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The standard setup

v

Let M be a finite algebra let A := ISP(M) be the
prevariety (= quasivariety) it generates.

Let M = (M; G, H, R, T) be an alter ego of M, that is,

» G is a set of operations on M, each of which is a
homomorphism with respect to M,

» His a set of partial operations on M, each of which is a
homomorphism with respect to M,

» Ris a set of relations on M, each of which is a
subuniverse of the appropriate power of M, and

» T is the discrete topology on M.

v

v

Define A := ISP(M): the algebraic category of interest.

v

Define X := IS;P*(M): the potential dual category for A.
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The standard setup

» The natural hom-functors D: A — X and E: X — A are
defined by

D(A) := A(A,M) <MA and E(X) :=X(X,M) < M.
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» The natural hom-functors D: A — X and E: X — A are
defined by

D(A) := A(A,M) <MA and E(X) :=X(X,M) < M.

» For all A € A, the naturally embedding
ea: A— ED(A) = X(A(A,M), M)
is defined by evaluation: (Va € A) ea(a): A(A,M) - M
is given by
(Vx € A(A,M)) ea(a)(x) := x(a)
» For all X € X, the naturally embedding
ex: X = DE(X) = A(X(X, M), M)
is defined by evaluation: (Vx € X) ex(x): X(X,M) — M
is given by
(Vo € X(X, M) ex(x)(e) := a(x).
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Duality

If en: A — ED(A) is surjective and therefore an isomorphism,
for all A'in A, then we say that M yields a duality on A (or that
M dualises M).
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Duality

If en: A — ED(A) is surjective and therefore an isomorphism,
for all A'in A, then we say that M yields a duality on A (or that
M dualises M).

Theorem (2.2.7 Second Duality Theorem)

Assume thatM = (M; G, R, 7T) is a total structure with R finite.
If (IC) holds, then M yields a duality on A and is injective in X.



Taming brute force with near unanimity

For ¢ > 1, define R, := S(M’) and define R,, := J,_, R:.
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For ¢ > 1, define R, := S(M’) and define R,, := J,_, R:.

Theorem (2.3.1 Brute Force Duality Theorem)

Brute force yields a duality on Asp. Indeed, if M = (M; R,,,T),
then (IC) holds and therefore M yields a duality on Ay, and M is
injective in Xip.

For k > 2, a (k+1)-ary term n(vy, ..., vky1) is called a near
unanimity term or NU term for an algebra M if M satisfies

ny,x,...,.X) = n(X,y,X,....,.xX)~---=n(X,...,X,y) = X.

Lemma (2.3.3 NU Lemma)

(K. Baker and A. Pixley) Let k > 2 and assume that M has a
(k+1)-ary NU term. Let X be a subset of M™ and leta: X — M
be a map that preserves every relation in Rx. Then o preserves
every relation in R,,.



The NU Duality Theorem

The following useful result is an immediate corollary.

Theorem (NU Duality Theorem)

Assume that M is a finite algebra that has a (k+1)-ary NU term.
Then M := (M; Rk, T) yields a duality on A and is injective in X.
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The NU Duality Theorem

The following useful result is an immediate corollary.

Theorem (NU Duality Theorem)

Assume that M is a finite algebra that has a (k+1)-ary NU term.
Then M := (M; Rk, T) yields a duality on A and is injective in X.

Lattices have a ternary NU term, namely the median
m(x,y,z) = (XAy)V(yAz)V(zAX).
Thus we obtain the most widely used result in the theory.

Theorem (Lattice-based Duality Theorem)

Let M be a finite lattice-based algebra. Then M := (M; R, T)
yields a duality on A and is injective in X.
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Priestley duality via the Lattice-based Duality Theorem

In Lecture 2 we saw how to obtain (half of) Priestley duality
from the Second Duality Theorem. As an application of the
Lattice-based Duality Theorem, it is almost immediate.

» D=({0,1};v,A,0,1) and D= ({0,1};<,7).

Theorem (Half of Priestley duality)

D yields a duality on the class D := ISP(D) of bounded
distributive lattices, i.e., epn: A — ED(A) is an isomorphism, for
allA € D.
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Priestley duality via the Lattice-based Duality Theorem

We must show that, for all A € D, the evaluation maps
ea(a): D(A,D) — {0,1},
for a € A, are the only continuous order-preserving maps.

Proof.

Let a: D(A,D) — {0, 1} be a continuous order-preserving
map.
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for a € A, are the only continuous order-preserving maps.

Proof.
Let a: D(A,D) — {0, 1} be a continuous order-preserving
map. [To prove: « is an evaluation map, ea(a), for some a € A]
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» So the evaluations ea(a) are the only continuous maps
from D(A,D) to {0, 1} that preserve the relations in Rs.
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Refining an alter ego via entailment

Definition (Entainment)

LetM = (M; G, H,R,T), let A € A and let s be an algebraic
relation or (partial) operation on M.

» GU HU R entails s on D(A) if every continuous
G U HU R-preserving map «: D(A) — M preserves s.

» GUHU R entails sif GU HU R entails s on D(A) for all
AcA.
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Refining an alter ego via entailment

Definition (Entainment)

LetM = (M; G, H,R,T), let A € A and let s be an algebraic
relation or (partial) operation on M.

» GU HU R entails s on D(A) if every continuous
G U HU R-preserving map «: D(A) — M preserves s.

» GUHU R entails sif GU HU R entails s on D(A) for all
AcA.

The following lemma is trivial but useful.

Lemma

LetM = (M; G,H,R,T) and M = (M; G',H', R, T) be alter
egos of M. IfM' yields a duality of A and GU H U R entails s,
foralls € G UH UR, then M yields a duality on A.
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Constructs for entailment

On pages 2527 of The Lonely Planet Guide to the Theory of
Natural Dualities there is a list of 15 constructs for entailment.
Some are:

(1) Trivial relations If 4 is an equivalence relation on
{1,...,n} then any GU H U R entails the relation
A:={(c1,...,cn) | i0j=ci=¢}.

Special cases are Ay and M2,

(4) Permutation r entails

re={(c1,..-,¢n) | (Co(1ys- -+ Co(n)) € I}
Converse r':= {(cy,¢2) | (co,¢q) € r} is a special case.

(6) Intersection If r and s are n-ary, the {r, s} entails rn s.
(7) Product {r,s} entails r x s.

N.B. A construct that is not allowed is the relational product r - s
of two binary relations!
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Outline

A Natural duality for Kleene algebras
Applying the Lattice-based Duality Theorem
The Test Algebra Lemma
The duality for Kleene algebras is optimal
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4.3.9 Natural duality for Kleene algebras

An algebra K = (K; Vv, A,—,0,1) is called a Kleene algebra if it
is a bounded distributive lattice satisfying the axioms

S(XAY)=-xV-y, —=(xVy)=-xA-y, -0=x1,

The models of these axioms form a variety I = ISP(K)
generated by the three-element chain

K= {{0,a,1};Vv,A,—,0,1):
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4.3.9 Natural duality for Kleene algebras

» By the Lattice-based Duality Theorem,
K’ :=({0,a,1}; Ry, T) yields a duality on X.

< 0/\1
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4.3.9 Natural duality for Kleene algebras

» By the Lattice-based Duality Theorem,
K’ :=({0,a,1}; Ry, T) yields a duality on X.

» We must find all subuniverses of K2.
» Let Ko ={0,1}, let x ={00,aa,11,0a,1a}
and let ~ = K2\{01,10}.

< 0/\1
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4.3.9 Natural duality for Kleene algebras

K2

Figure: 8.1 The lattice (Rz; C) of subuniverses of K?
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4.3.9 Natural duality for Kleene algebras

Let R = {Kp, %, ~}. Then R entails every relation in R, since

» R entails the trivial relation K, whence R entails the
products K x Ky, Ky x K and K x K,
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4.3.9 Natural duality for Kleene algebras

Let R = {Kp, =<, ~}. Then R entails every relation in R, since

» R entails the trivial relation K, whence R entails the
products K x Ky, Ky x K and K x K,

» R entails the converse = of <,
» and of course R entails ~ (as ~ € R).

Thus R entails every meet-irreducible relation in the lattice
(R2; C) and so entails every relation in R, via intersection.

Theorem (Part of 4.3.10)

K = (K; Ko, <, ~,7T) yields a duality on the class X of Kleene
algabras.
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4.3.9 Natural duality for Kleene algebras

11 11

» The uncertainty order on {0,a,1}: 0 /\ 1
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4.3.9 Natural duality for Kleene algebras

11 11

The uncertainty order on {0,a,1}: 0 /\ 1

v

v

Note that ~ = = - <.

v

We will now see that removing ~ will destroy the duality.

v

In fact, the duality is optimal.
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8.1.3 The Test Algebra Lemma

» Our claim is that, while K = (K; Ko, <, ~, 7) yields a duality
on the class X of Kleene algebras, the alter ego
K* = (K; Ko, <, T) does not.
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8.1.3 The Test Algebra Lemma

» Our claim is that, while K = (K; Ko, <, ~, 7) yields a duality
on the class X of Kleene algebras, the alter ego
K* = (K; Ko, <, T) does not.

» To prove this, we must find an algebra A € K and a
continuous map v: (A, K) — K that preserves Ky and <
but is not an evaluation,

» or equivalently, {Ko, <} does not entail ~ on K(A, K).

In fact, there is a canonical choice for A.

Lemma (Test Algebra Lemma)

LetM = (M; G, H, R,T) and let s be an algebraic relation
or (partial) operation on M and let s be the corresponding
subalgebra of M". Then the following are equivalent:

() GUHU R entails s;
(i) GUHU R entails s on D(s).
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Back to the relation ~
11

D(N) = K(N,K) = {phPZ},
la where pj: ~ — K,
01 aa o 10 for i S {1,2},

are the two projections.

o

a0

00
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D(~) = K(~,K) = {p1, p2},
la where p;: ~ — K,
01 aa 10 fOF I € {1 s 2},

w0 are the two projections.

00

~Y

» Define y: D(~) — K by v(p1) = 0 and v(p2) = 1.
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D(N) = K(N,K) = {phPZ},
la where p;: ~ — K,
01 aa 10 for i S {1 s 2},

@ 0 are the two projections.
a
00

Define v: D(~) — K by v(p1) = 0 and y(p2) = 1.
It is trivial that (pq, p2) € ~P(™).

But (v(p1),v(p2)) = (0,1) ¢ ~
Hence the map ~ does not preserve ~.

v

v

v

v
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Back to the relation ~
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Back to the relation ~
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Outline

Full and strong dualities
Full duality
Strong duality
The CD Strong Duality Theorem
Distributive lattices and Kleene algebras revisited
Partial operations can’t be avoided
Further examples
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Full Duality
If M yields a duality on A and , in addition, ex: X — DE(X) is a

surjection and therefore an isomorphism, for all X in X, then M
yields a full duality on A (or M fully dualises M).

Equivalently, M yields a full duality on A if the dual adjunction
(D, E, e, ¢) is a dual category equivalence between A and X.
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Strong duality
Let M be any alter ego of an algebra M, and let
D: A—X and E:X— A

be the induced hom-functors.
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Strong duality
Let M be any alter ego of an algebra M, and let

D:-A—-X and E:X—- A

be the induced hom-functors.

» Mis injective in the category X if, for every embedding
¢: X — Y and every morphism a: X — M in X, there is a
morphism 3: Y — M such that 3o ¢ = a.

>L>Y

X
|
« L’
W B
Strong duality M
If M fully dualises M and M is injective in X (so that surjections

in A correspond to embeddings in X), we say that M yields a
strong duality on A (or that M strongly dualises M).
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The CD Strong Duality Theorem

Let M be a finite algebra.

» For all N < M define irr(N) to be the least ¢ such that Oy in
Con(N) is a meet of £ meet-irreducible congruences.
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such that D is a subalgebra of M" and h is a homorphism.

Theorem (3.3.7 CD Strong Duality Theorem)

Assume that M is a finite algebra and thatM := (M; R, T)
dualises M. If Var(M) is congruence distributive and Irr(M) = n,
then M := (M; C U Hp, R, T) strongly dualises M.

N.B. Var(M) is congruence distributive if M is lattice based.
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Distributive lattices revisited

» D=({0,1};V,A,0,1) and D= ({0,1};<, 7).

Theorem (Priestley duality is strong)

D yields a strong duality between the class D := ISP(D) of
bounded distributive lattices and the class P = IScP*(D) of
Priestley spaces, i.e., D is injective in P and, for all A € D and
Xe?,

» ea: A — ED(A) andex: X — ED(X) are isomorphisms.
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Kleene algebras revisited

1 K= ({0,a,1};V,A,—,0,1)

and
a¢I|- K = (K; Ko, <, ~, T).

~
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Partial operations can’t be avoided

Theorem (6.1.2 Total Structure Theorem)

Assume thatM = (M; G, H, R, T) yields a strong duality on A.
The following are equivalent:

(i) some total structure M’ yields a strong duality on A;

(iiy for each natural number n, every n-ary partial operation
h € H extends to a homomorphism g: M" — M;
(iiiy M is injective in A.
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Partial operations can’t be avoided

Theorem (6.1.2 Total Structure Theorem)
Assume thatM = (M; G, H, R, T) yields a strong duality on A.
The following are equivalent:

(i) some total structure M’ yields a strong duality on A;

(iiy for each natural number n, every n-ary partial operation
h € H extends to a homomorphism g: M" — M;

(iiiy M is injective in A.

Let M be any finite lattice-based algebra that is not injective in
A = ISP(M). Then

» there is an alter ego M that yields a strong duality on A,

» but any such M must include partial operations in its type.
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Further examples

Some exercises for you. Use the Lattice-based Duality
Theorem and the CD Strong Duality Theorem to find a strong
duality for A := ISP(M) in each of the following cases.

Is your duality optimal?

1. Median algebras. M = ({0, 1}; m), where
m: {0,1}3 — {0, 1} is the median operation.

2. Stone algebras. M = ({0,a,1};V,A,*,0,1), where
({0,a,1}; v, A,0,1) is a chain with 0 < a < 1 and * is given
by 0*=1and a* =1* = 0.

3. Double Stone algebras. M = ({0,a,b,1};Vv,A*,7,0,1),
where ({0,a,b,1};Vv,A,0,1)isachainwith0 <a< b< 1
and * and ™ are given by 0* = 1 and a* = b* = 1* = 0, and
1t =0and 0" =a" =b" =1.

4. 3-valued Godel algebras. M = ({0,a,1};V,A,—,0,1),
where ({0,a,1};V,A,0,1) isachainwith0 < a< 1and
x—y=1ifx<y,andx - y=y,ifx>y.
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Hom-closed and term-closed sets

It is easy to prove the following claims, for all A € A.
» The set D(A) = A(A, M) is closed under every [-ary

algebraic partial operation on M, for all non-empty sets /.

We say that D(A) is hom-closed in MA.
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algebraic partial operation on M, for all non-empty sets /.
We say that D(A) is hom-closed in MA.

» For all y € MA\A(A, M), there exist A-ary term functions
ti, t: MA — M such that t [pay = t2lpa) but ti(y) # t2(y).
We say that D(A) is term-closed in MA.

Theorem (3.2.4 First Strong Duality Theorem)
Assume M yields a duality on A. The following are equivalent:
(1) M yields a strong duality on A,

(2) for every non-empty set S, each closed substructure of MS
is hom-closed,

(3) for every non-empty set S, each closed substructure of MS
is term-closed.

29/29



	Natural dualities: the basics
	The standard assumptions
	Duality
	The NU Duality Theorem
	Priestley duality via the Lattice-based Duality Theorem
	Entailment

	A Natural duality for Kleene algebras
	Applying the Lattice-based Duality Theorem
	The Test Algebra Lemma
	The duality for Kleene algebras is optimal

	Full and strong dualities
	Full duality
	Strong duality
	The CD Strong Duality Theorem
	Distributive lattices and Kleene algebras revisited
	Partial operations can't be avoided
	Further examples

	Appendix
	Hom-closed and term-closed sets


