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Outline

Examples of natural dualities

Natural dualities: the basics

Duality theorems
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Boolean algebras — Stone duality

Boolean algebras Boolean spaces
(i.e., compact, Hausdorff and
a basis of clopen sets)

B = ISP(B), where

B = h{0, 1};_, ^, 0, 0, 1i d 0

d 1

D(A) := B(A, B) 6 B⇠
A

Z = IScP+(B⇠), where

B⇠ = h{0, 1};Ti
d

0
d

1

E(X) := Z(X, B⇠) 6 BX
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Bounded distributive lattices — Priestley duality

Bounded distributive lattices Priestley spaces

D = ISP(D), where

D = h{0, 1};_, ^, 0, 1i d 0

d 1

D(A) := D(A, D) 6 D⇠
A

P = IScP+(D⇠), where

D⇠ = h{0, 1};6,Ti d 0

d 1

E(X) := P(X, D⇠) 6 DX
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Abelian groups — Pontryagin duality

Abelian groups Compact top. abelian groups

(i.e., compact, Hausdorff and
· and �1 continuous)

A = ISP(T), where

T = hT ; ·,�1, 1i

and T := {z 2 C : |x | = 1}

D(A) := A(A, T) 6 T⇠
A

X = IScP+(T⇠), where

T⇠ = hT ; ·,�1, 1,Ti

E(X) := X(X, T⇠) 6 TX

6 / 27

Generalising to natural dualities: “why bother?"

Let M = hM;F i be one of B, D and T, and let M⇠ = hM;G, R,Ti
be the corresponding topological structure, B⇠, D⇠ or T⇠.

• A duality for A := ISP(M) gives a uniform way to represent
each algebra A 2 A as an algebra of continuous functions.

• If we have a full duality and have axiomatised the class
X := IScP+(M⇠), we can find examples of algebras in A by
simply constructing objects in X.

• Some dualities have the powerful property of being
“logarithmic”—they turn products into sums; e.g.,
in both B and D we have D(A ⇥ B) ⇠= D(A) [̇ D(B).
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Generalising to natural dualities: “why bother?"

• Algebraic questions in A can be answered by translating
them into (often simpler) questions in X. For example,

(1) free algebras in A are easily described via their duals in X,
(2) while a coproduct A ⇤ B is often difficult to describe, its

dual, D(A ⇤ B), is simply the cartesian product D(A)⇥ D(B),
(3) congruence lattices in A may be studied by looking at

lattices of closed substructures in X,
(4) injective algebras in A may be characterised by first

studying projective structures in X,
(5) algebraically closed and existentially closed algebras may

be described via their duals.

8 / 27

Some observations on B, D and A

For the functors D and E to be well defined, we need the
algebras B, D and T and the corresponding topological
structures B⇠, D⇠ and T⇠ to be compatible.

Let M = hM;F i be one of B, D and T, and let M⇠ = hM;G, R,Ti
be the corresponding topological structure, B⇠, D⇠ or T⇠.

Define A := ISP(M) and X := IScP+(M⇠), and let A 2 A and
X 2 X.

Since we define D(A) := A(A, M) and E(X) := X(X, M⇠), in
order to have D(A) 2 IScP+(M⇠) and E(X) 2 ISP(M), we need

I A(A, M) to be a topologically closed substructure of M⇠
A,

and
I X(X, M⇠) to be a subalgebra of MX .

9 / 27



Some observations
Let M = hM;F i, let M⇠ = hM;G, R,Ti, define A := ISP(M) and
X := IScP+(M⇠), and let A 2 A and X 2 X. We need M and M⇠ to
be compatible in such a way that

• A(A, M) is a topologically closed substructure of M⇠
A, and

• X(X, M⇠) is a subalgebra of MX .
I A(A, M) will be topologically closed in MA, provided the

topology on M is Hausdorff and the operations in F are
continuous. (If M⇠ is compact, then so is A(A, M).)

I A(A, M) will be closed under the operations in G provided
each (n-ary) g 2 G is a homomorphism from Mn to M.

I X(X, M⇠) will be a subalgebra of MX provided
I each (n-ary) g 2 G is a homomorphism from Mn to M,
I each (n-ary) relation r 2 R is a subuniverse of Mn, and
I each operation in F is continuous.

When these highlighted conditions hold, we say that g and r
are compatible with or algebraic over M.
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Natural dualities: alter egos

Generalizing our examples, we start with an algebra M and
wish to find a dual category for the prevariety A := ISP(M).

An alter ego of an algebra
A structure M⇠ = hM;G, H, R,Ti is an alter ego of M if it is
compatible with M, that is,

I G is a set of operations on M, each of which is a
homomorphism with respect to M,

I H is a set of partial operations on M, each of which is a
homomorphism with respect to M,

I R is a set of relations on M, each of which is a
subuniverse of the appropriate power of M, and

I T is a compact Hausdorff topology on M with respect to
which the operations on M are continuous.
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Natural dualities: categories and functors
Let M⇠ = hM;G, H, R,Ti be an alter ego of M.

The categories A and X

I Define A := ISP(M): the algebraic category of interest.

I Define X := IScP+(M⇠): the potential dual category for A.

The contravariant functors D and E
I There are natural hom-functors D : A ! X and E : X ! A.

I For each algebra A in A, the underlying set of D(A) is the
set hom(A, M) of all homomorphisms from A into M, and
D(A) is a topologically closed substructure of M⇠

A.

I For each structure X in X, the underlying set of E(X) is the
set hom(X, M⇠) of all continuous homomorphisms from X
into M⇠, and E(X) is a subalgebra of MX .
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Natural dualities: embeddings

Natural embeddings
For all A 2 A and X 2 X, there are embeddings

eA : A ! ED(A) = X(A(A, M), M⇠), given by
�
8a 2 A

�
eA(a) : A(A, M) ! M⇠ with

�
8x 2 A(A, M)

�
eA(a)(x) := x(a),

and
"X : X ! DE(X) = A(X(X, M⇠), M), given by

�
8x 2 X

�
"X(x) : X(X, M⇠) ! M with

�
8↵ 2 X(X, M⇠)

�
"X(x)(↵) := ↵(x).

These embeddings yield natural transformations

e : idA ! ED and " : idX ! DE ,

and hD, E , e, "i is a dual adjunction between A and X.
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A dual adjunction
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Figure 1.2 a dual adjunction

1.5.3 Dual Adjunction Theorem If M⇠ is algebraic over M, then hD, E, e, "i is a dual
adjunction between A and X such that the evaluation maps eA and "X are embeddings.

We assume without further mention that all operations, partial operations and relations on
M⇠ are algebraic over M.

Chapter 2: Natural Dualities

Having set the scene in the previous chapter, we can now begin to address the most
immediate issues. As algebraists, our first aim is to obtain a representation of each algebra
in A = ISPM as an algebra of continuous, structure-preserving maps.

Given a discrete topological structure M⇠ = hM ; G, H, R, T i which is algebraic over M,
we have a dual adjunction hD, E, e, "i between A and X := IScP+ M⇠ as described in the
last section of the previous chapter. In particular, by the Dual Adjunction Theorem 1.5.3,
the homomorphism eA : A ! ED(A) is an embedding for all A 2 A. We shall say that M⇠
yields a (natural) duality on an algebra A in A if eA is an isomorphism, that is, if the only
continuous structure-preserving maps from D(A) to M⇠ are the evaluations. If C � A and
M⇠ yields a duality on every algebra A in C, then we say that M⇠ yields a (natural) duality
on C. Thus M⇠ yields a natural duality on A precisely when the preduality determined by
M⇠ is a dual representation. Instead of saying that M⇠ yields a duality, we shall sometimes
say that G [ H [ R yields a duality. Putting the emphasis back on the algebra M, we say
that M admits a (natural) duality, or that M is dualisable, if there exists some structure
M⇠ which yields a duality on A, in which case we often say simply that M⇠ (or G [ H [ R)
dualises M.

Brute force We shall see in the next chapter that the operations in G and the partial
operations in H play a vital role when we wish to upgrade a natural duality (= dual
representation) to a full duality (= dual equivalence). Nevertheless, our first lemma implies

I For u : A ! B and ' : X ! Y, the two squares commute.
I A(A, E(X)) ⇠= X(X, D(A)) via the triangles:

u = E(D(u) � "X) � eA and ' = D(E(') � eA) � "X.
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Duality

If eA : A ! ED(A) is surjective and therefore an isomorphism,
for all A in A, then we say that M⇠ yields a duality on A (or that
M⇠ dualises M).

Equivalently, M⇠ yields a duality on A if the dual adjunction
hD, E , e, "i is a dual category equivalence between A and
a full subcategory of X.
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Full duality

If, in addition, "X : X ! DE(X) is a surjection and therefore an
isomorphism, for all X in X, then M⇠ yields a full duality on A (or
M⇠ fully dualises M).

Equivalently, M⇠ yields a full duality on A if the dual adjunction
hD, E , e, "i is a dual category equivalence between A and X.
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Embeddings, injectivity and strong duality

Let M⇠ be any alter ego of an algebra M, and let

D : A ! X and E : X ! A

be the induced hom-functors.
It is easy to see that:

I D and E send surjections to embeddings,
I D sends embeddings in A to surjections in X if

and only if M is injective in A, and
I E sends embeddings in X to surjections in A if

and only if M⇠ is injective in X.

Strong duality
If M⇠ fully dualises M and M⇠ is injective in X (so that surjections
in A correspond to embeddings in X), we say that M⇠ yields a
strong duality on A (or that M⇠ strongly dualises M).
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Further examples

I All three of our original examples — Stone duality,
Priestley duality and Pontryagin duality — are examples of
strong dualities.

I Every finite lattice-based algebra admits a strong duality.
[Davey, Werner 1980 and Clark, Davey 1995]

I The unary algebra admits a duality, but
not a full duality. [Hyndman, Willard 2000]

I There is an example of a three-element algebra that admits
a full duality that can not be upgraded to a strong duality.
[Pitkethly 2009]

I The two-element implication algebra I := h{0, 1};!i does
not admit a natural duality. [Davey, Werner 1980]
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For duality, relations will do

I Let M = hM;F i be a finite algebra,
I let M⇠ = hM;G, H, R,Ti be an alter ego of M, and
I define A := ISP(M) and X := IScP+(M⇠).

Recall that to prove that M⇠ yields a duality on A, it remains to
show that

I for all A 2 A, the evaluation maps eA, for a 2 A, are the
only X-morphisms from A(A, M) to M⇠.

Lemma (2.1.2)
Let M⇠ = hM;G, H, R,Ti, define M⇠

0 = hM;R0,Ti where

R0 := R [ {graph(h) | h 2 G [ H}

Then M⇠ yields a duality on A if and only if M⇠
0 does.

I Thus, as far as obtaining a duality is concerned, we can
restrict our attention to purely relational alter egos.
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Duals of free algebras

I Given a non-empty set S, the set

FM(S) = {t : MS ! M | t is an S-ary term function on M}

is the free S-generated algebra in A (the projections
⇡s : MS ! M, for s 2 S, are the free generators).

Lemma (2.2.1)
Let S be a non-empty set. The then dual of FM(S), namely

D(FM(S)) = A(FM(S), M),

is isomorphic in X to M⇠
S.

I It is easy to see that every S-ary term function t on M is an
X-morphism, i.e., t : M⇠

S ! M⇠.
I If M⇠ yields a duality on A, then

FM(S) ⇠= ED(FM(S)) ⇠= E(M⇠
S) ⇠= X(M⇠

S, M⇠).

In fact, we have FM(S) = X(M⇠
S, M⇠).
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The interpolation condition (IC)
Let Afin and Xfin consist of the finite members of A and X.

Lemma (2.2.5)
The following are equivalent:

(i) (IC) for each n 2 N and each substructure X of M⇠
n,

every morphism ↵ : X ! M⇠ extends to a term function
t : Mn ! M of the algebra M,

(ii) (INJ)+fin M⇠ is injective in Xfin, and
(CLO) for each n 2 N, every morphism t : M⇠

n ! M⇠ is an n-ary
term function on M,

(iii) M⇠ yields a duality on Afin and is injective in Xfin.

We would like to obtain a duality for A in two steps:
I first show that M⇠ yields a duality on Afin, then
I apply some general theory to show that the duality lifts

automatically to a duality on the whole of A.

This is achievable provided M⇠ enjoys some degree of finiteness.
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The Second Duality Theorem

If M⇠ = hM;G, R,Ti, that is, the type of M⇠ includes no partial
operations, then we call M⇠ a total structure.

Theorem (2.2.7 Second Duality Theorem)
Assume that M⇠ is a total structure with R finite. If (IC) holds,
then M⇠ yields a duality on A and is injective in X.

This result is rather surprising.
I It gives us simple finitary conditions which yield both a

dual adjunction between the categories A and X and a
topological representation of every algebra in A,

I but it requires us to do no category theory and no topology!
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Priestley duality via the Second Duality Theorem

Recall that
I D = h{0, 1};_, ^, 0, 1i is the two-element bounded lattice,
I D⇠ = h{0, 1};6,Ti is the two-element chain endowed with

the discrete topology.

Theorem (Half of Priestley duality)
D⇠ yields a duality on the class D := ISP(D) of bounded
distributive lattices, i.e., eA : A ! ED(A) is an isomorphism, for
all A 2 D.

Proof.
We will prove that (IC) holds. Let X be a substructure of D⇠

n and
let ' : X ! D⇠ be a morphism, i.e., ' is order-preserving.

[We need to find a term function t : {0, 1}n ! {0, 1} on D such
that t(x) = '(x), for all x 2 X .]
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Priestley duality via the Second Duality Theorem

The proof continued
[X is a substructure of D⇠

n and ' : X ! D⇠ is order-preserving.

We need to find a term function t : {0, 1}n ! {0, 1} on D such
that t(x) = '(x), for all x 2 X.]

If '�1(1) = ?, then define t(v1, . . . , vn) = 0, and
if '�1(1) = X , then define t(v1, . . . , vn) = 1.

Otherwise, define t(v1, . . . , vn) by

t(v1, . . . , vn) :=
_

a2'�1(1)

⇣ ^

ai = 1

vi

⌘
.

Let x 2 X . If '(x) = 1, then t(x) = 1, by construction.
If t(x) = 1, then there exists a 2 '�1(1) with ai = 1 ) xi = 1.
Hence '(a) = 1 and a 6 x . As ' is order-preserving, we have
'(x) = 1. Hence t(x) = '(x), for all x 2 X .
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Further applications of the Second Duality Theorem

Some exercises for you. In each case, prove that (IC) holds.

(1) [Stone] Let B = h{0, 1};_, ^,0 , 0, 1i; then B = ISP(B) is the
class of Boolean algebras. Show that B⇠ = h{0, 1};Ti yields
a duality on B.

(2) [Priestley] Let L = h{0, 1};_, ^i; then L = ISP(L) is the
class of distributive lattices. Show that
L⇠ = h{0, 1}; 0, 1,6,Ti yields a duality on L.

(3) [Hofmann–Mislove–Stralka] Let S = h{0, 1};^i; then
S = ISP(S) is the class of meet semilattices. Show that
S⇠ = h{0, 1};^, 0, 1,Ti yields a duality on S.

(4) [Pontryagin] Let Zm = hZm; +,�, 0i; then Am = ISP(Zm) is
the class of abelian groups of exponent m. Show that
Z⇠ = hZm; +,�, 0,Ti yields a duality on Am.
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