Lecture 3: From dualities to full and strong dualities

Brian A. Davey

TACL 2015 School
Campus of Salerno (Fisciano)
15-19 June 2015

Outline

Natural dualities: the basics

A Natural duality for Kleene algebras

Full and strong dualities

Outline

Natural dualities: the basics
The standard assumptions
Duality
The NU Duality Theorem
Priestley duality via the Lattice-based Duality Theorem Entailment

A Natural duality for Kleene algebras

Full and strong dualities

The standard setup

- Let $\underline{\mathbf{M}}$ be a finite algebra let $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ be the prevariety (= quasivariety) it generates.
- Let $\mathbf{M}=\langle\boldsymbol{M} ; G, H, R, \mathcal{T}\rangle$ be an alter ego of $\underline{\mathbf{M}}$, that is,
- G is a set of operations on M, each of which is a homomorphism with respect to \underline{M},
- H is a set of partial operations on M, each of which is a homomorphism with respect to M,
- R is a set of relations on M, each of which is a subuniverse of the appropriate power of \mathbf{M}, and
- \mathcal{T} is the discrete topology on M.
- Define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$: the algebraic category of interest.
- Define $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{M}})$: the potential dual category for \mathcal{A}.

The standard setup

- The natural hom-functors $D: \mathcal{A} \rightarrow \mathcal{X}$ and $E: X \rightarrow \mathcal{A}$ are defined by

$$
D(\mathbf{A}):=\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \leqslant{\underset{\sim}{M}}^{A} \quad \text { and } \quad E(\mathbf{X}):=\mathcal{X}(\mathbf{X}, \underline{\mathbf{M}}) \leqslant \underline{\mathbf{M}}^{X}
$$

The standard setup

- The natural hom-functors $D: \mathcal{A} \rightarrow \mathcal{X}$ and $E: \mathcal{X} \rightarrow \mathcal{A}$ are defined by

$$
D(\mathbf{A}):=\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \leqslant \underline{\mathbf{M}}^{A} \quad \text { and } \quad E(\mathbf{X}):=\mathcal{X}(\mathbf{X}, \underline{\mathbf{M}}) \leqslant \underline{\mathbf{M}}^{X}
$$

- For all $\mathbf{A} \in \mathcal{A}$, the naturally embedding

$$
e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})=\mathcal{X}(\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}), \underset{\sim}{\mathbf{M}})
$$

is defined by evaluation: $(\forall a \in A) e_{\mathbf{A}}(a): \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \rightarrow \mathbf{M}$ is given by

$$
(\forall x \in \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})) \quad e_{\mathbf{A}}(a)(x):=x(a)
$$

The standard setup

- The natural hom-functors $D: \mathcal{A} \rightarrow \mathcal{X}$ and $E: \mathcal{X} \rightarrow \mathcal{A}$ are defined by

$$
D(\mathbf{A}):=\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \leqslant \underline{\mathbf{M}}^{A} \quad \text { and } \quad E(\mathbf{X}):=\mathcal{X}(\mathbf{X}, \underline{\mathbf{M}}) \leqslant \underline{\mathbf{M}}^{X} .
$$

- For all $\mathbf{A} \in \mathcal{A}$, the naturally embedding

$$
e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})=\mathcal{X}(\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}), \underset{\sim}{\mathbf{M}})
$$

is defined by evaluation: $(\forall a \in A) e_{\mathbf{A}}(a): \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \rightarrow \mathbf{M}$ is given by

$$
(\forall x \in \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})) e_{\mathbf{A}}(a)(x):=x(a)
$$

- For all $\mathbf{X} \in \mathcal{X}$, the naturally embedding

$$
\varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow D E(\mathbf{X})=\mathcal{A}(\mathcal{X}(\mathbf{X}, \underset{\sim}{\mathbf{M}}), \underline{\mathbf{M}})
$$

is defined by evaluation: $(\forall x \in X) \varepsilon_{\mathbf{X}}(x): \mathcal{X}(\mathbf{X}, \mathbf{M}) \rightarrow \underline{\mathbf{M}}$ is given by

$$
(\forall \alpha \in \mathcal{X}(\mathbf{X}, \underset{\sim}{\mathbf{M}})) \varepsilon_{\mathbf{X}}(x)(\alpha):=\alpha(x)
$$

Duality

If $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ is surjective and therefore an isomorphism, for all \mathbf{A} in \mathcal{A}, then we say that \mathbf{M} yields a duality on \mathcal{A} (or that $\underset{\sim}{\mathbf{M}}$ dualises $\underline{\mathbf{M}}$).

Duality

If $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ is surjective and therefore an isomorphism, for all \mathbf{A} in \mathcal{A}, then we say that \mathbf{M} yields a duality on \mathcal{A} (or that $\underset{\sim}{\mathbf{M}}$ dualises $\underline{\mathbf{M}}$).

Theorem (2.2.7 Second Duality Theorem)
Assume that $\underset{\sim}{\mathbf{M}}=\langle M ; G, R, \mathcal{T}\rangle$ is a total structure with R finite.
If (IC) holds, then \mathbf{M} yields a duality on \mathcal{A} and is injective in \mathcal{X}.

Taming brute force with near unanimity

For $\ell \geqslant 1$, define $R_{\ell}:=\mathrm{S}\left(\underline{\mathbf{M}}^{\ell}\right)$ and define $R_{\omega}:=\bigcup_{\ell<\omega} R_{\ell}$.

Taming brute force with near unanimity

For $\ell \geqslant 1$, define $R_{\ell}:=\mathrm{S}\left(\mathbf{M}^{\ell}\right)$ and define $R_{\omega}:=\bigcup_{\ell<\omega} R_{\ell}$.
Theorem (2.3.1 Brute Force Duality Theorem) Brute force yields a duality on $\mathcal{A}_{\text {fin }}$. Indeed, if $\underset{\sim}{\mathbf{M}}=\left\langle M ; R_{\omega}, \mathcal{T}\right\rangle$, then (IC) holds and therefore $\underset{\sim}{\mathbf{M}}$ yields a duality on $\mathcal{A}_{\text {fin }}$ and $\underset{\sim}{\mathbf{M}}$ is injective in $X_{\text {fin }}$.

Taming brute force with near unanimity

For $\ell \geqslant 1$, define $R_{\ell}:=\mathrm{S}\left(\mathbf{M}^{\ell}\right)$ and define $R_{\omega}:=\bigcup_{\ell<\omega} R_{\ell}$.
Theorem (2.3.1 Brute Force Duality Theorem) Brute force yields a duality on $\mathcal{A}_{\text {fin }}$. Indeed, if $\underset{\sim}{\mathbf{M}}=\left\langle\boldsymbol{M} ; R_{\omega}, \mathcal{T}\right\rangle$, then (IC) holds and therefore $\underset{\sim}{\mathbf{M}}$ yields a duality on $\mathcal{A}_{\text {fin }}$ and $\underset{\sim}{\mathbf{M}}$ is injective in $X_{\text {fin }}$.

For $k \geqslant 2$, a $(k+1)$-ary term $n\left(v_{1}, \ldots, v_{k+1}\right)$ is called a near unanimity term or NU term for an algebra $\underline{\mathbf{M}}$ if $\underline{\mathbf{M}}$ satisfies

$$
n(y, x, \ldots, x) \approx n(x, y, x, \ldots, x) \approx \cdots \approx n(x, \ldots, x, y) \approx x .
$$

Taming brute force with near unanimity

For $\ell \geqslant 1$, define $R_{\ell}:=\mathrm{S}\left(\underline{\mathbf{M}}^{\ell}\right)$ and define $R_{\omega}:=\bigcup_{\ell<\omega} R_{\ell}$.
Theorem (2.3.1 Brute Force Duality Theorem)
Brute force yields a duality on $\mathcal{A}_{\text {fin }}$. Indeed, if $\underset{\underset{M}{M}}{ }=\left\langle\boldsymbol{M} ; R_{\omega}, \mathcal{T}\right\rangle$, then (IC) holds and therefore $\underset{\sim}{\mathbf{M}}$ yields a duality on $\mathcal{A}_{\text {fin }}$ and $\underset{\sim}{\mathbf{M}}$ is injective in $X_{\text {fin }}$.

For $k \geqslant 2$, a $(k+1)$-ary term $n\left(v_{1}, \ldots, v_{k+1}\right)$ is called a near unanimity term or NU term for an algebra $\mathbf{\underline { M }}$ if $\underline{\mathbf{M}}$ satisfies

$$
n(y, x, \ldots, x) \approx n(x, y, x, \ldots, x) \approx \cdots \approx n(x, \ldots, x, y) \approx x
$$

Lemma (2.3.3 NU Lemma)
(K. Baker and A. Pixley) Let $k \geq 2$ and assume that $\underline{\mathbf{M}}$ has a $(k+1)$-ary $N U$ term. Let X be a subset of M^{m} and let $\alpha: X \rightarrow M$ be a map that preserves every relation in R_{k}. Then α preserves every relation in R_{ω}.

The NU Duality Theorem

The following useful result is an immediate corollary.
Theorem (NU Duality Theorem)
Assume that \mathbf{M} is a finite algebra that has a $(k+1)$-ary $N U$ term.
Then $\underset{\sim}{\mathbf{M}}:=\left\langle M ; R_{k}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{A} and is injective in \mathcal{X}.

The NU Duality Theorem

The following useful result is an immediate corollary.
Theorem (NU Duality Theorem)
Assume that \mathbf{M} is a finite algebra that has a $(k+1)$-ary $N U$ term. Then $\underset{\sim}{\mathbf{M}}:=\left\langle\boldsymbol{M} ; R_{k}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{A} and is injective in \boldsymbol{X}.

Lattices have a ternary NU term, namely the median

$$
m(x, y, z):=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x) .
$$

The NU Duality Theorem

The following useful result is an immediate corollary.

Theorem (NU Duality Theorem)

Assume that \mathbf{M} is a finite algebra that has a $(k+1)$-ary $N U$ term. Then $\underset{\sim}{\mathbf{M}}:=\left\langle M ; R_{k}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{A} and is injective in \mathcal{X}.

Lattices have a ternary NU term, namely the median

$$
m(x, y, z):=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x) .
$$

Thus we obtain the most widely used result in the theory.
Theorem (Lattice-based Duality Theorem)
Let \mathbf{M} be a finite lattice-based algebra. Then $\mathbf{M}:=\left\langle M ; R_{2}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{A} and is injective in \boldsymbol{X}.

Priestley duality via the Lattice-based Duality Theorem

In Lecture 2 we saw how to obtain (half of) Priestley duality from the Second Duality Theorem. As an application of the Lattice-based Duality Theorem, it is almost immediate.

- $\underline{\mathbf{D}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle \quad$ and $\quad \underset{\sim}{\mathbf{D}}=\langle\{0,1\} ; \leqslant, \mathcal{T}\rangle$.

Theorem (Half of Priestley duality)
$\underset{\sim}{\mathbf{D}}$ yields a duality on the class $\mathcal{D}:=\operatorname{ISP}(\underline{\mathbf{D}})$ of bounded distributive lattices, i.e., $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ is an isomorphism, for all $\mathbf{A} \in \mathcal{D}$.

Priestley duality via the Lattice-based Duality Theorem

We must show that, for all $\mathbf{A} \in \mathcal{D}$, the evaluation maps

$$
e_{\mathbf{A}}(a): \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}
$$

for $a \in A$, are the only continuous order-preserving maps.
Proof.
Let $\alpha: \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}$ be a continuous order-preserving map.

Priestley duality via the Lattice-based Duality Theorem

We must show that, for all $\mathbf{A} \in \mathcal{D}$, the evaluation maps

$$
e_{\mathbf{A}}(a): \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}
$$

for $a \in A$, are the only continuous order-preserving maps.
Proof.
Let $\alpha: \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}$ be a continuous order-preserving map. [To prove: α is an evaluation map, $e_{\mathbf{A}}(a)$, for some $a \in A$.]

Priestley duality via the Lattice-based Duality Theorem

We must show that, for all $\mathbf{A} \in \mathcal{D}$, the evaluation maps

$$
e_{\mathbf{A}}(a): \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}
$$

for $a \in A$, are the only continuous order-preserving maps.
Proof.
Let $\alpha: \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}$ be a continuous order-preserving map. [To prove: α is an evaluation map, $e_{\mathbf{A}}(a)$, for some $a \in A$.]

- By the Lattice-based Duality Theorem, $\mathbf{D}^{\prime}:=\left\langle\{0,1\} ; R_{2}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{D}.

Priestley duality via the Lattice-based Duality Theorem

We must show that, for all $\mathbf{A} \in \mathcal{D}$, the evaluation maps

$$
e_{\mathbf{A}}(a): \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}
$$

for $a \in A$, are the only continuous order-preserving maps.
Proof.
Let $\alpha: \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}$ be a continuous order-preserving map. [To prove: α is an evaluation map, $e_{\mathbf{A}}(a)$, for some $a \in A$.]

- By the Lattice-based Duality Theorem, $\mathbf{D}^{\prime}:=\left\langle\{0,1\} ; R_{2}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{D}.
- So the evaluations $e_{\mathbf{A}}(a)$ are the only continuous maps from $\mathcal{D}(\mathbf{A}, \underline{\mathbf{D}})$ to $\{0,1\}$ that preserve the relations in R_{2}.

Priestley duality via the Lattice-based Duality Theorem

We must show that, for all $\mathbf{A} \in \mathcal{D}$, the evaluation maps

$$
e_{\mathbf{A}}(a): \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}
$$

for $a \in A$, are the only continuous order-preserving maps.
Proof.
Let $\alpha: \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}$ be a continuous order-preserving map. [To prove: α is an evaluation map, $e_{\mathbf{A}}(a)$, for some $a \in A$.]

- By the Lattice-based Duality Theorem, $\mathbf{D}^{\prime}:=\left\langle\{0,1\} ; R_{2}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{D}.
- So the evaluations $e_{\mathbf{A}}(a)$ are the only continuous maps from $\mathcal{D}(\mathbf{A}, \underline{\mathbf{D}})$ to $\{0,1\}$ that preserve the relations in R_{2}.
- Note that $R_{2}=\left\{\Delta_{\{0,1\}}, \leqslant, \geqslant,\{0,1\}^{2}\right\}$.

Priestley duality via the Lattice-based Duality Theorem

We must show that, for all $\mathbf{A} \in \mathcal{D}$, the evaluation maps

$$
e_{\mathbf{A}}(a): \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}
$$

for $a \in A$, are the only continuous order-preserving maps.
Proof.
Let $\alpha: \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}$ be a continuous order-preserving map. [To prove: α is an evaluation map, $e_{\mathbf{A}}(a)$, for some $a \in A$.]

- By the Lattice-based Duality Theorem, $\mathbf{D}^{\prime}:=\left\langle\{0,1\} ; R_{2}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{D}.
- So the evaluations $e_{\mathbf{A}}(a)$ are the only continuous maps from $\mathcal{D}(\mathbf{A}, \underline{\mathbf{D}})$ to $\{0,1\}$ that preserve the relations in R_{2}.
- Note that $R_{2}=\left\{\Delta_{\{0,1\}}, \leqslant, \geqslant,\{0,1\}^{2}\right\}$.
- But $\alpha: \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}$ certainly preserves the trivial relations $\Delta_{\{0,1\}}$ and $\{0,1\}^{2}$, and α preserves \geqslant since it preserves \leqslant. Hence α preserve the four relations in \boldsymbol{R}_{2}.

Priestley duality via the Lattice-based Duality Theorem

We must show that, for all $\mathbf{A} \in \mathcal{D}$, the evaluation maps

$$
e_{\mathbf{A}}(a): \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}
$$

for $a \in A$, are the only continuous order-preserving maps.
Proof.
Let $\alpha: \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}$ be a continuous order-preserving map. [To prove: α is an evaluation map, $e_{\mathbf{A}}(a)$, for some $a \in A$.]

- By the Lattice-based Duality Theorem, $\mathbf{D}^{\prime}:=\left\langle\{0,1\} ; R_{2}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{D}.
- So the evaluations $e_{\mathbf{A}}(a)$ are the only continuous maps from $\mathcal{D}(\mathbf{A}, \underline{\mathbf{D}})$ to $\{0,1\}$ that preserve the relations in R_{2}.
- Note that $R_{2}=\left\{\Delta_{\{0,1\}}, \leqslant, \geqslant,\{0,1\}^{2}\right\}$.
- But $\alpha: \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}$ certainly preserves the trivial relations $\Delta_{\{0,1\}}$ and $\{0,1\}^{2}$, and α preserves \geqslant since it preserves \leqslant. Hence α preserve the four relations in \boldsymbol{R}_{2}.
- Hence α is an evaluation, as ${\underset{\sim}{\mathbf{D}}}^{\prime}$ yields a duality on \mathcal{D}.

Priestley duality via the Lattice-based Duality Theorem

We must show that, for all $\mathbf{A} \in \mathcal{D}$, the evaluation maps

$$
e_{\mathbf{A}}(a): \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}
$$

for $a \in A$, are the only continuous order-preserving maps.
Proof.
Let $\alpha: \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}$ be a continuous order-preserving map. [To prove: α is an evaluation map, $e_{\mathbf{A}}(a)$, for some $a \in A$.]

- By the Lattice-based Duality Theorem, $\mathbf{D}^{\prime}:=\left\langle\{0,1\} ; R_{2}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{D}.
- So the evaluations $e_{\mathbf{A}}(a)$ are the only continuous maps from $\mathcal{D}(\mathbf{A}, \underline{\mathbf{D}})$ to $\{0,1\}$ that preserve the relations in R_{2}.
- Note that $R_{2}=\left\{\Delta_{\{0,1\}}, \leqslant, \geqslant,\{0,1\}^{2}\right\}$.
- But $\alpha: \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \rightarrow\{0,1\}$ certainly preserves the trivial relations $\Delta_{\{0,1\}}$ and $\{0,1\}^{2}$, and α preserves \geqslant since it preserves \leqslant. Hence α preserve the four relations in \boldsymbol{R}_{2}.
- Hence α is an evaluation, as ${\underset{\sim}{\mathbf{D}}}^{\prime}$ yields a duality on \mathcal{D}.

Refining an alter ego via entailment

Definition (Entainment)
Let $\mathbf{M}=\langle M ; G, H, R, \mathcal{T}\rangle$, let $\mathbf{A} \in \mathcal{A}$ and let s be an algebraic relation or (partial) operation on $\underline{\mathbf{M}}$.

- $G \cup H \cup R$ entails s on $D(\mathbf{A})$ if every continuous $G \cup H \cup R$-preserving map $\alpha: D(\mathbf{A}) \rightarrow M$ preserves s.
- $G \cup H \cup R$ entails s if $G \cup H \cup R$ entails s on $D(\mathbf{A})$ for all $\mathbf{A} \in \mathcal{A}$.

Refining an alter ego via entailment

Definition (Entainment)
Let $\mathbf{M}=\langle M ; G, H, R, \mathcal{T}\rangle$, let $\mathbf{A} \in \mathcal{A}$ and let s be an algebraic relation or (partial) operation on $\underline{\mathbf{M}}$.

- $G \cup H \cup R$ entails s on $D(\mathbf{A})$ if every continuous $G \cup H \cup R$-preserving map $\alpha: D(\mathbf{A}) \rightarrow M$ preserves s.
- $G \cup H \cup R$ entails s if $G \cup H \cup R$ entails s on $D(\mathbf{A})$ for all $\mathbf{A} \in \mathcal{A}$.

The following lemma is trivial but useful.
Lemma
Let $\underset{\sim}{\mathbf{M}}=\langle M ; G, H, R, \mathcal{T}\rangle$ and ${\underset{\sim}{M}}^{\prime}=\left\langle M ; G^{\prime}, H^{\prime}, R^{\prime}, \mathcal{T}\right\rangle$ be alter egos of \mathbf{M}. If \mathbf{M}^{\prime} yields a duality of \mathcal{A} and $G \cup H \cup R$ entails s, for all $s \in G^{\prime} \cup H^{\prime} \cup R^{\prime}$, then $\underset{\sim}{\mathbf{M}}$ yields a duality on \mathcal{A}.

Constructs for entailment

On pages 25-27 of The Lonely Planet Guide to the Theory of Natural Dualities there is a list of 15 constructs for entailment. Some are:
(1) Trivial relations if θ is an equivalence relation on $\{1, \ldots, n\}$ then any $G \cup H \cup R$ entails the relation $\Delta^{\theta}:=\left\{\left(c_{1}, \ldots, c_{n}\right) \mid i \theta j \Rightarrow c_{i}=c_{j}\right\}$. Special cases are Δ_{M} and M^{2}.
(4) Permutation r entails
$r^{\sigma}:=\left\{\left(c_{1}, \ldots, c_{n}\right) \mid\left(c_{\sigma(1)}, \ldots, c_{\sigma(n)}\right) \in r\right\}$.
Converse $r^{\breve{L}}:=\left\{\left(c_{1}, c_{2}\right) \mid\left(c_{2}, c_{1}\right) \in r\right\}$ is a special case.
(6) Intersection If r and s are n-ary, the $\{r, s\}$ entails $r \cap s$.
(7) Product $\{r, s\}$ entails $r \times s$.
N.B. A construct that is not allowed is the relational product $r \cdot s$ of two binary relations!

Outline

Natural dualities: the basics

A Natural duality for Kleene algebras
Applying the Lattice-based Duality Theorem
The Test Algebra Lemma
The duality for Kleene algebras is optimal

Full and strong dualities

4.3.9 Natural duality for Kleene algebras

An algebra $\mathbf{K}=\langle K ; \vee, \wedge, \neg, 0,1\rangle$ is called a Kleene algebra if it is a bounded distributive lattice satisfying the axioms

$$
\begin{aligned}
& \neg(x \wedge y) \approx \neg x \vee \neg y, \quad \neg(x \vee y) \approx \neg x \wedge \neg y, \quad \neg 0 \approx 1, \\
& \neg \neg x \approx x, \quad x \wedge \neg x \leq y \vee \neg y .
\end{aligned}
$$

The models of these axioms form a variety $\mathcal{K}=\operatorname{ISP}(\underline{\mathbf{K}})$ generated by the three-element chain

$$
\underline{\mathbf{K}}=\langle\{0, a, 1\} ; \vee, \wedge, \neg, 0,1\rangle:
$$

4.3.9 Natural duality for Kleene algebras

- By the Lattice-based Duality Theorem, ${\underset{\sim}{\mathbf{K}}}^{\prime}:=\left\langle\{0, a, 1\} ; \boldsymbol{R}_{2}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{K}.

4.3.9 Natural duality for Kleene algebras

- By the Lattice-based Duality Theorem, ${\underset{\sim}{\mathbf{K}}}^{\prime}:=\left\langle\{0, a, 1\} ; \boldsymbol{R}_{2}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{K}.
- We must find all subuniverses of $\underline{\mathbf{K}}^{2}$.

4.3.9 Natural duality for Kleene algebras

- By the Lattice-based Duality Theorem, ${\underset{\sim}{\mathbf{K}}}^{\prime}:=\left\langle\{0, a, 1\} ; \boldsymbol{R}_{2}, \mathcal{T}\right\rangle$ yields a duality on \mathcal{K}.
- We must find all subuniverses of \underline{K}^{2}.
- Let $K_{0}=\{0,1\}$, let $\preccurlyeq=\{00, a a, 11,0 a, 1 a\}$ and let $\sim=K^{2} \backslash\{01,10\}$.

4.3.9 Natural duality for Kleene algebras

Figure: 8.1 The lattice $\left\langle R_{2} ; \subseteq\right\rangle$ of subuniverses of $\underline{\mathbf{K}}^{2}$

4.3.9 Natural duality for Kleene algebras

Let $R=\left\{K_{0}, \preccurlyeq, \sim\right\}$. Then R entails every relation in R_{2} since

- R entails the trivial relation K, whence R entails the products $K \times K_{0}, K_{0} \times K$ and $K \times K$,

4.3.9 Natural duality for Kleene algebras

Let $R=\left\{K_{0}, \preccurlyeq, \sim\right\}$. Then R entails every relation in R_{2} since

- R entails the trivial relation K, whence R entails the products $K \times K_{0}, K_{0} \times K$ and $K \times K$,
- R entails the converse \succcurlyeq of \preccurlyeq,

4.3.9 Natural duality for Kleene algebras

Let $R=\left\{K_{0}, \preccurlyeq, \sim\right\}$. Then R entails every relation in R_{2} since

- R entails the trivial relation K, whence R entails the products $K \times K_{0}, K_{0} \times K$ and $K \times K$,
- R entails the converse \succcurlyeq of \preccurlyeq,
- and of course R entails \sim (as $\sim \in R$).

4.3.9 Natural duality for Kleene algebras

Let $R=\left\{K_{0}, \preccurlyeq, \sim\right\}$. Then R entails every relation in R_{2} since

- R entails the trivial relation K, whence R entails the products $K \times K_{0}, K_{0} \times K$ and $K \times K$,
- R entails the converse \succcurlyeq of \preccurlyeq,
- and of course R entails \sim (as $\sim \in R$).

Thus R entails every meet-irreducible relation in the lattice $\left\langle R_{2} ; \subseteq\right\rangle$ and so entails every relation in R_{2} via intersection.

4.3.9 Natural duality for Kleene algebras

Let $R=\left\{K_{0}, \preccurlyeq, \sim\right\}$. Then R entails every relation in R_{2} since

- R entails the trivial relation K, whence R entails the products $K \times K_{0}, K_{0} \times K$ and $K \times K$,
- R entails the converse \succcurlyeq of \preccurlyeq,
- and of course R entails \sim (as $\sim \in R$).

Thus R entails every meet-irreducible relation in the lattice $\left\langle R_{2} ; \subseteq\right\rangle$ and so entails every relation in R_{2} via intersection.

Theorem (Part of 4.3.10)
$\underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle$ yields a duality on the class \mathfrak{K} of Kleene algabras.

4.3.9 Natural duality for Kleene algebras

- The uncertainty order on $\{0, a, 1\}$:

4.3.9 Natural duality for Kleene algebras

- The uncertainty order on $\{0, a, 1\}$:

- Note that $\sim=\succcurlyeq \cdot \preccurlyeq$.

4.3.9 Natural duality for Kleene algebras

- The uncertainty order on $\{0, a, 1\}$:

- Note that $\sim=\succcurlyeq \cdot \preccurlyeq$.
- We will now see that removing \sim will destroy the duality.

4.3.9 Natural duality for Kleene algebras

- The uncertainty order on $\{0, a, 1\}$:

- Note that $\sim=\succcurlyeq \cdot \preccurlyeq$.
- We will now see that removing \sim will destroy the duality.
- In fact, the duality is optimal.

8.1.3 The Test Algebra Lemma

- Our claim is that, while $\underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle$ yields a duality on the class \mathcal{K} of Kleene algebras, the alter ego ${\underset{\sim}{\mathbf{K}}}^{*}=\left\langle K ; K_{0}, \preccurlyeq, \mathcal{T}\right\rangle$ does not.

8.1.3 The Test Algebra Lemma

- Our claim is that, while $\underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle$ yields a duality on the class \mathfrak{K} of Kleene algebras, the alter ego ${\underset{\mathbf{K}}{ }}^{*}=\left\langle K ; K_{0}, \preccurlyeq, \mathcal{T}\right\rangle$ does not.
- To prove this, we must find an algebra $\mathbf{A} \in \mathcal{K}$ and a continuous map $\gamma: \mathfrak{K}(\mathbf{A}, \underline{\mathbf{K}}) \rightarrow K$ that preserves K_{0} and \preccurlyeq but is not an evaluation,

8.1.3 The Test Algebra Lemma

- Our claim is that, while $\underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle$ yields a duality on the class \mathfrak{K} of Kleene algebras, the alter ego ${\underset{\mathbf{K}}{ }}^{*}=\left\langle K ; K_{0}, \preccurlyeq, \mathcal{T}\right\rangle$ does not.
- To prove this, we must find an algebra $\mathbf{A} \in \mathcal{K}$ and a continuous map $\gamma: \mathcal{K}(\mathbf{A}, \underline{\mathbf{K}}) \rightarrow K$ that preserves K_{0} and \preccurlyeq but is not an evaluation,
- or equivalently, $\left\{K_{0}, \preccurlyeq\right\}$ does not entail \sim on $\mathfrak{K}(\mathbf{A}, \underline{\mathbf{K}})$.

8.1.3 The Test Algebra Lemma

- Our claim is that, while $\underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle$ yields a duality on the class \mathfrak{K} of Kleene algebras, the alter ego ${\underset{\sim}{\mathbf{K}}}^{*}=\left\langle K ; K_{0}, \preccurlyeq, \mathcal{T}\right\rangle$ does not.
- To prove this, we must find an algebra $\mathbf{A} \in \mathcal{K}$ and a continuous map $\gamma: \mathcal{K}(\mathbf{A}, \underline{\mathbf{K}}) \rightarrow K$ that preserves K_{0} and \preccurlyeq but is not an evaluation,
- or equivalently, $\left\{K_{0}, \preccurlyeq\right\}$ does not entail \sim on $\mathcal{K}(\mathbf{A}, \underline{\mathbf{K}})$.

In fact, there is a canonical choice for \mathbf{A}.

8.1.3 The Test Algebra Lemma

- Our claim is that, while $\underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle$ yields a duality on the class \mathfrak{K} of Kleene algebras, the alter ego ${\underset{\sim}{\mathbf{K}}}^{*}=\left\langle K ; K_{0}, \preccurlyeq, \mathcal{T}\right\rangle$ does not.
- To prove this, we must find an algebra $\mathbf{A} \in \mathcal{K}$ and a continuous map $\gamma: \mathcal{K}(\mathbf{A}, \underline{\mathbf{K}}) \rightarrow K$ that preserves K_{0} and \preccurlyeq but is not an evaluation,
- or equivalently, $\left\{K_{0}, \preccurlyeq\right\}$ does not entail \sim on $\mathcal{K}(\mathbf{A}, \underline{\mathbf{K}})$.

In fact, there is a canonical choice for \mathbf{A}.
Lemma (Test Algebra Lemma)
Let $\underset{\sim}{\mathbf{M}}=\langle M ; G, H, R, \mathcal{T}\rangle$ and let s be an algebraic relation or (partial) operation on $\underline{\mathbf{M}}$ and let \mathbf{s} be the corresponding subalgebra of $\underline{\mathbf{M}}^{n}$. Then the following are equivalent:
(i) $G \cup H \cup R$ entails s;
(ii) $G \cup H \cup R$ entails s on $D(\mathbf{s})$.

Back to the relation ~

$$
\begin{aligned}
& D(\sim)=\mathscr{K}(\sim, \underline{\mathbf{K}})=\left\{\rho_{1}, \rho_{2}\right\}, \\
& \text { where } \rho_{i}: \sim \rightarrow \underline{\mathbf{K}}, \\
& \text { for } i \in\{1,2\}, \\
& \text { are the two projections. }
\end{aligned}
$$

Back to the relation ~

$$
\begin{aligned}
& D(\sim)=\mathscr{K}(\sim, \underline{\mathbf{K}})=\left\{\rho_{1}, \rho_{2}\right\}, \\
& \text { where } \rho_{i}: \sim \rightarrow \underline{\mathbf{K}}, \\
& \text { for } i \in\{1,2\}, \\
& \text { are the two projections. }
\end{aligned}
$$

- Define $\gamma: \boldsymbol{D}(\sim) \rightarrow K$ by $\gamma\left(\rho_{1}\right)=0$ and $\gamma\left(\rho_{2}\right)=1$.

Back to the relation ~

$$
\begin{aligned}
& D(\sim)=\mathscr{K}(\sim, \underline{\mathbf{K}})=\left\{\rho_{1}, \rho_{2}\right\}, \\
& \text { where } \rho_{i}: \sim \rightarrow \underline{\mathbf{K}}, \\
& \text { for } i \in\{1,2\}, \\
& \text { are the two projections. }
\end{aligned}
$$

- Define $\gamma: \boldsymbol{D}(\sim) \rightarrow K$ by $\gamma\left(\rho_{1}\right)=0$ and $\gamma\left(\rho_{2}\right)=1$.
- It is trivial that $\left(\rho_{1}, \rho_{2}\right) \in \sim^{D(\sim)}$.

Back to the relation ~

$$
\begin{aligned}
& D(\sim)=\mathscr{K}(\sim, \underline{\mathbf{K}})=\left\{\rho_{1}, \rho_{2}\right\}, \\
& \text { where } \rho_{i}: \sim \rightarrow \underline{\mathbf{K}}, \\
& \text { for } i \in\{1,2\}, \\
& \text { are the two projections. }
\end{aligned}
$$

- Define $\gamma: \boldsymbol{D}(\sim) \rightarrow K$ by $\gamma\left(\rho_{1}\right)=0$ and $\gamma\left(\rho_{2}\right)=1$.
- It is trivial that $\left(\rho_{1}, \rho_{2}\right) \in \sim^{D(\sim)}$.
- But $\left(\gamma\left(\rho_{1}\right), \gamma\left(\rho_{2}\right)\right)=(0,1) \notin \sim$

Back to the relation \sim

$$
\begin{aligned}
& D(\sim)=\mathscr{K}(\sim, \underline{\mathbf{K}})=\left\{\rho_{1}, \rho_{2}\right\}, \\
& \text { where } \rho_{i}: \sim \rightarrow \underline{\mathbf{K}}, \\
& \text { for } i \in\{1,2\}, \\
& \text { are the two projections. }
\end{aligned}
$$

- Define $\gamma: \boldsymbol{D}(\sim) \rightarrow K$ by $\gamma\left(\rho_{1}\right)=0$ and $\gamma\left(\rho_{2}\right)=1$.
- It is trivial that $\left(\rho_{1}, \rho_{2}\right) \in \sim^{D(\sim)}$.
- But $\left(\gamma\left(\rho_{1}\right), \gamma\left(\rho_{2}\right)\right)=(0,1) \notin \sim$
- Hence the map γ does not preserve \sim.

Back to the relation ~

$$
\begin{aligned}
& D(\sim)=\mathscr{K}(\sim, \underline{\mathbf{K}})=\left\{\rho_{1}, \rho_{2}\right\}, \\
& \text { where } \rho_{i}: \sim \rightarrow \underline{\mathbf{K}}, \\
& \text { for } i \in\{1,2\}, \\
& \text { are the two projections. }
\end{aligned}
$$

- Define $\gamma: \boldsymbol{D}(\sim) \rightarrow K$ by $\gamma\left(\rho_{1}\right)=0$ and $\gamma\left(\rho_{2}\right)=1$.
- It is trivial that $\left(\rho_{1}, \rho_{2}\right) \in \sim^{D(\sim)}$.
- But $\left(\gamma\left(\rho_{1}\right), \gamma\left(\rho_{2}\right)\right)=(0,1) \notin \sim$
- Hence the map γ does not preserve \sim.
- $K_{0}^{D(\sim)}=\varnothing$, as $\rho_{i}(a, a)=a \notin K_{0}$, and

Back to the relation \sim

$$
\begin{aligned}
& D(\sim)=\mathscr{K}(\sim, \underline{\mathbf{K}})=\left\{\rho_{1}, \rho_{2}\right\}, \\
& \text { where } \rho_{i}: \sim \rightarrow \underline{\mathbf{K}}, \\
& \text { for } i \in\{1,2\} \text {, } \\
& \text { are the two projections. }
\end{aligned}
$$

- Define $\gamma: \boldsymbol{D}(\sim) \rightarrow K$ by $\gamma\left(\rho_{1}\right)=0$ and $\gamma\left(\rho_{2}\right)=1$.
- It is trivial that $\left(\rho_{1}, \rho_{2}\right) \in \sim^{D(\sim)}$.
- But $\left(\gamma\left(\rho_{1}\right), \gamma\left(\rho_{2}\right)\right)=(0,1) \notin \sim$
- Hence the map γ does not preserve \sim.
- $K_{0}^{D(\sim)}=\varnothing$, as $\rho_{i}(a, a)=a \notin K_{0}$, and
- $\preccurlyeq^{D(\sim)}=\left\{\left(\rho_{1}, \rho_{1}\right),\left(\rho_{2}, \rho_{2}\right)\right\}=\Delta_{D(\sim)}$.

Back to the relation \sim

$$
\begin{aligned}
& D(\sim)=\mathscr{K}(\sim, \underline{\mathbf{K}})=\left\{\rho_{1}, \rho_{2}\right\}, \\
& \text { where } \rho_{i}: \sim \rightarrow \underline{\mathbf{K}}, \\
& \text { for } i \in\{1,2\} \text {, } \\
& \text { are the two projections. }
\end{aligned}
$$

- Define $\gamma: \boldsymbol{D}(\sim) \rightarrow K$ by $\gamma\left(\rho_{1}\right)=0$ and $\gamma\left(\rho_{2}\right)=1$.
- It is trivial that $\left(\rho_{1}, \rho_{2}\right) \in \sim^{D(\sim)}$.
- But $\left(\gamma\left(\rho_{1}\right), \gamma\left(\rho_{2}\right)\right)=(0,1) \notin \sim$
- Hence the map γ does not preserve \sim.
- $K_{0}^{D(\sim)}=\varnothing$, as $\rho_{i}(a, a)=a \notin K_{0}$, and
- $\preccurlyeq^{D(\sim)}=\left\{\left(\rho_{1}, \rho_{1}\right),\left(\rho_{2}, \rho_{2}\right)\right\}=\Delta_{D(\sim)}$.
- Hence the map γ preserves both K_{0} and \preccurlyeq.

Back to the relation ~

$$
\begin{aligned}
& D(\sim)=\mathscr{K}(\sim, \underline{\mathbf{K}})=\left\{\rho_{1}, \rho_{2}\right\}, \\
& \text { where } \rho_{i}: \sim \rightarrow \underline{\mathbf{K}}, \\
& \text { for } i \in\{1,2\}, \\
& \text { are the two projections. }
\end{aligned}
$$

- Define $\gamma: \boldsymbol{D}(\sim) \rightarrow K$ by $\gamma\left(\rho_{1}\right)=0$ and $\gamma\left(\rho_{2}\right)=1$.
- It is trivial that $\left(\rho_{1}, \rho_{2}\right) \in \sim^{D(\sim)}$.
- But $\left(\gamma\left(\rho_{1}\right), \gamma\left(\rho_{2}\right)\right)=(0,1) \notin \sim$
- Hence the map γ does not preserve \sim.
- $K_{0}^{D(\sim)}=\varnothing$, as $\rho_{i}(a, a)=a \notin K_{0}$, and
- $\preccurlyeq^{D(\sim)}=\left\{\left(\rho_{1}, \rho_{1}\right),\left(\rho_{2}, \rho_{2}\right)\right\}=\Delta_{D(\sim)}$.
- Hence the map γ preserves both K_{0} and \preccurlyeq.

Back to the relation ~

$$
\begin{aligned}
& D(\sim)=\mathscr{K}(\sim, \underline{\mathbf{K}})=\left\{\rho_{1}, \rho_{2}\right\}, \\
& \text { where } \rho_{i}: \sim \rightarrow \underline{\mathbf{K}}, \\
& \text { for } i \in\{1,2\}, \\
& \text { are the two projections. }
\end{aligned}
$$

- Define $\gamma: \boldsymbol{D}(\sim) \rightarrow K$ by $\gamma\left(\rho_{1}\right)=0$ and $\gamma\left(\rho_{2}\right)=1$.
- It is trivial that $\left(\rho_{1}, \rho_{2}\right) \in \sim^{D(\sim)}$.
- But $\left(\gamma\left(\rho_{1}\right), \gamma\left(\rho_{2}\right)\right)=(0,1) \notin \sim$
- Hence the map γ does not preserve \sim.
- $K_{0}^{D(\sim)}=\varnothing$, as $\rho_{i}(a, a)=a \notin K_{0}$, and
- $\preccurlyeq^{D(\sim)}=\left\{\left(\rho_{1}, \rho_{1}\right),\left(\rho_{2}, \rho_{2}\right)\right\}=\Delta_{D(\sim)}$.
- Hence the map γ preserves both K_{0} and \preccurlyeq.
- Thus $\left\{K_{0}, \preccurlyeq\right\}$ does not entail \sim.

Back to the relation ~

$$
\begin{aligned}
& D(\sim)=\mathscr{K}(\sim, \underline{\mathbf{K}})=\left\{\rho_{1}, \rho_{2}\right\}, \\
& \text { where } \rho_{i}: \sim \rightarrow \underline{\mathbf{K}}, \\
& \text { for } i \in\{1,2\}, \\
& \text { are the two projections. }
\end{aligned}
$$

- Define $\gamma: \boldsymbol{D}(\sim) \rightarrow K$ by $\gamma\left(\rho_{1}\right)=0$ and $\gamma\left(\rho_{2}\right)=1$.
- It is trivial that $\left(\rho_{1}, \rho_{2}\right) \in \sim^{D(\sim)}$.
- But $\left(\gamma\left(\rho_{1}\right), \gamma\left(\rho_{2}\right)\right)=(0,1) \notin \sim$
- Hence the map γ does not preserve \sim.
- $K_{0}^{D(\sim)}=\varnothing$, as $\rho_{i}(a, a)=a \notin K_{0}$, and
- $\preccurlyeq^{D(\sim)}=\left\{\left(\rho_{1}, \rho_{1}\right),\left(\rho_{2}, \rho_{2}\right)\right\}=\Delta_{D(\sim)}$.
- Hence the map γ preserves both K_{0} and \preccurlyeq.
- Thus $\left\{K_{0}, \preccurlyeq\right\}$ does not entail \sim.

Outline

Natural dualities: the basics

A Natural duality for Kleene algebras

Full and strong dualities
Full duality
Strong duality
The CD Strong Duality Theorem
Distributive lattices and Kleene algebras revisited
Partial operations can't be avoided
Further examples

Full Duality

If $\underset{\sim}{\mathbf{M}}$ yields a duality on \mathcal{A} and, in addition, $\varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow D E(\mathbf{X})$ is a surjection and therefore an isomorphism, for all \mathbf{X} in \mathcal{X}, then \mathbb{M} yields a full duality on \mathcal{A} (or $\underset{\sim}{\mathbf{M}}$ fully dualises $\underline{\mathbf{M}}$).

Equivalently, \mathbf{M} yields a full duality on \mathcal{A} if the dual adjunction $\langle D, E, e, \varepsilon\rangle$ is a dual category equivalence between \mathcal{A} and \mathcal{X}.

Strong duality

Let $\underset{\sim}{\mathbf{M}}$ be any alter ego of an algebra $\underline{\mathbf{M}}$, and let

$$
D: \mathcal{A} \rightarrow \mathcal{X} \quad \text { and } \quad E: X \rightarrow \mathcal{A}
$$

be the induced hom-functors.

Strong duality

Let \mathbf{M} be any alter ego of an algebra $\underline{\mathbf{M}}$, and let

$$
D: \mathcal{A} \rightarrow \mathcal{X} \quad \text { and } \quad E: X \rightarrow \mathcal{A}
$$

be the induced hom-functors.

- $\underset{\sim}{\mathbf{M}}$ is injective in the category \boldsymbol{X} if, for every embedding $\varphi: \mathbf{X} \mapsto \mathbf{Y}$ and every morphism $\alpha: \mathbf{X} \rightarrow \mathbf{M}$ in \boldsymbol{X}, there is a morphism $\beta: \mathbf{Y} \rightarrow \underset{\sim}{\mathbf{M}}$ such that $\beta \circ \varphi=\alpha$.

Strong duality

Let \mathbf{M} be any alter ego of an algebra $\underline{\mathbf{M}}$, and let

$$
D: \mathcal{A} \rightarrow \mathcal{X} \quad \text { and } \quad E: X \rightarrow \mathcal{A}
$$

be the induced hom-functors.

- $\underset{\sim}{\mathbf{M}}$ is injective in the category \mathcal{X} if, for every embedding $\varphi: \mathbf{X} \mapsto \mathbf{Y}$ and every morphism $\alpha: \mathbf{X} \rightarrow \underset{\sim}{\mathbf{M}}$ in \mathcal{X}, there is a morphism $\beta: \mathbf{Y} \rightarrow \underset{\sim}{\mathbf{M}}$ such that $\beta \circ \varphi=\alpha$.

Strong duality
M
If $\underset{\sim}{\mathbf{M}}$ fully dualises \mathbf{M} and $\underset{\mathbf{M}}{\mathbf{M}}$ is injective in \boldsymbol{X} (so that surjections in \mathcal{A} correspond to embeddings in \mathcal{X}), we say that \mathbb{M} yields a strong duality on \mathcal{A} (or that $\underset{\sim}{\mathbf{M}}$ strongly dualises \mathbf{M}).

The CD Strong Duality Theorem

Let \mathbf{M} be a finite algebra.

- For all $\mathbf{N} \leqslant \underline{\mathbf{M}}$ define $\operatorname{irr}(\mathbf{N})$ to be the least ℓ such that $\mathbb{O}_{\mathbf{N}}$ in Con (\mathbf{N}) is a meet of ℓ meet-irreducible congruences.

The CD Strong Duality Theorem

Let $\underline{\mathbf{M}}$ be a finite algebra.

- For all $\mathbf{N} \leqslant \underline{\mathbf{M}}$ define $\operatorname{irr}(\mathbf{N})$ to be the least ℓ such that $\mathbb{0}_{\mathbf{N}}$ in Con (\mathbf{N}) is a meet of ℓ meet-irreducible congruences.
- Define $\operatorname{Irr}(\underline{\mathbf{M}}):=\max \{\operatorname{irr}(\mathbf{N}) \mid \mathbf{N}$ is a subalgebra of $\underline{\mathbf{M}}\}$. $\operatorname{lrr}(\underline{\mathbf{M}})$ is called the irreducibility index of $\underline{\mathbf{M}}$.

The CD Strong Duality Theorem

Let \underline{M} be a finite algebra.

- For all $\mathbf{N} \leqslant \underline{\mathbf{M}}$ define $\operatorname{irr}(\mathbf{N})$ to be the least ℓ such that $\mathbb{0}_{\mathbf{N}}$ in Con (\mathbf{N}) is a meet of ℓ meet-irreducible congruences.
- Define $\operatorname{Irr}(\underline{\mathbf{M}}):=\max \{\operatorname{irr}(\mathbf{N}) \mid \mathbf{N}$ is a subalgebra of $\underline{\mathbf{M}}\}$. $\operatorname{lrr}(\underline{\mathbf{M}})$ is called the irreducibility index of $\underline{\mathbf{M}}$.
- Define $C:=\{a \in M \mid\{a\}$ is a subuniverse of $\underline{\mathbf{M}}\}$ regarded as a set of nullary operations on M.

The CD Strong Duality Theorem

Let \underline{M} be a finite algebra.

- For all $\mathbf{N} \leqslant \underline{\mathbf{M}}$ define $\operatorname{irr}(\mathbf{N})$ to be the least ℓ such that $0_{\mathbf{N}}$ in Con (\mathbf{N}) is a meet of ℓ meet-irreducible congruences.
- Define $\operatorname{Irr}(\underline{\mathbf{M}}):=\max \{\operatorname{irr}(\mathbf{N}) \mid \mathbf{N}$ is a subalgebra of $\underline{\mathbf{M}}\}$. $\operatorname{lrr}(\underline{\mathbf{M}})$ is called the irreducibility index of $\underline{\mathbf{M}}$.
- Define $C:=\{a \in M \mid\{a\}$ is a subuniverse of $\underline{\mathbf{M}}\}$ regarded as a set of nullary operations on M.
- For all $n \geqslant 1$, define H_{n} to be the set of maps $h: D \rightarrow M$ such that \mathbf{D} is a subalgebra of $\underline{\mathbf{M}}^{n}$ and h is a homorphism.

The CD Strong Duality Theorem

Let $\underline{\mathbf{M}}$ be a finite algebra.

- For all $\mathbf{N} \leqslant \underline{\mathbf{M}}$ define $\operatorname{irr}(\mathbf{N})$ to be the least ℓ such that $\mathbb{O}_{\mathbf{N}}$ in Con (\mathbf{N}) is a meet of ℓ meet-irreducible congruences.
- Define $\operatorname{Irr}(\underline{\mathbf{M}}):=\max \{\operatorname{irr}(\mathbf{N}) \mid \mathbf{N}$ is a subalgebra of $\underline{\mathbf{M}}\}$. $\operatorname{lrr}(\underline{\mathbf{M}})$ is called the irreducibility index of $\underline{\mathbf{M}}$.
- Define $C:=\{a \in M \mid\{a\}$ is a subuniverse of $\underline{\mathbf{M}}\}$ regarded as a set of nullary operations on M.
- For all $n \geqslant 1$, define H_{n} to be the set of maps $h: D \rightarrow M$ such that \mathbf{D} is a subalgebra of $\underline{\mathbf{M}}^{n}$ and h is a homorphism.

Theorem (3.3.7 CD Strong Duality Theorem)

Assume that $\underline{\mathbf{M}}$ is a finite algebra and that $\underset{\sim}{\mathbf{M}}:=\langle\boldsymbol{M} ; R, \mathcal{T}\rangle$
dualises $\underline{\mathbf{M}}$. If $\operatorname{Var}(\underline{\mathbf{M}})$ is congruence distributive and $\operatorname{Irr}(\underline{\mathbf{M}})=n$, then $\mathbf{M}:=\left\langle M ; C \cup H_{n}, R, \mathcal{T}\right\rangle$ strongly dualises $\underline{\mathbf{M}}$.

The CD Strong Duality Theorem

Let $\underline{\mathbf{M}}$ be a finite algebra.

- For all $\mathbf{N} \leqslant \underline{\mathbf{M}}$ define $\operatorname{irr}(\mathbf{N})$ to be the least ℓ such that $\mathbb{O}_{\mathbf{N}}$ in Con (\mathbf{N}) is a meet of ℓ meet-irreducible congruences.
- Define $\operatorname{Irr}(\underline{\mathbf{M}}):=\max \{\operatorname{irr}(\mathbf{N}) \mid \mathbf{N}$ is a subalgebra of $\underline{\mathbf{M}}\}$. $\operatorname{lrr}(\underline{\mathbf{M}})$ is called the irreducibility index of $\underline{\mathbf{M}}$.
- Define $C:=\{a \in M \mid\{a\}$ is a subuniverse of $\underline{\mathbf{M}}\}$ regarded as a set of nullary operations on M.
- For all $n \geqslant 1$, define H_{n} to be the set of maps $h: D \rightarrow M$ such that \mathbf{D} is a subalgebra of $\underline{\mathbf{M}}^{n}$ and h is a homorphism.

Theorem (3.3.7 CD Strong Duality Theorem)

Assume that $\underline{\mathbf{M}}$ is a finite algebra and that $\underset{\sim}{\mathbf{M}}:=\langle\boldsymbol{M} ; R, \mathcal{T}\rangle$
dualises $\underline{\mathbf{M}}$. If $\operatorname{Var}(\underline{\mathbf{M}})$ is congruence distributive and $\operatorname{Irr}(\underline{\mathbf{M}})=n$, then $\underset{\sim}{\mathbf{M}}:=\left\langle\boldsymbol{M} ; \boldsymbol{C} \cup H_{n}, R, \mathcal{T}\right\rangle$ strongly dualises \mathbf{M}.
N.B. $\operatorname{Var}(\underline{\mathbf{M}})$ is congruence distributive if $\underline{\mathbf{M}}$ is lattice based.

Distributive lattices revisited

- $\underline{\mathbf{D}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle \quad$ and $\quad \underset{\sim}{\mathbf{D}}=\langle\{0,1\} ; \leqslant, \mathcal{T}\rangle$.

Theorem (Priestley duality is strong)
$\underset{\sim}{D}$ yields a strong duality between the class $\mathcal{D}:=\operatorname{ISP}(\underline{\mathrm{D}})$ of bounded distributive lattices and the class $\mathcal{P}=I \mathrm{~S}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathrm{D}})$ of Priestley spaces, i.e., D_{\sim} is injective in \mathcal{P} and, for all $\mathbf{A} \in \mathcal{D}$ and $\mathbf{X} \in \mathcal{P}$,

- $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ and $\varepsilon_{\mathbf{x}}: \mathbf{X} \rightarrow E D(\mathbf{X})$ are isomorphisms.

Distributive lattices revisited

- $\underline{\mathbf{D}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle \quad$ and $\quad \underset{\sim}{\mathbf{D}}=\langle\{0,1\} ; \leqslant, \mathcal{T}\rangle$.

Theorem (Priestley duality is strong)
$\underset{\sim}{D}$ yields a strong duality between the class $\mathcal{D}:=\operatorname{ISP}(\underline{\mathrm{D}})$ of bounded distributive lattices and the class $\mathcal{P}=I \mathrm{~S}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathrm{D}})$ of Priestley spaces, i.e., D_{\sim} is injective in \mathcal{P} and, for all $\mathbf{A} \in \mathcal{D}$ and $\mathbf{X} \in \mathcal{P}$,

- $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ and $\varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow E D(\mathbf{X})$ are isomorphisms.

Proof.

- We already know that \mathbb{D} yields a duality on \mathcal{D}.

Distributive lattices revisited

- $\underline{\mathbf{D}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle \quad$ and $\quad \underset{\sim}{\mathbf{D}}=\langle\{0,1\} ; \leqslant, \mathcal{T}\rangle$.

Theorem (Priestley duality is strong)
$\underset{\sim}{D}$ yields a strong duality between the class $\mathcal{D}:=\operatorname{ISP}(\underline{\mathrm{D}})$ of bounded distributive lattices and the class $\mathcal{P}=I \mathrm{~S}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathrm{D}})$ of Priestley spaces, i.e., $\mathbf{D}_{\text {is }}$ injective in \mathcal{P} and, for all $\mathbf{A} \in \mathcal{D}$ and $\mathbf{X} \in \mathcal{P}$,

- $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ and $\varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow E D(\mathbf{X})$ are isomorphisms.

Proof.

- We already know that \mathbb{D} yields a duality on \mathcal{D}.
- $\underline{\mathbf{D}}$ is simple and has no subalgebras, so $\operatorname{lr}(\underline{\mathbf{D}})=1$.

Distributive lattices revisited

- $\underline{\mathbf{D}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle \quad$ and $\quad \underset{\sim}{\mathbf{D}}=\langle\{0,1\} ; \leqslant, \mathcal{T}\rangle$.

Theorem (Priestley duality is strong)
$\underset{\sim}{D}$ yields a strong duality between the class $\mathcal{D}:=\operatorname{ISP}(\underline{\mathbf{D}})$ of bounded distributive lattices and the class $\mathcal{P}=I \mathrm{~S}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathrm{D}})$ of Priestley spaces, i.e., $\mathrm{D}_{\text {is }}$ injective in \mathcal{P} and, for all $\mathbf{A} \in \mathcal{D}$ and $\mathbf{X} \in \mathcal{P}$,

- $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ and $\varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow E D(\mathbf{X})$ are isomorphisms.

Proof.

- We already know that $\underset{\sim}{\boldsymbol{D}}$ yields a duality on \mathcal{D}.
- $\underline{\mathbf{D}}$ is simple and has no subalgebras, so $\operatorname{lr}(\underline{\mathbf{D}})=1$.
- It follows from the CD Strong Duality Theorem that ${\underset{\sim}{D}}^{\prime}=\left\langle\{0,1\} ; \mathrm{id}_{\mathrm{D}}, \leqslant, \mathcal{T}\right\rangle$ yields a strong duality on \mathcal{D}.

Distributive lattices revisited

- $\underline{\mathbf{D}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle \quad$ and $\quad \underset{\sim}{\mathbf{D}}=\langle\{0,1\} ; \leqslant, \mathcal{T}\rangle$.

Theorem (Priestley duality is strong)
$\underset{\sim}{D}$ yields a strong duality between the class $\mathcal{D}:=\operatorname{ISP}(\underline{\mathbf{D}})$ of bounded distributive lattices and the class $\mathcal{P}=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathrm{D}})$ of Priestley spaces, i.e., $\mathrm{D}_{\text {is }}$ injective in \mathcal{P} and, for all $\mathbf{A} \in \mathcal{D}$ and $\mathbf{X} \in \mathcal{P}$,

- $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ and $\varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow E D(\mathbf{X})$ are isomorphisms.

Proof.

- We already know that $\underset{\sim}{\boldsymbol{D}}$ yields a duality on \mathcal{D}.
- $\underline{\mathbf{D}}$ is simple and has no subalgebras, so $\operatorname{lr}(\underline{\mathbf{D}})=1$.
- It follows from the CD Strong Duality Theorem that ${\underset{\sim}{\mathbf{D}}}^{\prime}=\left\langle\{0,1\} ; \mathrm{id}_{\mathrm{D}}, \leqslant, \mathcal{T}\right\rangle$ yields a strong duality on \mathcal{D}.
- Clearly id ${ }_{D}$ can be removed without affecting the result.

Distributive lattices revisited

- $\underline{\mathbf{D}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle \quad$ and $\quad \underset{\sim}{\mathbf{D}}=\langle\{0,1\} ; \leqslant, \mathcal{T}\rangle$.

Theorem (Priestley duality is strong)
\underline{D} yields a strong duality between the class $\mathcal{D}:=\operatorname{ISP}(\underline{\mathrm{D}})$ of bounded distributive lattices and the class $\mathcal{P}=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathrm{D}})$ of Priestley spaces, i.e., $\mathrm{D}_{\text {is }}$ injective in \mathcal{P} and, for all $\mathbf{A} \in \mathcal{D}$ and $\mathbf{X} \in \mathcal{P}$,

- $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ and $\varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow E D(\mathbf{X})$ are isomorphisms.

Proof.

- We already know that $\underset{\sim}{\boldsymbol{D}}$ yields a duality on \mathcal{D}.
- $\underline{\mathbf{D}}$ is simple and has no subalgebras, so $\operatorname{lr}(\underline{\mathbf{D}})=1$.
- It follows from the CD Strong Duality Theorem that ${\underset{\sim}{\mathbf{D}}}^{\prime}=\left\langle\{0,1\} ; \mathrm{id}_{\mathrm{D}}, \leqslant, \mathcal{T}\right\rangle$ yields a strong duality on \mathcal{D}.
- Clearly id ${ }_{D}$ can be removed without affecting the result.
- Hence $\underset{\sim}{\mathbb{D}}$ yields a strong duality on \mathcal{D}.

Distributive lattices revisited

- $\underline{\mathbf{D}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle \quad$ and $\quad \underset{\sim}{\mathbf{D}}=\langle\{0,1\} ; \leqslant, \mathcal{T}\rangle$.

Theorem (Priestley duality is strong)
$\underset{\sim}{D}$ yields a strong duality between the class $\mathcal{D}:=\operatorname{ISP}(\underline{\mathbf{D}})$ of bounded distributive lattices and the class $\mathcal{P}=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathrm{D}})$ of Priestley spaces, i.e., \mathbb{D}_{\sim} is injective in \mathcal{P} and, for all $\mathbf{A} \in \mathcal{D}$ and $\mathbf{X} \in \mathcal{P}$,

- $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ and $\varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow E D(\mathbf{X})$ are isomorphisms.

Proof.

- We already know that \mathbb{D} yields a duality on \mathcal{D}.
- $\underline{\mathbf{D}}$ is simple and has no subalgebras, so $\operatorname{lr}(\underline{\mathbf{D}})=1$.
- It follows from the CD Strong Duality Theorem that ${\underset{\sim}{\mathbf{D}}}^{\prime}=\left\langle\{0,1\} ; \mathrm{id}_{\mathrm{D}}, \leqslant, \mathcal{T}\right\rangle$ yields a strong duality on \mathcal{D}.
- Clearly id ${ }_{D}$ can be removed without affecting the result.
- Hence $\underset{\sim}{\mathbb{D}}$ yields a strong duality on \mathcal{D}.

Kleene algebras revisited

$$
\begin{aligned}
& \underline{\mathbf{K}}=\langle\{0, a, 1\} ; \vee, \wedge, \neg, 0,1\rangle \\
& \text { and } \\
& \underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle .
\end{aligned}
$$

Kleene algebras revisited

$$
\begin{aligned}
& \underline{\mathbf{K}}=\langle\{0, a, 1\} ; \vee, \wedge, \neg, 0,1\rangle \\
& \text { and } \\
& \underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle .
\end{aligned}
$$

Theorem (Strong duality for Kleene algebras)
$\underset{\sim}{\mathbf{K}}$ yields a strong duality between the class $\mathcal{K}:=\operatorname{ISP}(\underline{\mathbf{K}})$ of Kleene algebras and the class $\mathcal{X}=I \mathrm{~S}_{\mathrm{C}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{K}})$.

Kleene algebras revisited

$$
\begin{aligned}
& \underline{\mathbf{K}}=\langle\{0, a, 1\} ; \vee, \wedge, \neg, 0,1\rangle \\
& \text { and } \\
& \underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle .
\end{aligned}
$$

Theorem (Strong duality for Kleene algebras)
$\underset{\mathcal{K}}{\mathbf{K}}$ yields a strong duality between the class $\mathcal{K}:=\operatorname{ISP}(\underline{\mathbf{K}})$ of Kleene algebras and the class $\boldsymbol{X}=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{K}})$.
Proof.

- We already know that $\underset{\sim}{\mathbf{K}}$ yields a duality on \mathcal{K}.

Kleene algebras revisited

$$
\begin{aligned}
& \mathbf{K}=\langle\{0, a, 1\} ; \vee, \wedge, \neg, 0,1\rangle \\
& \text { and } \\
& \underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle .
\end{aligned}
$$

Theorem (Strong duality for Kleene algebras)
$\underset{\mathcal{K}}{\mathbf{K}}$ yields a strong duality between the class $\mathcal{K}:=\operatorname{ISP}(\underline{\mathbf{K}})$ of Kleene algebras and the class $\boldsymbol{X}=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{K})$.

Proof.

- We already know that $\underset{\sim}{\mathbf{K}}$ yields a duality on \mathcal{K}.
- $\underline{\mathbf{K}}$ and $\underline{\mathbf{K}}_{0}$ are simple, so $\operatorname{lrr}(\underline{\mathbf{K}})=1$.

Kleene algebras revisited

$$
\begin{aligned}
& \underline{\mathbf{K}}=\langle\{0, a, 1\} ; \vee, \wedge, \neg, 0,1\rangle \\
& \text { and } \\
& \underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle .
\end{aligned}
$$

Theorem (Strong duality for Kleene algebras)

$\underset{\sim}{\mathbf{K}}$ yields a strong duality between the class $\mathcal{K}:=\operatorname{ISP}(\underline{\mathbf{K}})$ of Kleene algebras and the class $\mathcal{X}=I \mathrm{~S}_{\mathrm{C}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{K}})$.

Proof.

- We already know that $\underset{\sim}{\mathbf{K}}$ yields a duality on \mathcal{K}.
- $\underline{\mathbf{K}}$ and $\underline{\mathbf{K}}_{0}$ are simple, so $\operatorname{Irr}(\underline{\mathbf{K}})=1$.
- It follows from the CD Strong Duality Theorem that ${\underset{\sim}{\mathbf{K}}}^{\prime}=\left\langle K ; \mathrm{id}_{K}, \mathrm{id}_{K_{0}}, K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle$ yields a strong duality on \mathcal{K}.

Kleene algebras revisited

$$
\begin{aligned}
& \underline{\mathbf{K}}=\langle\{0, a, 1\} ; \vee, \wedge, \neg, 0,1\rangle \\
& \text { and } \\
& \underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle .
\end{aligned}
$$

Theorem (Strong duality for Kleene algebras)

$\underset{\sim}{\mathbf{K}}$ yields a strong duality between the class $\mathcal{K}:=\operatorname{ISP}(\underline{\mathbf{K}})$ of Kleene algebras and the class $\mathcal{X}=I \mathrm{~S}_{\mathrm{C}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{K}})$.

Proof.

- We already know that $\underset{\sim}{\mathbf{K}}$ yields a duality on \mathcal{K}.
- $\underline{\mathbf{K}}$ and $\underline{\mathbf{K}}_{0}$ are simple, so $\operatorname{Irr}(\underline{\mathbf{K}})=1$.
- It follows from the CD Strong Duality Theorem that ${\underset{\sim}{\mathbf{K}}}^{\prime}=\left\langle K ; \mathrm{id}_{K}, \mathrm{id}_{K_{0}}, K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle$ yields a strong duality on \mathcal{K}.
- id_{K} and $\mathrm{id}_{K_{0}}$ can be removed without affecting the result.

Kleene algebras revisited

$$
\begin{aligned}
& \underline{\mathbf{K}}=\langle\{0, a, 1\} ; \vee, \wedge, \neg, 0,1\rangle \\
& \text { and } \\
& \underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle .
\end{aligned}
$$

Theorem (Strong duality for Kleene algebras)

$\underset{\sim}{\mathbf{K}}$ yields a strong duality between the class $\mathcal{K}:=\operatorname{ISP}(\underline{\mathbf{K}})$ of Kleene algebras and the class $X=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{K})$.
Proof.

- We already know that $\underset{\sim}{\mathbf{K}}$ yields a duality on \mathcal{K}.
- $\underline{\mathbf{K}}$ and $\underline{\mathbf{K}}_{0}$ are simple, so $\operatorname{lrr}(\underline{\mathbf{K}})=1$.
- It follows from the CD Strong Duality Theorem that $\underset{\underset{ }{\mathbf{K}}}{ }{ }^{\prime}=\left\langle K ; \mathrm{id}_{K}, \mathrm{id}_{K_{0}}, K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle$ yields a strong duality on \mathcal{K}.
- id_{K} and id $K_{K_{0}}$ can be removed without affecting the result.
- Hence $\underset{\sim}{\mathbf{K}}$ yields a strong duality on \mathcal{K}.

Kleene algebras revisited

$$
\begin{aligned}
& \underline{\mathbf{K}}=\langle\{0, a, 1\} ; \vee, \wedge, \neg, 0,1\rangle \\
& \text { and } \\
& \underset{\sim}{\mathbf{K}}=\left\langle K ; K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle .
\end{aligned}
$$

Theorem (Strong duality for Kleene algebras)

$\underset{\mathcal{K}}{\mathbf{K}}$ yields a strong duality between the class $\mathfrak{K}:=\operatorname{ISP}(\underline{\mathbf{K}})$ of Kleene algebras and the class $X=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{K})$.
Proof.

- We already know that $\underset{\sim}{\mathbf{K}}$ yields a duality on \mathcal{K}.
- $\underline{\mathbf{K}}$ and $\underline{\mathbf{K}}_{0}$ are simple, so $\operatorname{lrr}(\underline{\mathbf{K}})=1$.
- It follows from the CD Strong Duality Theorem that $\underset{\underset{ }{\mathbf{K}}}{ }{ }^{\prime}=\left\langle K ; \mathrm{id}_{K}, \mathrm{id}_{K_{0}}, K_{0}, \preccurlyeq, \sim, \mathcal{T}\right\rangle$ yields a strong duality on \mathcal{K}.
- id_{K} and $\mathrm{id}_{K_{0}}$ can be removed without affecting the result.
- Hence $\underset{\sim}{\mathbf{K}}$ yields a strong duality on \mathcal{K}.

Partial operations can't be avoided

Theorem (6.1.2 Total Structure Theorem)

Assume that $\underset{\sim}{\mathbf{M}}=\langle M ; G, H, R, \mathcal{T}\rangle$ yields a strong duality on \mathcal{A}. The following are equivalent:
(i) some total structure \mathbf{M}^{\prime} yields a strong duality on \mathcal{A};
(ii) for each natural number n, every n-ary partial operation $h \in H$ extends to a homomorphism $g: \underline{\mathbf{M}}^{n} \rightarrow \underline{\mathbf{M}}$;
(iii) $\underline{\mathbf{M}}$ is injective in \mathcal{A}.

Partial operations can't be avoided

Theorem (6.1.2 Total Structure Theorem)

Assume that $\underset{\sim}{\mathbf{M}}=\langle M ; G, H, R, \mathcal{T}\rangle$ yields a strong duality on \mathcal{A}. The following are equivalent:
(i) some total structure \mathbf{M}^{\prime} yields a strong duality on \mathcal{A};
(ii) for each natural number n, every n-ary partial operation $h \in H$ extends to a homomorphism $g: \underline{\mathbf{M}}^{n} \rightarrow \underline{\mathbf{M}}$;
(iii) $\underline{\mathbf{M}}$ is injective in \mathcal{A}.

Let \mathbf{M} be any finite lattice-based algebra that is not injective in $\mathcal{A}=\operatorname{ISP}(\underline{\mathbf{M}})$. Then

Partial operations can't be avoided

Theorem (6.1.2 Total Structure Theorem)

Assume that $\underset{\sim}{\mathbf{M}}=\langle M ; G, H, R, \mathcal{T}\rangle$ yields a strong duality on \mathcal{A}. The following are equivalent:
(i) some total structure ${\underset{\sim}{\sim}}^{\prime}$ yields a strong duality on \mathcal{A};
(ii) for each natural number n, every n-ary partial operation $h \in H$ extends to a homomorphism $g: \underline{\mathbf{M}}^{n} \rightarrow \underline{\mathbf{M}}$;
(iii) $\underline{\mathbf{M}}$ is injective in \mathcal{A}.

Let $\underline{\mathbf{M}}$ be any finite lattice-based algebra that is not injective in $\mathcal{A}=\operatorname{ISP}(\underline{\mathbf{M}})$. Then

- there is an alter ego $\underset{\sim}{\mathbf{M}}$ that yields a strong duality on \mathcal{A},

Partial operations can't be avoided

Theorem (6.1.2 Total Structure Theorem)

Assume that $\mathbf{M}=\langle M ; G, H, R, \mathcal{T}\rangle$ yields a strong duality on \mathcal{A}. The following are equivalent:
(i) some total structure ${\underset{\sim}{M}}^{\prime}$ yields a strong duality on \mathcal{A};
(ii) for each natural number n, every n-ary partial operation $h \in H$ extends to a homomorphism $g: \underline{\mathbf{M}}^{n} \rightarrow \underline{\mathbf{M}}$;
(iii) \mathbf{M} is injective in \mathcal{A}.

Let \mathbf{M} be any finite lattice-based algebra that is not injective in $\mathcal{A}=\operatorname{ISP}(\mathbf{M})$. Then

- there is an alter ego $\underset{\sim}{M}$ that yields a strong duality on \mathcal{A},
- but any such $\underset{\sim}{\mathbf{M}}$ must include partial operations in its type.

Further examples

Some exercises for you. Use the Lattice-based Duality Theorem and the CD Strong Duality Theorem to find a strong duality for $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ in each of the following cases.
Is your duality optimal?

1. Median algebras. $\underline{\mathbf{M}}=\langle\{0,1\} ; m\rangle$, where $m:\{0,1\}^{3} \rightarrow\{0,1\}$ is the median operation.
2. Stone algebras. $\mathbf{M}=\left\langle\{0, a, 1\} ; \vee, \wedge,{ }^{*}, 0,1\right\rangle$, where $\langle\{0, a, 1\} ; \vee, \wedge, 0,1\rangle$ is a chain with $0<a<1$ and * is given by $0^{*}=1$ and $a^{*}=1^{*}=0$.
3. Double Stone algebras. $\mathbf{M}=\left\langle\{0, a, b, 1\} ; \vee, \wedge,{ }^{*},{ }^{+}, 0,1\right\rangle$, where $\langle\{0, a, b, 1\} ; \vee, \wedge, 0,1\rangle$ is a chain with $0<a<b<1$ and * and + are given by $0^{*}=1$ and $a^{*}=b^{*}=1^{*}=0$, and $1^{+}=0$ and $0^{+}=a^{+}=b^{+}=1$.
4. 3 -valued Gödel algebras. $\underline{\mathbf{M}}=\langle\{0, a, 1\} ; \vee, \wedge, \rightarrow, 0,1\rangle$, where $\langle\{0, a, 1\} ; \vee, \wedge, 0,1\rangle$ is a chain with $0<a<1$ and $x \rightarrow y=1$, if $x \leqslant y$, and $x \rightarrow y=y$, if $x>y$.

Hom-closed and term-closed sets

It is easy to prove the following claims, for all $\mathbf{A} \in \mathcal{A}$.

- The set $D(\mathbf{A})=\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is closed under every I-ary algebraic partial operation on \mathbf{M}, for all non-empty sets l. We say that $D(\mathbf{A})$ is hom-closed in M^{A}.

Hom-closed and term-closed sets

It is easy to prove the following claims, for all $\mathbf{A} \in \mathcal{A}$.

- The set $D(\mathbf{A})=\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is closed under every I-ary algebraic partial operation on \mathbf{M}, for all non-empty sets l. We say that $D(\mathbf{A})$ is hom-closed in M^{A}.
- For all $y \in M^{A} \backslash \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$, there exist A-ary term functions $t_{1}, t_{2}: M^{A} \rightarrow M$ such that $t_{1} \upharpoonright_{D(\mathbf{A})}=t_{2} \upharpoonright_{D(\mathbf{A})}$ but $t_{1}(y) \neq t_{2}(y)$. We say that $D(\mathbf{A})$ is term-closed in M^{A}.

Hom-closed and term-closed sets

It is easy to prove the following claims, for all $\mathbf{A} \in \mathcal{A}$.

- The set $D(\mathbf{A})=\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is closed under every I-ary algebraic partial operation on \mathbf{M}, for all non-empty sets l. We say that $D(\mathbf{A})$ is hom-closed in M^{A}.
- For all $y \in M^{A} \backslash \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$, there exist A-ary term functions $t_{1}, t_{2}: M^{A} \rightarrow M$ such that $t_{1} \upharpoonright_{D(\mathbf{A})}=t_{2} \upharpoonright_{D(\mathbf{A})}$ but $t_{1}(y) \neq t_{2}(y)$. We say that $D(\mathbf{A})$ is term-closed in M^{A}.

Theorem (3.2.4 First Strong Duality Theorem)

Assume $\underset{\sim}{\mathbf{M}}$ yields a duality on \mathcal{A}. The following are equivalent:
(1) $\underset{\sim}{\mathbf{M}}$ yields a strong duality on \mathcal{A},
(2) for every non-empty set S, each closed substructure of \mathbb{M}^{S} is hom-closed,
(3) for every non-empty set S, each closed substructure of \mathbb{M}^{S} is term-closed.

