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The standard setup

I Let M be a finite algebra let A := ISP(M) be the
prevariety (= quasivariety) it generates.

I Let M∼ = 〈M; G,H,R,T〉 be an alter ego of M, that is,
I G is a set of operations on M, each of which is a

homomorphism with respect to M,
I H is a set of partial operations on M, each of which is a

homomorphism with respect to M,
I R is a set of relations on M, each of which is a

subuniverse of the appropriate power of M, and
I T is the discrete topology on M.

I Define A := ISP(M): the algebraic category of interest.

I Define X := IScP+(M∼): the potential dual category for A.

4 / 29



The standard setup

I The natural hom-functors D : A→ X and E : X→ A are
defined by

D(A) := A(A,M) 6 M∼
A and E(X) := X(X,M∼) 6 MX .

I For all A ∈ A, the naturally embedding

eA : A→ ED(A) = X(A(A,M),M∼)

is defined by evaluation:
(
∀a ∈ A

)
eA(a) : A(A,M)→ M∼

is given by (
∀x ∈ A(A,M)

)
eA(a)(x) := x(a)

I For all X ∈ X, the naturally embedding

εX : X→ DE(X) = A(X(X,M∼),M)

is defined by evaluation:
(
∀x ∈ X

)
εX(x) : X(X,M∼)→ M

is given by (
∀α ∈ X(X,M∼)

)
εX(x)(α) := α(x).
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Duality

If eA : A→ ED(A) is surjective and therefore an isomorphism,
for all A in A, then we say that M∼ yields a duality on A (or that
M∼ dualises M).

Theorem (2.2.7 Second Duality Theorem)
Assume that M∼ = 〈M; G,R,T〉 is a total structure with R finite.
If (IC) holds, then M∼ yields a duality on A and is injective in X.
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Taming brute force with near unanimity

For ` > 1, define R` := S(M`) and define Rω :=
⋃
`<ω R`.

Theorem (2.3.1 Brute Force Duality Theorem)
Brute force yields a duality on Afin. Indeed, if M∼ = 〈M; Rω,T〉,
then (IC) holds and therefore M∼ yields a duality on Afin and M∼ is
injective in Xfin.

For k > 2, a (k+1)-ary term n(v1, . . . , vk+1) is called a near
unanimity term or NU term for an algebra M if M satisfies

n(y , x , . . . , x) ≈ n(x , y , x , . . . , x) ≈ · · · ≈ n(x , . . . , x , y) ≈ x .

Lemma (2.3.3 NU Lemma)
(K. Baker and A. Pixley ) Let k ≥ 2 and assume that M has a
(k+1)-ary NU term. Let X be a subset of Mm and let α : X → M
be a map that preserves every relation in Rk . Then α preserves
every relation in Rω.
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The NU Duality Theorem

The following useful result is an immediate corollary.

Theorem (NU Duality Theorem)
Assume that M is a finite algebra that has a (k+1)-ary NU term.
Then M∼ := 〈M; Rk ,T〉 yields a duality on A and is injective in X.

Lattices have a ternary NU term, namely the median

m(x , y , z) := (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).

Thus we obtain the most widely used result in the theory.

Theorem (Lattice-based Duality Theorem)
Let M be a finite lattice-based algebra. Then M∼ := 〈M; R2,T〉
yields a duality on A and is injective in X.
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Priestley duality via the Lattice-based Duality Theorem

In Lecture 2 we saw how to obtain (half of) Priestley duality
from the Second Duality Theorem. As an application of the
Lattice-based Duality Theorem, it is almost immediate.

I D = 〈{0,1};∨,∧,0,1〉 and D∼ = 〈{0,1};6,T〉.

Theorem (Half of Priestley duality)
D∼ yields a duality on the class D := ISP(D) of bounded
distributive lattices, i.e., eA : A→ ED(A) is an isomorphism, for
all A ∈D.
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Priestley duality via the Lattice-based Duality Theorem

We must show that, for all A ∈D, the evaluation maps

eA(a) : D(A,D)→ {0,1},
for a ∈ A, are the only continuous order-preserving maps.

Proof.
Let α : D(A,D)→ {0,1} be a continuous order-preserving
map.

[To prove: α is an evaluation map, eA(a), for some a ∈ A.]

I By the Lattice-based Duality Theorem, D∼
′ := 〈{0,1}; R2,T〉

yields a duality on D.
I So the evaluations eA(a) are the only continuous maps

from D(A,D) to {0,1} that preserve the relations in R2.
I Note that R2 = {∆{0,1},6,>, {0,1}2}.
I But α : D(A,D)→ {0,1} certainly preserves the trivial

relations ∆{0,1} and {0,1}2, and α preserves > since it
preserves 6. Hence α preserve the four relations in R2.

I Hence α is an evaluation, as D∼
′ yields a duality on D.
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Refining an alter ego via entailment

Definition (Entainment)
Let M∼ = 〈M; G,H,R,T〉, let A ∈ A and let s be an algebraic
relation or (partial) operation on M.

I G ∪ H ∪ R entails s on D(A) if every continuous
G ∪ H ∪ R-preserving map α : D(A)→ M preserves s.

I G ∪ H ∪ R entails s if G ∪ H ∪ R entails s on D(A) for all
A ∈ A.

The following lemma is trivial but useful.

Lemma
Let M∼ = 〈M; G,H,R,T〉 and M∼

′ = 〈M; G′,H ′,R′,T〉 be alter
egos of M. If M∼

′ yields a duality of A and G ∪ H ∪ R entails s,
for all s ∈ G′ ∪ H ′ ∪ R′, then M∼ yields a duality on A.
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Constructs for entailment

On pages 25–27 of The Lonely Planet Guide to the Theory of
Natural Dualities there is a list of 15 constructs for entailment.
Some are:
(1) Trivial relations If θ is an equivalence relation on
{1, . . . ,n} then any G ∪ H ∪ R entails the relation
∆θ := {(c1, . . . , cn) | i θ j ⇒ ci = cj }.
Special cases are ∆M and M2.

(4) Permutation r entails
rσ := {(c1, . . . , cn) | (cσ(1), . . . , cσ(n)) ∈ r}.
Converse r˘:= {(c1, c2) | (c2, c1) ∈ r } is a special case.

(6) Intersection If r and s are n-ary, the {r , s} entails r ∩ s.

(7) Product {r , s} entails r × s.

N.B. A construct that is not allowed is the relational product r · s
of two binary relations!
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A Natural duality for Kleene algebras
Applying the Lattice-based Duality Theorem
The Test Algebra Lemma
The duality for Kleene algebras is optimal

Full and strong dualities
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4.3.9 Natural duality for Kleene algebras

An algebra K = 〈K ;∨,∧,¬,0,1〉 is called a Kleene algebra if it
is a bounded distributive lattice satisfying the axioms

¬(x ∧ y) ≈ ¬x ∨ ¬y , ¬(x ∨ y) ≈ ¬x ∧ ¬y , ¬0 ≈ 1,

¬¬x ≈ x , x ∧ ¬x ≤ y ∨ ¬y .

The models of these axioms form a variety K = ISP(K)
generated by the three-element chain

K = 〈{0,a,1};∨,∧,¬,0,1〉 :

¬

1

a

0
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4.3.9 Natural duality for Kleene algebras

¬

1

a

0

I By the Lattice-based Duality Theorem,
K∼
′ := 〈{0,a,1}; R2,T〉 yields a duality on K.

I We must find all subuniverses of K2.
I Let K0 = {0,1}, let 4 = {00,aa,11,0a,1a}

and let ∼ = K 2\{01,10}.

4

30 BRIAN A. DAVEY

observation that, if we don’t know if a statement is true, then we also don’t know if its
negation is true.

Because K and its only subalgebra K0 = ⟨{0, 1}; ∨, ∧, ¬, 0, 1⟩ are both simple and
have no non-identity endomorphisms, we obtain a strong duality by taking G = H = ∅
and R = S(K × K). Among the relations of R we single out the order !, illustrated in
Figure 4.3, together with the unary relation K0 and the reflexive, symmetric relation

∼ = {(0, 0), (a, a), (1, 1), (0, a), (1, a), (a, 0), (a, 1)}

relating all pairs except 0 and 1. Let

K∼ = ⟨{0, a, 1}; !, ∼, K0, T ⟩.

!! !
10

a

! ❅
❅"

"

Figure 4.3 the order ! on K∼

4.3.10 Theorem (Davey and Werner [DW83])

(i) K∼ yields a strong duality on the variety K of Kleene algebras.

(ii) X = ⟨X ; !, ∼, X0, T ⟩ belongs to the dual category IScP+ K∼ if and only if ⟨X ; !⟩ is a
Priestley space, ∼ is a closed binary relation, X0 is a closed subspace and the following
universal axioms are satisfied:

(a) x ∼ x,

(b) x ∼ y and x ∈ X0 =⇒ x ! y ,

(c) x ∼ y and y ! z =⇒ z ∼ x.

4.3.12 (CLO) versus (IC) From the example of Kleene algebras we obtain a simple
illustration of the fact that a choice of relations for M∼ which determine the clone of M
may not be enough to give us the duality condition (IC). Consider the structure

K∼
′ = ⟨{0, a, 1}; !, K0, T ⟩.

If ϕ is a total operation on K which preserves ! and K0 , it will also preserve " as
well as the relational product ∼ = " · !. Since K∼ satisfies (CLO), ϕ must be a term
function. Thus K∼

′ also satisfies (CLO). But K∼
′ does not satisfy (IC), as we see by taking

X = {(0, a), (a, 0)} and γ : (0, a) )→ 0; (a, 0) )→ 1. Then γ : X → K∼
′ preserves ! and K0

(vacuously), but it does not preserve ∼ and therefore does not extend to a term function.
In particular, K∼

′ determines the clone of K but does not yield a duality on the quasi-variety
it generates.

Kleene algebras have played an important role in the development of natural duality theory.
They occur as seminal examples several times later in this text: see Section 5 of Chapter 7
and Section 4 of Chapter 8.
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∼ = {(0, 0), (a, a), (1, 1), (0, a), (1, a), (a, 0), (a, 1)}

relating all pairs except 0 and 1. Let

K∼ = ⟨{0, a, 1}; !, ∼, K0, T ⟩.
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4.3.10 Theorem (Davey and Werner [DW83])

(i) K∼ yields a strong duality on the variety K of Kleene algebras.

(ii) X = ⟨X ; !, ∼, X0, T ⟩ belongs to the dual category IScP+ K∼ if and only if ⟨X ; !⟩ is a
Priestley space, ∼ is a closed binary relation, X0 is a closed subspace and the following
universal axioms are satisfied:

(a) x ∼ x,

(b) x ∼ y and x ∈ X0 =⇒ x ! y ,

(c) x ∼ y and y ! z =⇒ z ∼ x.

4.3.12 (CLO) versus (IC) From the example of Kleene algebras we obtain a simple
illustration of the fact that a choice of relations for M∼ which determine the clone of M
may not be enough to give us the duality condition (IC). Consider the structure

K∼
′ = ⟨{0, a, 1}; !, K0, T ⟩.

If ϕ is a total operation on K which preserves ! and K0 , it will also preserve " as
well as the relational product ∼ = " · !. Since K∼ satisfies (CLO), ϕ must be a term
function. Thus K∼

′ also satisfies (CLO). But K∼
′ does not satisfy (IC), as we see by taking

X = {(0, a), (a, 0)} and γ : (0, a) )→ 0; (a, 0) )→ 1. Then γ : X → K∼
′ preserves ! and K0

(vacuously), but it does not preserve ∼ and therefore does not extend to a term function.
In particular, K∼

′ determines the clone of K but does not yield a duality on the quasi-variety
it generates.

Kleene algebras have played an important role in the development of natural duality theory.
They occur as seminal examples several times later in this text: see Section 5 of Chapter 7
and Section 4 of Chapter 8.
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entails K0 . Thus, we could replace K0 with any other member of UK0 , but this would
have the disadvantage of replacing a unary relation with a binary one. The only other
change which comes to mind would be the trivial one of replacing ! with its converse ".
This certainly feels like an optimal duality. To see that it is we need to find the minimal
unavoidable sets, or equivalently, the global minimal failsets within Ω := S(K) ∪ S(K2).
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Figure 8.2 the subalgebras ∼ and !!! of K2

8.4.2 The Globally Minimal Failsets First, consider the relation ∼ : see Figure 8.2.
Let x : ∼ → K be a homomorphism. Because the fixpoint (a, a) of the Kleene negation
must map to a, it is very easy to show that x is a projection. Thus D(∼) = {ρ1, ρ2}.
Define γ : D(∼) → K by γ(ρ1) = 0 and γ(ρ2) = 1. Since (0, 1) /∈ ∼, and, by Lemma 8.1.1,
(ρ1, ρ2) ∈ ∼D(∼) , we conclude that ∼ ∈ Fail∼(γ), that is, Fail∼(γ) is a failset of ∼. We

shall now show that Fail∼(γ) = {∼}. Note that K
D(∼)
0 = ∅ since, for i = 1, 2, we have

ρi((a, a)) = a /∈ K0 . Thus γ preserves K0 and consequently Fail∼(γ) consists of binary
relations. Let r ∈ Fail∼(γ). Then we can find x, y ∈ D(∼) such that (x, y) ∈ rD(∼) and
(γ(x), γ(y)) /∈ r. As (0, 0), (1, 1) ∈ r, we must have x ̸= y . Consequently, as r is closed

Figure: 8.1 The lattice 〈R2;⊆〉 of subuniverses of K2
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4.3.9 Natural duality for Kleene algebras

Let R = {K0,4,∼}. Then R entails every relation in R2 since

I R entails the trivial relation K , whence R entails the
products K × K0, K0 × K and K × K ,

I R entails the converse < of 4,
I and of course R entails ∼ (as ∼ ∈ R).

Thus R entails every meet-irreducible relation in the lattice
〈R2;⊆〉 and so entails every relation in R2 via intersection.

Theorem (Part of 4.3.10)
K∼ = 〈K ; K0,4,∼,T〉 yields a duality on the class K of Kleene
algabras.
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entails K0 . Thus, we could replace K0 with any other member of UK0 , but this would
have the disadvantage of replacing a unary relation with a binary one. The only other
change which comes to mind would be the trivial one of replacing ! with its converse ".
This certainly feels like an optimal duality. To see that it is we need to find the minimal
unavoidable sets, or equivalently, the global minimal failsets within Ω := S(K) ∪ S(K2).

" 00

" a0" 0a

" aa

" 1a" a1

" 11

❜ 10❜ 01

%
%

%
%

%
%

%
%

❅
❅

❅
❅

❅
❅

❅
❅

∼
" 00

❜ a0" 0a

" aa

" 1a❜ a1

" 11

❜ 10❜ 01

%
%

%
%

❅
❅

❅
❅

"""

Figure 8.2 the subalgebras ∼ and !!! of K2

8.4.2 The Globally Minimal Failsets First, consider the relation ∼ : see Figure 8.2.
Let x : ∼ → K be a homomorphism. Because the fixpoint (a, a) of the Kleene negation
must map to a, it is very easy to show that x is a projection. Thus D(∼) = {ρ1, ρ2}.
Define γ : D(∼) → K by γ(ρ1) = 0 and γ(ρ2) = 1. Since (0, 1) /∈ ∼, and, by Lemma 8.1.1,
(ρ1, ρ2) ∈ ∼D(∼) , we conclude that ∼ ∈ Fail∼(γ), that is, Fail∼(γ) is a failset of ∼. We

shall now show that Fail∼(γ) = {∼}. Note that K
D(∼)
0 = ∅ since, for i = 1, 2, we have

ρi((a, a)) = a /∈ K0 . Thus γ preserves K0 and consequently Fail∼(γ) consists of binary
relations. Let r ∈ Fail∼(γ). Then we can find x, y ∈ D(∼) such that (x, y) ∈ rD(∼) and
(γ(x), γ(y)) /∈ r. As (0, 0), (1, 1) ∈ r, we must have x ̸= y . Consequently, as r is closed

I The uncertainty order on {0,a,1}:
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observation that, if we don’t know if a statement is true, then we also don’t know if its
negation is true.

Because K and its only subalgebra K0 = ⟨{0, 1}; ∨, ∧, ¬, 0, 1⟩ are both simple and
have no non-identity endomorphisms, we obtain a strong duality by taking G = H = ∅
and R = S(K × K). Among the relations of R we single out the order !, illustrated in
Figure 4.3, together with the unary relation K0 and the reflexive, symmetric relation

∼ = {(0, 0), (a, a), (1, 1), (0, a), (1, a), (a, 0), (a, 1)}

relating all pairs except 0 and 1. Let

K∼ = ⟨{0, a, 1}; !, ∼, K0, T ⟩.
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4.3.10 Theorem (Davey and Werner [DW83])

(i) K∼ yields a strong duality on the variety K of Kleene algebras.

(ii) X = ⟨X ; !, ∼, X0, T ⟩ belongs to the dual category IScP+ K∼ if and only if ⟨X ; !⟩ is a
Priestley space, ∼ is a closed binary relation, X0 is a closed subspace and the following
universal axioms are satisfied:

(a) x ∼ x,

(b) x ∼ y and x ∈ X0 =⇒ x ! y ,

(c) x ∼ y and y ! z =⇒ z ∼ x.

4.3.12 (CLO) versus (IC) From the example of Kleene algebras we obtain a simple
illustration of the fact that a choice of relations for M∼ which determine the clone of M
may not be enough to give us the duality condition (IC). Consider the structure

K∼
′ = ⟨{0, a, 1}; !, K0, T ⟩.

If ϕ is a total operation on K which preserves ! and K0 , it will also preserve " as
well as the relational product ∼ = " · !. Since K∼ satisfies (CLO), ϕ must be a term
function. Thus K∼

′ also satisfies (CLO). But K∼
′ does not satisfy (IC), as we see by taking

X = {(0, a), (a, 0)} and γ : (0, a) )→ 0; (a, 0) )→ 1. Then γ : X → K∼
′ preserves ! and K0

(vacuously), but it does not preserve ∼ and therefore does not extend to a term function.
In particular, K∼

′ determines the clone of K but does not yield a duality on the quasi-variety
it generates.

Kleene algebras have played an important role in the development of natural duality theory.
They occur as seminal examples several times later in this text: see Section 5 of Chapter 7
and Section 4 of Chapter 8.

I Note that ∼ = < ·4.

I We will now see that removing ∼ will destroy the duality.

I In fact, the duality is optimal.
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ρi((a, a)) = a /∈ K0 . Thus γ preserves K0 and consequently Fail∼(γ) consists of binary
relations. Let r ∈ Fail∼(γ). Then we can find x, y ∈ D(∼) such that (x, y) ∈ rD(∼) and
(γ(x), γ(y)) /∈ r. As (0, 0), (1, 1) ∈ r, we must have x ̸= y . Consequently, as r is closed

I The uncertainty order on {0,a,1}:
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observation that, if we don’t know if a statement is true, then we also don’t know if its
negation is true.

Because K and its only subalgebra K0 = ⟨{0, 1}; ∨, ∧, ¬, 0, 1⟩ are both simple and
have no non-identity endomorphisms, we obtain a strong duality by taking G = H = ∅
and R = S(K × K). Among the relations of R we single out the order !, illustrated in
Figure 4.3, together with the unary relation K0 and the reflexive, symmetric relation

∼ = {(0, 0), (a, a), (1, 1), (0, a), (1, a), (a, 0), (a, 1)}

relating all pairs except 0 and 1. Let

K∼ = ⟨{0, a, 1}; !, ∼, K0, T ⟩.

!! !
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Figure 4.3 the order ! on K∼

4.3.10 Theorem (Davey and Werner [DW83])

(i) K∼ yields a strong duality on the variety K of Kleene algebras.

(ii) X = ⟨X ; !, ∼, X0, T ⟩ belongs to the dual category IScP+ K∼ if and only if ⟨X ; !⟩ is a
Priestley space, ∼ is a closed binary relation, X0 is a closed subspace and the following
universal axioms are satisfied:

(a) x ∼ x,

(b) x ∼ y and x ∈ X0 =⇒ x ! y ,

(c) x ∼ y and y ! z =⇒ z ∼ x.

4.3.12 (CLO) versus (IC) From the example of Kleene algebras we obtain a simple
illustration of the fact that a choice of relations for M∼ which determine the clone of M
may not be enough to give us the duality condition (IC). Consider the structure

K∼
′ = ⟨{0, a, 1}; !, K0, T ⟩.

If ϕ is a total operation on K which preserves ! and K0 , it will also preserve " as
well as the relational product ∼ = " · !. Since K∼ satisfies (CLO), ϕ must be a term
function. Thus K∼

′ also satisfies (CLO). But K∼
′ does not satisfy (IC), as we see by taking

X = {(0, a), (a, 0)} and γ : (0, a) )→ 0; (a, 0) )→ 1. Then γ : X → K∼
′ preserves ! and K0

(vacuously), but it does not preserve ∼ and therefore does not extend to a term function.
In particular, K∼

′ determines the clone of K but does not yield a duality on the quasi-variety
it generates.

Kleene algebras have played an important role in the development of natural duality theory.
They occur as seminal examples several times later in this text: see Section 5 of Chapter 7
and Section 4 of Chapter 8.

I Note that ∼ = < ·4.

I We will now see that removing ∼ will destroy the duality.

I In fact, the duality is optimal.
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entails K0 . Thus, we could replace K0 with any other member of UK0 , but this would
have the disadvantage of replacing a unary relation with a binary one. The only other
change which comes to mind would be the trivial one of replacing ! with its converse ".
This certainly feels like an optimal duality. To see that it is we need to find the minimal
unavoidable sets, or equivalently, the global minimal failsets within Ω := S(K) ∪ S(K2).
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8.1.3 The Test Algebra Lemma

I Our claim is that, while K∼ = 〈K ; K0,4,∼,T〉 yields a duality
on the class K of Kleene algebras, the alter ego
K∼
∗ = 〈K ; K0,4,T〉 does not.

I To prove this, we must find an algebra A ∈K and a
continuous map γ : K(A,K)→ K that preserves K0 and 4
but is not an evaluation,

I or equivalently, {K0,4} does not entail ∼ on K(A,K).

In fact, there is a canonical choice for A.

Lemma (Test Algebra Lemma)
Let M∼ = 〈M; G,H,R,T〉 and let s be an algebraic relation
or (partial) operation on M and let s be the corresponding
subalgebra of Mn. Then the following are equivalent:

(i) G ∪ H ∪ R entails s;
(ii) G ∪ H ∪ R entails s on D(s).
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entails K0 . Thus, we could replace K0 with any other member of UK0 , but this would
have the disadvantage of replacing a unary relation with a binary one. The only other
change which comes to mind would be the trivial one of replacing ! with its converse ".
This certainly feels like an optimal duality. To see that it is we need to find the minimal
unavoidable sets, or equivalently, the global minimal failsets within Ω := S(K) ∪ S(K2).
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Figure 8.2 the subalgebras ∼ and !!! of K2

8.4.2 The Globally Minimal Failsets First, consider the relation ∼ : see Figure 8.2.
Let x : ∼ → K be a homomorphism. Because the fixpoint (a, a) of the Kleene negation
must map to a, it is very easy to show that x is a projection. Thus D(∼) = {ρ1, ρ2}.
Define γ : D(∼) → K by γ(ρ1) = 0 and γ(ρ2) = 1. Since (0, 1) /∈ ∼, and, by Lemma 8.1.1,
(ρ1, ρ2) ∈ ∼D(∼) , we conclude that ∼ ∈ Fail∼(γ), that is, Fail∼(γ) is a failset of ∼. We

shall now show that Fail∼(γ) = {∼}. Note that K
D(∼)
0 = ∅ since, for i = 1, 2, we have

ρi((a, a)) = a /∈ K0 . Thus γ preserves K0 and consequently Fail∼(γ) consists of binary
relations. Let r ∈ Fail∼(γ). Then we can find x, y ∈ D(∼) such that (x, y) ∈ rD(∼) and
(γ(x), γ(y)) /∈ r. As (0, 0), (1, 1) ∈ r, we must have x ̸= y . Consequently, as r is closed

D(∼) = K(∼,K) = {ρ1, ρ2},
where ρi : ∼→ K,
for i ∈ {1,2},
are the two projections.

I Define γ : D(∼)→ K by γ(ρ1) = 0 and γ(ρ2) = 1.
I It is trivial that (ρ1, ρ2) ∈ ∼D(∼).
I But

(
γ(ρ1), γ(ρ2)

)
= (0,1) /∈ ∼

I Hence the map γ does not preserve ∼.
I K D(∼)

0 = ∅, as ρi(a,a) = a /∈ K0, and
I 4D(∼) = {(ρ1, ρ1), (ρ2, ρ2)} = ∆D(∼).
I Hence the map γ preserves both K0 and 4.
I Thus {K0,4} does not entail ∼.
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Let x : ∼ → K be a homomorphism. Because the fixpoint (a, a) of the Kleene negation
must map to a, it is very easy to show that x is a projection. Thus D(∼) = {ρ1, ρ2}.
Define γ : D(∼) → K by γ(ρ1) = 0 and γ(ρ2) = 1. Since (0, 1) /∈ ∼, and, by Lemma 8.1.1,
(ρ1, ρ2) ∈ ∼D(∼) , we conclude that ∼ ∈ Fail∼(γ), that is, Fail∼(γ) is a failset of ∼. We

shall now show that Fail∼(γ) = {∼}. Note that K
D(∼)
0 = ∅ since, for i = 1, 2, we have

ρi((a, a)) = a /∈ K0 . Thus γ preserves K0 and consequently Fail∼(γ) consists of binary
relations. Let r ∈ Fail∼(γ). Then we can find x, y ∈ D(∼) such that (x, y) ∈ rD(∼) and
(γ(x), γ(y)) /∈ r. As (0, 0), (1, 1) ∈ r, we must have x ̸= y . Consequently, as r is closed

D(∼) = K(∼,K) = {ρ1, ρ2},
where ρi : ∼→ K,
for i ∈ {1,2},
are the two projections.

I Define γ : D(∼)→ K by γ(ρ1) = 0 and γ(ρ2) = 1.
I It is trivial that (ρ1, ρ2) ∈ ∼D(∼).
I But

(
γ(ρ1), γ(ρ2)

)
= (0,1) /∈ ∼

I Hence the map γ does not preserve ∼.
I K D(∼)

0 = ∅, as ρi(a,a) = a /∈ K0, and
I 4D(∼) = {(ρ1, ρ1), (ρ2, ρ2)} = ∆D(∼).
I Hence the map γ preserves both K0 and 4.
I Thus {K0,4} does not entail ∼.
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entails K0 . Thus, we could replace K0 with any other member of UK0 , but this would
have the disadvantage of replacing a unary relation with a binary one. The only other
change which comes to mind would be the trivial one of replacing ! with its converse ".
This certainly feels like an optimal duality. To see that it is we need to find the minimal
unavoidable sets, or equivalently, the global minimal failsets within Ω := S(K) ∪ S(K2).
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Full Duality

If M∼ yields a duality on A and , in addition, εX : X→ DE(X) is a
surjection and therefore an isomorphism, for all X in X, then M∼
yields a full duality on A (or M∼ fully dualises M).

Equivalently, M∼ yields a full duality on A if the dual adjunction
〈D,E ,e, ε〉 is a dual category equivalence between A and X.
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Strong duality

Let M∼ be any alter ego of an algebra M, and let

D : A→ X and E : X→ A

be the induced hom-functors.

I M∼ is injective in the category X if, for every embedding
ϕ : X� Y and every morphism α : X→ M∼ in X, there is a
morphism β : Y→ M∼ such that β ◦ ϕ = α.

M∼

X Y
◦

α
β

ϕ

Strong duality
If M∼ fully dualises M and M∼ is injective in X (so that surjections
in A correspond to embeddings in X), we say that M∼ yields a
strong duality on A (or that M∼ strongly dualises M).
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The CD Strong Duality Theorem

Let M be a finite algebra.
I For all N 6 M define irr(N) to be the least ` such that 0N in

Con(N) is a meet of ` meet-irreducible congruences.

I Define Irr(M) := max{ irr(N) | N is a subalgebra of M }.
Irr(M) is called the irreducibility index of M.

I Define C := {a ∈ M | {a} is a subuniverse of M }
regarded as a set of nullary operations on M.

I For all n > 1, define Hn to be the set of maps h : D → M
such that D is a subalgebra of Mn and h is a homorphism.

Theorem (3.3.7 CD Strong Duality Theorem)
Assume that M is a finite algebra and that M∼ := 〈M; R,T〉
dualises M. If Var(M) is congruence distributive and Irr(M) = n,
then M∼ := 〈M; C ∪ Hn,R,T〉 strongly dualises M.

N.B. Var(M) is congruence distributive if M is lattice based.
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Distributive lattices revisited

I D = 〈{0,1};∨,∧,0,1〉 and D∼ = 〈{0,1};6,T〉.
Theorem (Priestley duality is strong)
D∼ yields a strong duality between the class D := ISP(D) of
bounded distributive lattices and the class P = IScP+(D∼) of
Priestley spaces, i.e., D∼ is injective in P and, for all A ∈D and
X ∈ P,

I eA : A→ ED(A) and εX : X→ ED(X) are isomorphisms.

Proof.

I We already know that D∼ yields a duality on D.
I D is simple and has no subalgebras, so Irr(D) = 1.
I It follows from the CD Strong Duality Theorem that

D∼
′ = 〈{0,1}; idD,6,T〉 yields a strong duality on D.

I Clearly idD can be removed without affecting the result.
I Hence D∼ yields a strong duality on D.
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Kleene algebras revisited

¬

1

a

0

K = 〈{0,a,1};∨,∧,¬,0,1〉
and
K∼ = 〈K ; K0,4,∼,T〉.

Theorem (Strong duality for Kleene algebras)
K∼ yields a strong duality between the class K := ISP(K) of
Kleene algebras and the class X = IScP+(K∼).

Proof.

I We already know that K∼ yields a duality on K.
I K and K0 are simple, so Irr(K) = 1.
I It follows from the CD Strong Duality Theorem that

K∼
′ = 〈K ; idK , idK0 ,K0,4,∼,T〉 yields a strong duality on K.

I idK and idK0 can be removed without affecting the result.
I Hence K∼ yields a strong duality on K.
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′ = 〈K ; idK , idK0 ,K0,4,∼,T〉 yields a strong duality on K.

I idK and idK0 can be removed without affecting the result.
I Hence K∼ yields a strong duality on K.
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Partial operations can’t be avoided

Theorem (6.1.2 Total Structure Theorem)
Assume that M∼ = 〈M; G,H,R,T〉 yields a strong duality on A.
The following are equivalent:

(i) some total structure M∼
′ yields a strong duality on A;

(ii) for each natural number n, every n-ary partial operation
h ∈ H extends to a homomorphism g : Mn → M;

(iii) M is injective in A.

Let M be any finite lattice-based algebra that is not injective in
A = ISP(M). Then

I there is an alter ego M∼ that yields a strong duality on A,
I but any such M∼ must include partial operations in its type.
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Further examples

Some exercises for you. Use the Lattice-based Duality
Theorem and the CD Strong Duality Theorem to find a strong
duality for A := ISP(M) in each of the following cases.
Is your duality optimal?

1. Median algebras. M = 〈{0,1}; m〉, where
m : {0,1}3 → {0,1} is the median operation.

2. Stone algebras. M = 〈{0,a,1};∨,∧,∗ ,0,1〉, where
〈{0,a,1};∨,∧,0,1〉 is a chain with 0 < a < 1 and ∗ is given
by 0∗ = 1 and a∗ = 1∗ = 0.

3. Double Stone algebras. M = 〈{0,a,b,1};∨,∧,∗ ,+ ,0,1〉,
where 〈{0,a,b,1};∨,∧,0,1〉 is a chain with 0 < a < b < 1
and ∗ and + are given by 0∗ = 1 and a∗ = b∗ = 1∗ = 0, and
1+ = 0 and 0+ = a+ = b+ = 1.

4. 3-valued Gödel algebras. M = 〈{0,a,1};∨,∧,→,0,1〉,
where 〈{0,a,1};∨,∧,0,1〉 is a chain with 0 < a < 1 and
x → y = 1, if x 6 y , and x → y = y , if x > y .
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Hom-closed and term-closed sets

It is easy to prove the following claims, for all A ∈ A.

I The set D(A) = A(A,M) is closed under every I-ary
algebraic partial operation on M, for all non-empty sets I.
We say that D(A) is hom-closed in MA.

I For all y ∈ MA\A(A,M), there exist A-ary term functions
t1, t2 : MA → M such that t1�D(A) = t2�D(A) but t1(y) 6= t2(y).
We say that D(A) is term-closed in MA.

Theorem (3.2.4 First Strong Duality Theorem)
Assume M∼ yields a duality on A. The following are equivalent:

(1) M∼ yields a strong duality on A,
(2) for every non-empty set S, each closed substructure of M∼

S

is hom-closed,
(3) for every non-empty set S, each closed substructure of M∼

S

is term-closed.
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