathfrak{X} .

Taming brute force with near unanimity

For $\ell \ge 1$, define $R_{\ell} := S(\underline{M}^{\ell})$ and define $R_{\omega} := \bigcup_{\ell < \omega} R_{\ell}$.

Theorem (2.3.1 Brute Force Duality Theorem)

Brute force yields a duality on \mathcal{A}_{fin} . Indeed, if $\underline{M} = \langle M; R_{\omega}, \mathfrak{T} \rangle$, then (IC) holds and therefore \underline{M} yields a duality on \mathcal{A}_{fin} and \underline{M} is injective in \mathfrak{X}_{fin} .

For $k \ge 2$, a (k+1)-ary term $n(v_1, \ldots, v_{k+1})$ is called a near unanimity term or NU term for an algebra **M** if **M** satisfies

 $n(y, x, \ldots, x) \approx n(x, y, x, \ldots, x) \approx \cdots \approx n(x, \ldots, x, y) \approx x.$

Lemma (2.3.3 NU Lemma)

(K. Baker and A. Pixley) Let $k \ge 2$ and assume that $\underline{\mathbf{M}}$ has a (k+1)-ary NU term. Let X be a subset of M^m and let $\alpha \colon X \to M$ be a map that preserves every relation in R_k . Then α preserves every relation in R_{ω} .

7/29

Priestley duality via the Lattice-based Duality Theorem

In Lecture 2 we saw how to obtain (half of) Priestley duality from the Second Duality Theorem. As an application of the Lattice-based Duality Theorem, it is almost immediate.

 $\label{eq:definition} {\color{black} \underline{D}} = \langle \{0,1\}; \lor, \land, 0,1 \rangle \quad \text{ and } \quad {\color{black} \underline{D}} = \langle \{0,1\}; \leqslant, \mathfrak{T} \rangle.$

Theorem (Half of Priestley duality)

 $\begin{array}{l} \underline{D} \textit{ yields a duality on the class } \mathfrak{D} := \mathsf{ISP}(\underline{D}) \textit{ of bounded} \\ \overrightarrow{distributive lattices, i.e., } e_{\underline{A}} \colon \underline{A} \to ED(\underline{A}) \textit{ is an isomorphism, for} \\ all \ \underline{A} \in \mathfrak{D}. \end{array}$

Priestley duality via the Lattice-based Duality Theorem

We must show that, for all $\textbf{A}\in\mathfrak{D},$ the evaluation maps

 $e_{\mathbf{A}}(a) \colon \mathfrak{D}(\mathbf{A}, \underline{\mathbf{D}}) \to \{0, 1\},\$

for $a \in A$, are the only continuous order-preserving maps. Proof.

Let $\alpha : \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \to \{0, 1\}$ be a continuous order-preserving map. [To prove: α is an evaluation map, $e_{\mathbf{A}}(a)$, for some $a \in A$.]

- By the Lattice-based Duality Theorem, D' := ⟨{0,1}; R₂, ℑ⟩ yields a duality on D.
- So the evaluations e_A(a) are the only continuous maps from D(A, D) to {0,1} that preserve the relations in R₂.
- Note that $R_2 = \{\Delta_{\{0,1\}}, \leqslant, \geqslant, \{0,1\}^2\}.$
- But α: D(A, D) → {0, 1} certainly preserves the trivial relations Δ_{0,1} and {0, 1}², and α preserves ≥ since it preserves ≤. Hence α preserve the four relations in R₂.
- Hence α is an evaluation, as \mathbf{D}' yields a duality on \mathcal{D} .

Constructs for entailment

On pages 25–27 of *The Lonely Planet Guide to the Theory of Natural Dualities* there is a list of 15 constructs for entailment. Some are:

(1) **Trivial relations** If θ is an equivalence relation on $\{1, \ldots, n\}$ then any $G \cup H \cup R$ entails the relation $\Delta^{\theta} := \{(c_1, \ldots, c_n) \mid i \, \theta \, j \Rightarrow c_i = c_j \}$. Special cases are Δ_M and M^2 .

(4) **Permutation** *r* entails

$$\begin{split} r^{\sigma} &:= \{ (\textbf{\textit{c}}_1, \dots, \textbf{\textit{c}}_n) \mid (\textbf{\textit{c}}_{\sigma(1)}, \dots, \textbf{\textit{c}}_{\sigma(n)}) \in r \}.\\ \text{Converse } r^{\check{}} &:= \{ (\textbf{\textit{c}}_1, \textbf{\textit{c}}_2) \mid (\textbf{\textit{c}}_2, \textbf{\textit{c}}_1) \in r \} \text{ is a special case.} \end{split}$$

- (6) **Intersection** If *r* and *s* are *n*-ary, the $\{r, s\}$ entails $r \cap s$.
- (7) **Product** $\{r, s\}$ entails $r \times s$.
- N.B. A construct that is not allowed is the relational product $r \cdot s$ of two binary relations!

Refining an alter ego via entailment

Definition (Entainment)

Let $\underline{M} = \langle M; G, H, R, T \rangle$, let $\mathbf{A} \in \mathcal{A}$ and let *s* be an algebraic relation or (partial) operation on \underline{M} .

- $G \cup H \cup R$ entails *s* on $D(\mathbf{A})$ if every continuous $G \cup H \cup R$ -preserving map $\alpha : D(\mathbf{A}) \to M$ preserves *s*.
- $G \cup H \cup R$ entails *s* if $G \cup H \cup R$ entails *s* on $D(\mathbf{A})$ for all $\mathbf{A} \in \mathcal{A}$.

The following lemma is trivial but useful.

Lemma

Let $\underline{M} = \langle M; G, H, R, \mathfrak{T} \rangle$ and $\underline{M}' = \langle M; G', H', R', \mathfrak{T} \rangle$ be alter egos of \underline{M} . If \underline{M}' yields a duality of \mathcal{A} and $G \cup H \cup R$ entails s, for all $s \in G' \cup H' \cup R'$, then \underline{M} yields a duality on \mathcal{A} .

11/29

4.3.9 Natural duality for Kleene algebras

An algebra $\underline{\mathbf{K}} = \langle \mathbf{K}; \vee, \wedge, \neg, 0, 1 \rangle$ is called a Kleene algebra if it is a bounded distributive lattice satisfying the axioms

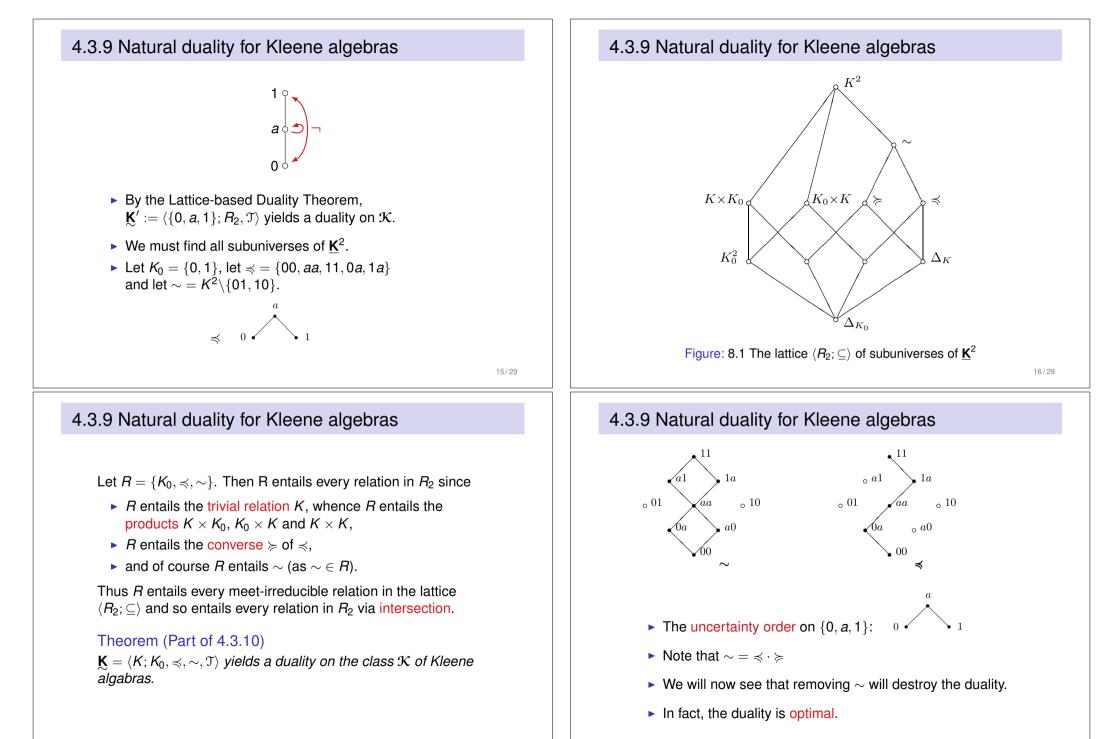
$$(x \wedge y) \approx \neg x \vee \neg y, \quad \neg (x \vee y) \approx \neg x \wedge \neg y, \quad \neg 0 \approx 1,$$

 $\neg \neg x \approx x, \quad x \land \neg x \leq y \lor \neg y.$

The models of these axioms form a variety $\mathfrak{K}=\text{ISP}(\underline{\textbf{K}})$ generated by the three-element chain

$$\underline{\mathbf{K}} = \langle \{\mathbf{0}, \boldsymbol{a}, \mathbf{1}\}; \lor, \land, \neg, \mathbf{0}, \mathbf{1} \rangle:$$

10/29



18/29

8.1.3 The Test Algebra Lemma

- Our claim is that, while K = ⟨K; K₀, ≼, ∼, ℑ⟩ yields a duality on the class 𝔅 of Kleene algebras, the alter ego K* = ⟨K; K₀, ≼, ℑ⟩ does not.
- To prove this, we must find an algebra A ∈ 𝔅 and a continuous map γ: 𝔅(A, K) → 𝐾 that preserves 𝐾₀ and ≼ but is not an evaluation,
- ▶ or equivalently, $\{K_0, \preccurlyeq\}$ does not entail \sim on $\mathcal{K}(A, \underline{K})$.

In fact, there is a canonical choice for **A**.

Lemma (Test Algebra Lemma)

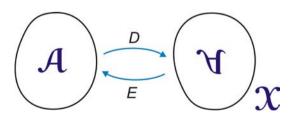
Let $\underline{\mathbf{M}} = \langle M; G, H, R, T \rangle$ and let *s* be an algebraic relation or (partial) operation on $\underline{\mathbf{M}}$ and let *s* be the corresponding subalgebra of $\underline{\mathbf{M}}^n$. Then the following are equivalent:

- (i) $G \cup H \cup R$ entails s;
- (ii) $G \cup H \cup R$ entails s on $D(\mathbf{s})$.

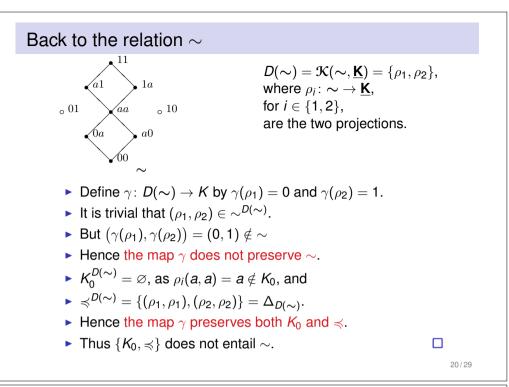
19/29

Full Duality

If \underline{M} yields a duality on \mathcal{A} and , in addition, $\varepsilon_{\mathbf{X}} \colon \mathbf{X} \to DE(\mathbf{X})$ is a surjection and therefore an isomorphism, for all \mathbf{X} in \mathfrak{X} , then \underline{M} yields a full duality on \mathcal{A} (or \underline{M} fully dualises \underline{M}).



Equivalently, \mathbf{M} yields a full duality on \mathcal{A} if the dual adjunction $\langle D, E, e, \varepsilon \rangle$ is a dual category equivalence between \mathcal{A} and \mathfrak{X} .



Strong duality

Let \underline{M} be any alter ego of an algebra \underline{M} , and let

 $D: \mathcal{A} \to \mathfrak{X}$ and $E: \mathfrak{X} \to \mathcal{A}$

be the induced hom-functors.

M is injective in the category X if, for every embedding φ: X → Y and every morphism α: X → M in X, there is a morphism β: Y → M such that β ∘ φ = α.

Strong duality

If \underline{M} fully dualises \underline{M} and \underline{M} is injective in \mathcal{X} (so that surjections in \mathcal{A} correspond to embeddings in \mathcal{X}), we say that \underline{M} yields a strong duality on \mathcal{A} (or that \underline{M} strongly dualises \underline{M}).

The CD Strong Duality Theorem

Let $\underline{\mathbf{M}}$ be a finite algebra.

- ► For all $N \leq \underline{M}$ define irr(N) to be the least ℓ such that \mathbb{O}_N in Con(N) is a meet of ℓ meet-irreducible congruences.
- Define $Irr(\underline{M}) := max\{ irr(\underline{N}) | \underline{N} \text{ is a subalgebra of } \underline{\underline{M}} \}$. Irr(\underline{M}) is called the irreducibility index of $\underline{\underline{M}}$.
- ▶ Define C := {a ∈ M | {a} is a subuniverse of M } regarded as a set of nullary operations on M.
- For all n≥ 1, define H_n to be the set of maps h: D → M such that D is a subalgebra of Mⁿ and h is a homorphism.

Theorem (3.3.7 CD Strong Duality Theorem)

Assume that $\underline{\mathbf{M}}$ is a finite algebra and that $\underline{\mathbf{M}} := \langle M; R, \mathfrak{T} \rangle$ dualises $\underline{\mathbf{M}}$. If $\operatorname{Var}(\underline{\mathbf{M}})$ is congruence distributive and $\operatorname{Irr}(\underline{\mathbf{M}}) = n$, then $\underline{\mathbf{M}} := \langle M; C \cup H_n, R, \mathfrak{T} \rangle$ strongly dualises $\underline{\mathbf{M}}$.

N.B. $Var(\underline{M})$ is congruence distributive if \underline{M} is lattice based.

24/29

Kleene algebras revisited

$$\begin{split} \underline{\mathbf{K}} &= \langle \{\mathbf{0}, \mathbf{a}, \mathbf{1}\}; \lor, \land, \neg, \mathbf{0}, \mathbf{1} \rangle \\ \text{and} \\ \mathbf{K} &= \langle \mathbf{K}; \mathbf{K}_{\mathbf{0}}, \preccurlyeq, \sim, \mathfrak{T} \rangle. \end{split}$$

Theorem (Strong duality for Kleene algebras)

 \underline{K} yields a strong duality between the class $\mathcal{K} := \mathsf{ISP}(\underline{K})$ of Kleene algebras and the class $\mathcal{X} = \mathsf{IS}_c\mathsf{P}^+(\underline{K})$.

Proof.

- \blacktriangleright We already know that ${\ensuremath{\underline{\mathsf{K}}}}$ yields a duality on ${\ensuremath{\mathfrak{K}}}.$
- $\underline{\mathbf{K}}$ and $\underline{\mathbf{K}}_0$ are simple, so $Irr(\underline{\mathbf{K}}) = 1$.
- It follows from the CD Strong Duality Theorem that K' = ⟨K; id_K, id_{K₀}, K₀, ≼, ∼, ℑ⟩ yields a strong duality on 𝔅.
- id_K and id_{K_0} can be removed without affecting the result.
- Hence \mathbf{K} yields a strong duality on \mathcal{K} .

26/29

Distributive lattices revisited

 $\blacktriangleright \ \underline{D} = \langle \{0,1\}; \lor, \land, 0,1 \rangle \quad \text{ and } \quad \underline{D} = \langle \{0,1\}; \leqslant, \mathfrak{T} \rangle.$

Theorem (Priestley duality is strong)

 $\stackrel{\textbf{D}}{\underset{}{\underset{}}}$ yields a strong duality between the class $\mathfrak{D}:=\mathsf{ISP}(\stackrel{\textbf{D}}{\underset{}})$ of bounded distributive lattices and the class $\mathfrak{P}=\mathsf{IS}_c\mathsf{P}^+(\stackrel{\textbf{D}}{\underset{}})$ of Priestley spaces, i.e., $\stackrel{\textbf{D}}{\underset{}{\underset{}}}$ is injective in \mathfrak{P} and, for all $\textbf{A}\in\mathfrak{D}$ and $\textbf{X}\in\mathfrak{P},$

• e_A : $A \rightarrow ED(A)$ and ε_X : $X \rightarrow ED(X)$ are isomorphisms.

Proof.

- **D** is simple and has no subalgebras, so $Irr(\underline{D}) = 1$.
- It follows from the CD Strong Duality Theorem that $\underline{D}' = \langle \{0, 1\}; id_{\mathcal{D}}, \leqslant, \mathfrak{T} \rangle$ yields a strong duality on \mathfrak{D} .
- ► Clearly id_D can be removed without affecting the result.
- Hence \mathbf{D} yields a strong duality on \mathcal{D} .

25/29

Partial operations can't be avoided

Theorem (6.1.2 Total Structure Theorem)

Assume that $\mathbf{M} = \langle M; G, H, R, T \rangle$ yields a strong duality on \mathcal{A} . The following are equivalent:

- (i) some total structure \mathbf{M}' yields a strong duality on \mathcal{A} ;
- (ii) for each natural number *n*, every *n*-ary partial operation $h \in H$ extends to a homomorphism $g: \underline{\mathbf{M}}^n \to \underline{\mathbf{M}};$
- (iii) $\underline{\mathbf{M}}$ is injective in \mathcal{A} .

Let \underline{M} be any finite lattice-based algebra that is not injective in $\mathcal{A}=\text{ISP}(\underline{M}).$ Then

- \blacktriangleright there is an alter ego $\underbrace{\mathsf{M}}$ that yields a strong duality on $\mathcal{A},$
- \blacktriangleright but any such \underline{M} must include partial operations in its type.

Further examples

Some exercises for you. Use the Lattice-based Duality Theorem and the CD Strong Duality Theorem to find a strong duality for $\mathcal{A} := \mathsf{ISP}(\underline{M})$ in each of the following cases. Is your duality optimal?

- 1. Median algebras. $\underline{\mathbf{M}} = \langle \{0, 1\}; m \rangle$, where $m: \{0, 1\}^3 \rightarrow \{0, 1\}$ is the median operation.
- 2. Stone algebras. $\underline{\mathbf{M}} = \langle \{0, a, 1\}; \lor, \land, ^*, 0, 1 \rangle$, where $\langle \{0, a, 1\}; \lor, \land, 0, 1 \rangle$ is a chain with 0 < a < 1 and * is given by $0^* = 1$ and $a^* = 1^* = 0$.
- 3. Double Stone algebras. $\underline{\mathbf{M}} = \langle \{0, a, b, 1\}; \lor, \land, *, +, 0, 1 \rangle$, where $\langle \{0, a, b, 1\}; \lor, \land, 0, 1 \rangle$ is a chain with 0 < a < b < 1and * and + are given by $0^* = 1$ and $a^* = b^* = 1^* = 0$, and $1^+ = 0$ and $0^+ = a^+ = b^+ = 1$.
- 4. 3-valued Gödel algebras. $\underline{\mathbf{M}} = \langle \{0, a, 1\}; \lor, \land, \rightarrow, 0, 1 \rangle$, where $\langle \{0, a, 1\}; \lor, \land, 0, 1 \rangle$ is a chain with 0 < a < 1 and $x \rightarrow y = 1$, if $x \leq y$, and $x \rightarrow y = y$, if x > y.

28/29