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Natural dualities: the basics
A Natural duality for Kleene algebras

Full and strong dualities

The standard setup

v

Let M be a finite algebra let A := ISP(M) be the
prevariety (= quasivariety) it generates.

LetM = (M; G, H, R, T) be an alter ego of M, that is,

» Gis a set of operations on M, each of which is a
homomorphism with respect to M,

» His a set of partial operations on M, each of which is a
homomorphism with respect to M,

» R is a set of relations on M, each of which is a
subuniverse of the appropriate power of M, and

» T is the discrete topology on M.

v

v

Define A := ISP(M): the algebraic category of interest.

v

Define X := IS;P*(M): the potential dual category for A.

The standard setup

» The natural hom-functors D: A — X and E: X — A are
defined by

D(A) .= A(A,M) <MA and E(X):=X(X,M) < M.
» For all A € A, the naturally embedding
ea: A — ED(A) = X(A(A,M), M)

is defined by evaluation: (Va € A) ea(a): A(A,M) — M
is given by

(Vx € A(A,M)) ea(a)(x) :=x(a)
» For all X € X, the naturally embedding
ex: X — DE(X) = A(X(X,M), M)

is defined by evaluation: (Vx € X) ex(x): X(X,M) — M
is given by

(Vo € X(X,M)) ex(x)(e) := a(x).




Duality

If ea: A — ED(A) is surjective and therefore an isomorphism,
for all A'in A, then we say that M yields a duality on A (or that
M dualises M).

Theorem (2.2.7 Second Duality Theorem)

Assume that M = (M; G, R, T) is a total structure with R finite.
If (IC) holds, then M yields a duality on A and is injective in X.

Taming brute force with near unanimity
For ¢ > 1, define R, := S(M’) and define R,, := J,.,, R

Theorem (2.3.1 Brute Force Duality Theorem)

Brute force yields a duality on Ayy,. Indeed, if M = (M; R,,,T),
then (IC) holds and therefore M yields a duality on Ay, and M is
injective in X

For k > 2, a (k+1)-ary term n(vy, ..., vky1) is called a near
unanimity term or NU term for an algebra M if M satisfies

ny,x,....X)=n(X,y,X,....,X) == nNX,...,X,y) =~ X.

Lemma (2.3.3 NU Lemma)

(K. Baker and A. Pixley) Let k > 2 and assume that M has a
(k+1)-ary NU term. Let X be a subset of M™ and leto.: X — M
be a map that preserves every relation in Ri. Then o preserves
every relation in R,,.
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The NU Duality Theorem

The following useful result is an immediate corollary.

Theorem (NU Duality Theorem)
Assume that M is a finite algebra that has a (k+1)-ary NU term.

ThenM := (M; Rk, T) yields a duality on A and is injective in X.
Lattices have a ternary NU term, namely the median
m(x,y,z) = (XAy)V(yANz)V(ZAX).

Thus we obtain the most widely used result in the theory.

Theorem (Lattice-based Duality Theorem)

Let M be a finite lattice-based algebra. Then M := (M; R, T)
yields a duality on A and is injective in X.

Priestley duality via the Lattice-based Duality Theorem

In Lecture 2 we saw how to obtain (half of) Priestley duality
from the Second Duality Theorem. As an application of the
Lattice-based Duality Theorem, it is almost immediate.

» D=({0,1};v,A,0,1) and D= ({0,1};<,7).

Theorem (Half of Priestley duality)

D yields a duality on the class D := ISP(D) of bounded
distributive lattices, i.e., en: A — ED(A) is an isomorphism, for
allA € D.




Priestley duality via the Lattice-based Duality Theorem

We must show that, for all A € D, the evaluation maps
ea(a): D(A,D) — {0,1},
for a € A, are the only continuous order-preserving maps.

Proof.
Let «: D(A,D) — {0, 1} be a continuous order-preserving
map. [To prove: « is an evaluation map, ea(a), for some a € A]

» By the Lattice-based Duality Theorem, D' := ({0,1}; Ro, T)
yields a duality on D.

» So the evaluations ea(a) are the only continuous maps
from D(A,D) to {0, 1} that preserve the relations in Ro.

» Note that R, = {A 13, <, >,{0,1}2}.

» Buta: D(A,D) — {0, 1} certainly preserves the trivial
relations Ay 1y and {0, 1}2, and a preserves > since it
preserves <. Hence « preserve the four relations in R..

» Hence « is an evaluation, as D’ yields a dualityon ©. O
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Refining an alter ego via entailment

Definition (Entainment)

LetM = (M;G,H,R,7), let A € A and let s be an algebraic
relation or (partial) operation on M.

» GUHU R entails s on D(A) if every continuous
G U HU R-preserving map «: D(A) — M preserves s.

» GUHU Rentails sif GU HU R entails s on D(A) for all
AcA.

The following lemma is trivial but useful.

Lemma

LetM = (M;G,H,R,T) andM = (M; G',H',R',T) be alter
egos of M. If M’ yields a duality of A and GU H U R entails s,
foralls € G'UH UR', then M yields a duality on A.
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Constructs for entailment

On pages 25-27 of The Lonely Planet Guide to the Theory of
Natural Dualities there is a list of 15 constructs for entailment.
Some are:
(1) Trivial relations If 0 is an equivalence relation on
{1,...,n} then any GU H U R entails the relation
A :={(ci,....cn) | i0j=ci=¢}.
Special cases are Ay, and M?.

(4) Permutation r entails

re={(C1,...,¢n) | (Cs(1),---»Co(n)) € I'}-
Converse r':= {(cy,¢2) | (c2,¢1) € r} is a special case.

(6) Intersection If r and s are n-ary, the {r, s} entails rn s.
(7) Product {r,s} entails r x s.

N.B. A construct that is not allowed is the relational product r - s
of two binary relations!
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4.3.9 Natural duality for Kleene algebras

An algebra K = (K;V,A,—,0,1) is called a Kleene algebra if it
is a bounded distributive lattice satisfying the axioms

_‘(X/\y)"&"«_'X\/_\y, _'(X\/y)%_‘X/\_'ya _'0%17

X R X, XAXSYyVoy.

The models of these axioms form a variety K = ISP(K)
generated by the three-element chain

K= ({0,a,1};Vv,A,—,0,1):
1

aos|—
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4.3.9 Natural duality for Kleene algebras

» By the Lattice-based Duality Theorem,
K':=({0,a,1}; R, 7) yields a duality on X.

» We must find all subuniverses of K2.

> Let Ko = {0,1}, let x = {00, aa,11,0a,1a}
and let ~ = K2\{01,10}.

a

$0A1
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4.3.9 Natural duality for Kleene algebras

Figure: 8.1 The lattice (R,; C) of subuniverses of K?
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4.3.9 Natural duality for Kleene algebras

Let R = {Kp, <, ~}. Then R entails every relation in R, since

» R entails the trivial relation K, whence R entails the
products K x Ky, Ky x K and K x K,

» R entails the converse 3= of <,

» and of course R entails ~ (as ~ € R).

Thus R entails every meet-irreducible relation in the lattice
(Ro; C) and so entails every relation in R, via intersection.

Theorem (Part of 4.3.10)

K = (K; Ko, <, ~, 7) yields a duality on the class XK of Kleene
algabras.
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4.3.9 Natural duality for Kleene algebras
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The uncertainty order on {0,a,1}: 0 /\ 1

v

Note that ~ = < - =

v

We will now see that removing ~ will destroy the duality.

v

In fact, the duality is optimal.

18/29




8.1.3 The Test Algebra Lemma

» Our claim is that, while K = (K; Ky, <, ~, 7) yields a duality
on the class XK of Kleene algebras, the alter ego
K* = (K; Ko, <, T) does not.

» To prove this, we must find an algebra A € K and a
continuous map v: K(A,K) — K that preserves Ky and <
but is not an evaluation,

» or equivalently, {Kp, <} does not entail ~ on (A, K).

In fact, there is a canonical choice for A.

Lemma (Test Algebra Lemma)

LetM = (M; G,H,R,T) and let s be an algebraic relation
or (partial) operation on M and let s be the corresponding
subalgebra of M". Then the following are equivalent:

() GUHUR entails s;
(i) GUHU R entails s on D(s).
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Back to the relation ~
D(N) = fK("#K) = {P1,ﬂz},
la where p;: ~ — K,
o 01 aa 10 forie {1,2},

@ 0 are the two projections.
a
00

» Define v: D(~) — K by v(p1) = 0 and v(p2) = 1.

> ltis trivial that (py, p2) € ~P(™).

» But (v(p1),7(p2)) = (0,1) ¢ ~

» Hence the map ~ does not preserve ~.

> KOD(N) =2, as pi(a,a) = a¢ Ky, and

> <P = {(p1,p1). (p2, p2)} = Dp()-

» Hence the map v preserves both Ky and <.

» Thus {Kp, <} does not entail ~. O
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Full Duality
If M yields a duality on A and , in addition, ex: X — DE(X) is a

surjection and therefore an isomorphism, for all X in X, then M
yields a full duality on A (or M fully dualises M).

Equivalently, M yields a full duality on A if the dual adjunction
(D, E, e, ¢) is a dual category equivalence between A and X.
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Strong duality
Let M be any alter ego of an algebra M, and let
D:A—-X and E:X—- A
be the induced hom-functors.

» M is injective in the category X if, for every embedding
¢: X »— Y and every morphism a: X = Min X, there is a
morphism 3: Y — M such that 3o ¢ = a.

>L>Y

X
J{ o) /,’
« "
B
- M
Strong duality ~
If M fully dualises M and M is injective in X (so that surjections
in A correspond to embeddings in X), we say that M yields a
strong duality on A (or that M strongly dualises M).
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The CD Strong Duality Theorem

Let M be a finite algebra.

» For all N < M define irr(N) to be the least ¢ such that Oy in
Con(N) is a meet of ¢ meet-irreducible congruences.

» Define Irr(M) := max{irr(N) | N is a subalgebra of M }.
Irr(M) is called the irreducibility index of M.

» Define C := {a e M| {a} is a subuniverse of M }
regarded as a set of nullary operations on M.

» Forall n > 1, define H, to be the set of maps h: D - M
such that D is a subalgebra of M” and h is a homorphism.

Theorem (3.3.7 CD Strong Duality Theorem)

Assume that M is a finite algebra and thatM := (M; R, T)
dualises M. If Var(M) is congruence distributive and Irr(M) = n,
then M := (M; C U Hy, R, T) strongly dualises M.

N.B. Var(M) is congruence distributive if M is lattice based.
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Distributive lattices revisited

» D=({0,1};V,A,0,1) and D= ({0,1};<,7).

Theorem (Priestley duality is strong)

D yields a strong duality between the class D := ISP(D) of
bounded distributive lattices and the class P = IScP*(D) of
Priestley spaces, i.e., D is injective in P and, for all A € D and
Xe?,

» ea: A— ED(A) and ex: X — ED(X) are isomorphisms.
Proof.
We already know that D yields a duality on D.
D is simple and has no subalgebras, so Irr(D) = 1.
It follows from the CD Strong Duality Theorem that
D’ = ({0,1};idp, <, T) yields a strong duality on D.
Clearly idp can be removed without affecting the result.
Hence D yields a strong duality on D. a

v

v

v

v

v
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Kleene algebras revisited
1 K=({0,a,1};V,A,~,0,1)
and

a¢2|7 ,|SZ<K;K07<’N7(‘T>'

0

Theorem (Strong duality for Kleene algebras)

K yields a strong duality between the class K := ISP(K) of
Kleene algebras and the class X = IS;P*(K).

Proof.

We already know that K yields a duality on XK.

K and K, are simple, so Irr(K) = 1.

It follows from the CD Strong Duality Theorem that

K' = (K;idk, idk,, Ko, <, ~, T) yields a strong duality on K.
idk and idy, can be removed without affecting the resuilt.
Hence K yields a strong duality on X. O

v

v

v

v

v

26/29

Partial operations can’t be avoided

Theorem (6.1.2 Total Structure Theorem)
Assume that M = (M; G, H, R, T) yields a strong duality on A.
The following are equivalent:

(i) some total structure M’ yields a strong duality on A;

(iiy for each natural number n, every n-ary partial operation
h € H extends to a homomorphism g: M" — M;

(iii) M is injective in A.

Let M be any finite lattice-based algebra that is not injective in
A = ISP(M). Then

» there is an alter ego M that yields a strong duality on A,
» but any such M must include partial operations in its type.
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Further examples

Some exercises for you. Use the Lattice-based Duality
Theorem and the CD Strong Duality Theorem to find a strong
duality for A := ISP(M) in each of the following cases.

Is your duality optimal?

1. Median algebras. M = ({0, 1}; m), where
m: {0,1}3 — {0, 1} is the median operation.

2. Stone algebras. M = ({0,a,1};V,A,*,0,1), where
({0,a,1}; Vv, A,0,1) is a chain with 0 < a < 1 and * is given
by 0*=1and a*=1*=0.

3. Double Stone algebras. M = ({0,a,b,1}; Vv, A,*,;7,0,1),
where ({0,a,b,1};V,A,0,1)isachainwith0O <a< b < 1
and * and ™ are given by 0* = 1 and a* = b* = 1* = 0, and
1t =0and 0" =a" =b" = 1.

4. 3-valued Godel algebras. M= ({0,a,1};V,A,—,0,1),
where ({0,a,1};Vv,A,0,1) isachainwith0 < a< 1and
x—>y=1ifx<y,andx - y=y,ifx>y.

28/29




