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Examples of natural dualities
Boolean algebras — Stone
Distributive lattices — Priestley
Abelian groups — Pontryagin
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Boolean algebras — Stone duality

Boolean algebras

1
B = ISP(B), where I
B = ({0,1};Vv,A,”,0,1) 0

D(A) := B(A,B) < B

Boolean spaces

Z = IScP*(B), where

(@]
B =({0,1};7) 0

E(X) := Z(X,B) < BX
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Bounded distributive lattices — Priestley duality

Bounded distributive lattices

D — ISP(D), where I 1

Q:<{071};\/7/\a071> 0

D(A) := D(A,D) < D

Priestley spaces

P — 1S;P*(D), where 1
D={{0,1};<,7)

E(X) := P(X,D) < D¥
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Abelian groups
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The integers

Compact top. abelian groups

I = <T1 ')_1717('T>
The circle group
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Abelian groups Compact top. abelian groups

Z, = (Zn; ®n,©n,0) Z) = (Zn; ®n, ©n,0,T)
The integers modulo n
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Abelian groups — Pontryagin duality

Abelian groups Compact top. abelian groups

A » B D(A) <~ D(B)




Abelian groups — Pontryagin duality

Abelian groups Compact top. abelian groups
A = ISP(T), where
I: <T;'7_171>
and T:={zeC:|x|=1}

X = IS¢P*(T), where
I = <T;’7_17177>

D(A) == A(A,T) < T* E(X) :=X(X,T) < T
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LetM = (M; F) be oneof B,D and T, and let M = (M; G, R, T)
be the corresponding topological structure, B, D or T.

e A duality for A := ISP(M) gives a uniform way to represent
each algebra A € A as an algebra of continuous functions.

¢ If we have a full duality and have axiomatised the class
X :=IScP*(M), we can find examples of algebras in A by
simply constructing objects in X.

e Some dualities have the powerful property of being
“logarithmic”—they turn products into sums; e.g.,
in both B and D we have D(A x B) = D(A) U D(B).
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Generalising to natural dualities: “why bother?"

e Algebraic questions in A can be answered by translating
them into (often simpler) questions in X. For example,

(1) free algebras in A are easily described via their duals in X,

(2) while a coproduct A x B is often difficult to describe, its
dual, D(A «B), is simply the cartesian product D(A) x D(B),

(3) congruence lattices in A may be studied by looking at
lattices of closed substructures in X,

(4) injective algebras in A may be characterised by first
studying projective structures in X,

(5) algebraically closed and existentially closed algebras may
be described via their duals.
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For the functors D and E to be well defined, we need the
algebras B, D and T and the corresponding topological
structures B, D and T to be compatible.
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LetM = (M; F), let M = (M; G, R,7), define A := ISP(M) and
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be compatible in such a way that
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e X(X,M) is a subalgebra of MX.
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e A(A,M) is a topologically closed substructure of MA, and
e X(X,M) is a subalgebra of MX.

» A(A, M) will be topologically closed in M4, provided the
topology on M is Hausdorff and the operations in F are
continuous. (If M is compact, then so is A(A,M).)

» A(A, M) will be closed under the operations in G provided
each (n-ary) g € G is a homomorphism from M” to M.

» X(X, M) will be a subalgebra of MX provided

» each (n-ary) g € G is a homomorphism from M" to M,

» each (n-ary) relation r € R is a subuniverse of M", and
» each operation in F is continuous.

When these highlighted conditions hold, we say that g and r

are compatible with or algebraic over M.
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Natural dualities: the basics
Alter egos
Categories, functors and natural transformations
The basic definitions: duality, full duality, strong duality
Further examples
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Natural dualities: alter egos

Generalizing our examples, we start with an algebra M and
wish to find a dual category for the prevariety A := ISP(M).

An alter ego of an algebra

A structure M = (M; G, H, R, T) is an alter ego of Mif it is
compatible with M, that is,

» G is a set of operations on M, each of which is a
homomorphism with respect to M,

» His a set of partial operations on M, each of which is a
homomorphism with respect to M,

» R is a set of relations on M, each of which is a
subuniverse of the appropriate power of M, and

» T is a compact Hausdorff topology on M with respect to
which the operations on M are continuous.
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» Define A := ISP(M): the algebraic category of interest.
» Define X := IScP*(M): the potential dual category for A.

The contravariant functors D and E
» There are natural hom-functors D: A — X and E: X — A.

» For each algebra A in A, the underlying set of D(A) is the
set hom(A, M) of all homomorphisms from A into M, and
D(A) is a topologically closed substructure of MA.

» For each structure X in X, the underlying set of E(X) is the
set hom(X, M) of all continuous homomorphisms from X
into M, and E(X) is a subalgebra of M*.
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Natural dualities: embeddings

Natural embeddings
For all A € A and X € X, there are embeddings

ea: A— ED(A) = X(A(A,M),M), given by

(Vvac A) ea(a): A(A,M) — M with
(Vx € A(A,M)) ea(a)(x) = x(a),

14/27



Natural dualities: embeddings

Natural embeddings
For all A € A and X € X, there are embeddings
ea: A— ED(A) = X(A(A,M),M), given by
(Vvac A) ea(a): A(A,M) — M with

(Vx € A(A,M)) ea(a)(x) = x(a),
and

14/27



Natural dualities: embeddings

Natural embeddings
For all A € A and X € X, there are embeddings

ea: A— ED(A) = X(A(A,M),M), given by
(Vvac A) ea(a): A(A,M) — M with
(Vx € A(A,M)) ea(a)(x) = x(a),
and
ex: X = DE(X) = A(X(X,M),M), given by
(Vx € X) ex(x): X(X,M) - M with
)=

These embeddings yield natural transformations
e: idqg — ED and e: idx — DE,

and (D, E, e, ¢) is a dual adjunction between A and X.

14/27



Natural dualities: embeddings

Natural embeddings
For all A € A and X € X, there are embeddings

ea: A— ED(A) = X(A(A,M),M), given by
(Vvac A) ea(a): A(A,M) — M with
(Vx € A(A,M)) ea(a)(x) = x(a),
and
ex: X = DE(X) = A(X(X,M),M), given by
(Vx € X) ex(x): X(X,M) - M with
)=

These embeddings yield natural transformations
e: idqg — ED and e: idx — DE,

and (D, E, e, ¢) is a dual adjunction between A and X.
14/27



A dual adjunction

A" .8 X 7 .y
ca en ex ey
ED(A) ED(B) DE(X) DE(Y)
ED(u) DE(y)
A A _ED(A) X — X | DEX)
\ E(y) \ D(u)
E(X) D(A)

» Foru: A — B and p: X =Y, the two squares commute.
» A(A, E(X)) = X(X, D(A)) via the triangles:

u=E(D(u)oex)oepand = D(E(p)oen)oex.
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Duality
If ea: A — ED(A) is surjective and therefore an isomorphism,

for all A in A, then we say that M yields a duality on A (or that
M dualises M).
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Duality

If ea: A — ED(A) is surjective and therefore an isomorphism,
for all A in A, then we say that M yields a duality on A (or that
M dualises M).

Equivalently, M yields a duality on A if the dual adjunction
(D, E, e, ¢) is a dual category equivalence between A and
a full subcategory of X.
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Full duality
If, in addition, ex: X — DE(X) is a surjection and therefore an

isomorphism, for all X in X, then M yields a full duality on A (or
M fully dualises M).

Equivalently, M yields a full duality on A if the dual adjunction
(D, E, e, ¢) is a dual category equivalence between A and X.
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Embeddings, injectivity and strong duality
Let M be any alter ego of an algebra M, and let
D:A—-X and E:X—A

be the induced hom-functors.
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Embeddings, injectivity and strong duality
Let M be any alter ego of an algebra M, and let
D:A—-X and E:X—A

be the induced hom-functors.
It is easy to see that:
» D and E send surjections to embeddings,
» D sends embeddings in A to surjections in X if
and only if M is injective in A, and
» E sends embeddings in X to surjections in A if
and only if M is injective in X.

Strong duality

If M fully dualises M and M is injective in X (so that surjections
in A correspond to embeddings in X), we say that M yields a
strong duality on A (or that M strongly dualises M).
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» All three of our original examples — Stone duality,
Priestley duality and Pontryagin duality — are examples of
strong dualities.

» Every finite lattice-based algebra admits a strong duality.
[Davey, Werner 1980 and Clark, Davey 1995]

¢ A
» The unary algebra 0o __° 9 admits a duality, but
not a full duality. [Hyndman, Willard 2000]

» There is an example of a three-element algebra that admits
a full duality that can not be upgraded to a strong duality.
[Pitkethly 2009]

» The two-element implication algebra | := ({0, 1}; —) does
not admit a natural duality. [Davey, Werner 1980]
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Outline

Duality theorems
Duals of free algebras
(IC) and the Second Duality Theorem
Priestley duality via the Second Duality Theorem
Further applications of the Second Duality Theorem
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For duality, relations will do

» Let M = (M. F) be a finite algebra,
> let M = (M; G,H, R,7T) be an alter ego of M, and
» define A := ISP(M) and X := IS;P*(M).
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» Let M = (M. F) be a finite algebra,
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show that

» for all A € A, the evaluation maps ea, for a € A, are the
only X-morphisms from A(A, M) to M.
Lemma (2.1.2)
LetM = (M; G, H, R, T), define M = (M; R', T) where
R := Ru{graph(h) | he GUH}
Then M yields a duality on A if and only if M’ does.

» Thus, as far as obtaining a duality is concerned, we can
restrict our attention to purely relational alter egos.
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Duals of free algebras

» Given a non-empty set S, the set
Fu(S) = {t: M® — M| tis an S-ary term function on M}

is the free S-generated algebra in A (the projections
ns: MS — M, for s € S, are the free generators).
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The interpolation condition (IC)

Let As, and Xy, consist of the finite members of A and X.

Lemma (2.2.5)
The following are equivalent:

(i) (IC) foreach n e N and each substructure X of M”",
every morphism o: X — M extends to a term function

t: M" — M of the algebra M,
(i) (INJ){f. M is injective in Xsn, and
(CLO) for each n € N, every morphismt: M" — M is an n-ary
term function on M,

(i) M yields a duality on Ay, and is injective in Xg,.
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every morphism o: X — M extends to a term function
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(i) (INJ){f. M is injective in Xsn, and
(CLO) for each n € N, every morphismt: M" — M is an n-ary
term function on M,

(i) M yields a duality on Ay, and is injective in Xg,.

We would like to obtain a duality for A in two steps:
» first show that M yields a duality on Ajp, then

» apply some general theory to show that the duality lifts
automatically to a duality on the whole of A.

This is achievable provided M enjoys some degree of finiteness.
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The Second Duality Theorem

If M= (M;G,R,T), that is, the type of M includes no partial
operations, then we call M a total structure.

Theorem (2.2.7 Second Duality Theorem)
Assume that M is a total structure with R finite. If (IC) holds,
then M yields a duality on A and is injective in X.
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If M= (M;G,R,T), that is, the type of M includes no partial
operations, then we call M a total structure.

Theorem (2.2.7 Second Duality Theorem)
Assume that M is a total structure with R finite. If (IC) holds,
then M yields a duality on A and is injective in X.

This result is rather surprising.

» |t gives us simple finitary conditions which yield both a
dual adjunction between the categories A and X and a
topological representation of every algebra in A,

» but it requires us to do no category theory and no topology!
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Priestley duality via the Second Duality Theorem

Recall that
» D= ({0,1};V,A,0,1) is the two-element bounded lattice,
» D = ({0,1}; <, 7) is the two-element chain endowed with
the discrete topology.

Theorem (Half of Priestley duality)

D yields a duality on the class D := ISP(D) of bounded
distributive lattices, i.e., epn: A — ED(A) is an isomorphism, for
allA € D.

Proof.
We will prove that (IC) holds. Let X be a substructure of D" and

let o: X — D be a morphism, i.e., ¢ is order-preserving.

[We need to find a term function ¢: {0,1}” — {0,1} on D such
that t(x) = ¢(x), for all x € X.]
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Priestley duality via the Second Duality Theorem

The proof continued
[X is a substructure of D" and ¢: X — D is order-preserving.

We need to find a term function t: {0,1}" — {0,1} on D such
that t(x) = ¢(x), for all x € X.]
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Let x € X. If o(x) = 1, then {(x) = 1, by construction.
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Hence p(a) =1 and a < x. As ¢ is order-preserving, we have
o(x) = 1.
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Further applications of the Second Duality Theorem

Some exercises for you. In each case, prove that (IC) holds.

(1) [Stone] Let B = ({0,1};Vv,A,,0,1); then B = ISP(B) is the
class of Boolean algebras. Show that B = ({0, 1}; 7) yields
a duality on B.

(2) [Priestley] Let L = ({0,1}; v, A); then £ = ISP(L) is the
class of distributive lattices. Show that
L = ({0,1};0,1,<,7) yields a duality on £.

(8) [Hofmann—Mislove—Stralka] Let S = ({0, 1}; A); then
8 = ISP(S) is the class of meet semilattices. Show that
S = ({0,1};A,0,1,7) yields a duality on 8.

(4) [Pontryagin] Let Z,, = (Zm; +, ~,0); then Ay, = ISP(Z,,) is
the class of abelian groups of exponent m. Show that
Z = (Zm;+,,0,7) yields a duality on Ap,.
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