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Boolean algebras — Stone duality

Boolean algebras Boolean spaces
(i.e., compact, Hausdorff and
a basis of clopen sets)
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Boolean algebras — Stone duality

Boolean algebras Boolean spaces
(i.e., compact, Hausdorff and
a basis of clopen sets)

Boolean algebra of all
finite or cofinite subsets of N
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Boolean algebras — Stone duality

Boolean algebras Boolean spaces
(i.e., compact, Hausdorff and
a basis of clopen sets)

Countable atomless
Boolean algebra
FB(ω)
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Boolean algebras — Stone duality

Boolean algebras Boolean spaces

(i.e., compact, Hausdorff and
a basis of clopen sets)

B = ISP(B), where

B = 〈{0,1};∨,∧, ′,0,1〉 d 0

d 1

D(A) := B(A,B) 6 B∼
A

Z = IScP+(B∼), where

B∼ = 〈{0,1};T〉
d

0
d

1

E(X) := Z(X,B∼) 6 BX
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Bounded distributive lattices — Priestley duality

Bounded distributive lattices Priestley spaces
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Bounded distributive lattices — Priestley duality

Bounded distributive lattices Priestley spaces

?
d0

d


J
JJ

1

d2
d��AA

3

d4
d��BB

5

d6
CC · · ·

d>
d
⊥

5 / 27



Bounded distributive lattices — Priestley duality

Bounded distributive lattices Priestley spaces

-ddd
c
c
c

c��@
@

c@@c�� c
c

��c
c c cc@@ �

�

5 / 27



Bounded distributive lattices — Priestley duality

Bounded distributive lattices Priestley spaces

--

c
c
c

c��@
@

c@@c�� c
c

� ddd c
cc cc@@ �

�

5 / 27



Bounded distributive lattices — Priestley duality

Bounded distributive lattices Priestley spaces

D = ISP(D), where

D = 〈{0,1};∨,∧,0,1〉 d 0

d 1

D(A) := D(A,D) 6 D∼
A

P = IScP+(D∼), where

D∼ = 〈{0,1};6,T〉 d 0

d 1

E(X) := P(X,D∼) 6 DX
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Abelian groups — Pontryagin duality

Abelian groups Compact top. abelian groups
(i.e., compact, Hausdorff and
· and −1 continuous)
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Abelian groups — Pontryagin duality

Abelian groups Compact top. abelian groups

(i.e., compact, Hausdorff and
· and −1 continuous)

Z = 〈Z ; +,−,0〉
The integers

T∼ = 〈T ; ·,−1,1,T〉
The circle group
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Abelian groups — Pontryagin duality

Abelian groups Compact top. abelian groups

(i.e., compact, Hausdorff and
· and −1 continuous)

Zn = 〈Zn;⊕n,	n,0〉
The integers modulo n

ZT
n = 〈Zn;⊕n,	n,0,T〉
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Abelian groups — Pontryagin duality

Abelian groups Compact top. abelian groups

(i.e., compact, Hausdorff and
· and −1 continuous)
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Abelian groups — Pontryagin duality

Abelian groups Compact top. abelian groups

(i.e., compact, Hausdorff and
· and −1 continuous)

A = ISP(T), where

T = 〈T ; ·,−1,1〉
and T := {z ∈ C : |x | = 1}

D(A) := A(A,T) 6 T∼
A

X = IScP+(T∼), where

T∼ = 〈T ; ·,−1,1,T〉

E(X) := X(X, T∼) 6 TX
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Generalising to natural dualities: “why bother?"

Let M = 〈M;F 〉 be one of B, D and T, and let M∼ = 〈M;G,R,T〉
be the corresponding topological structure, B∼, D∼ or T∼.

• A duality for A := ISP(M) gives a uniform way to represent
each algebra A ∈ A as an algebra of continuous functions.

• If we have a full duality and have axiomatised the class
X := IScP+(M∼), we can find examples of algebras in A by
simply constructing objects in X.

• Some dualities have the powerful property of being
“logarithmic”—they turn products into sums; e.g.,
in both B and D we have D(A× B) ∼= D(A) ∪̇ D(B).
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Generalising to natural dualities: “why bother?"

• Algebraic questions in A can be answered by translating
them into (often simpler) questions in X. For example,

(1) free algebras in A are easily described via their duals in X,
(2) while a coproduct A ∗ B is often difficult to describe, its

dual, D(A ∗B), is simply the cartesian product D(A)×D(B),
(3) congruence lattices in A may be studied by looking at

lattices of closed substructures in X,
(4) injective algebras in A may be characterised by first

studying projective structures in X,
(5) algebraically closed and existentially closed algebras may

be described via their duals.
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Some observations on B, D and A

For the functors D and E to be well defined, we need the
algebras B, D and T and the corresponding topological
structures B∼, D∼ and T∼ to be compatible.

Let M = 〈M;F 〉 be one of B, D and T, and let M∼ = 〈M;G,R,T〉
be the corresponding topological structure, B∼, D∼ or T∼.

Define A := ISP(M) and X := IScP+(M∼), and let A ∈ A and
X ∈ X.

Since we define D(A) := A(A,M) and E(X) := X(X,M∼), in
order to have D(A) ∈ IScP+(M∼) and E(X) ∈ ISP(M), we need

I A(A,M) to be a topologically closed substructure of M∼
A,

and
I X(X,M∼) to be a subalgebra of MX .
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Some observations

Let M = 〈M;F 〉, let M∼ = 〈M;G,R,T〉, define A := ISP(M) and
X := IScP+(M∼), and let A ∈ A and X ∈ X. We need M and M∼ to
be compatible in such a way that

• A(A,M) is a topologically closed substructure of M∼
A, and

• X(X,M∼) is a subalgebra of MX .

I A(A,M) will be topologically closed in MA, provided the
topology on M is Hausdorff and the operations in F are
continuous. (If M∼ is compact, then so is A(A,M).)

I A(A,M) will be closed under the operations in G provided
each (n-ary) g ∈ G is a homomorphism from Mn to M.

I X(X,M∼) will be a subalgebra of MX provided
I each (n-ary) g ∈ G is a homomorphism from Mn to M,
I each (n-ary) relation r ∈ R is a subuniverse of Mn, and
I each operation in F is continuous.

When these highlighted conditions hold, we say that g and r
are compatible with or algebraic over M.
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Outline

Examples of natural dualities

Natural dualities: the basics
Alter egos
Categories, functors and natural transformations
The basic definitions: duality, full duality, strong duality
Further examples

Duality theorems
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Natural dualities: alter egos

Generalizing our examples, we start with an algebra M and
wish to find a dual category for the prevariety A := ISP(M).

An alter ego of an algebra

A structure M∼ = 〈M;G,

H

,R,T〉 is an alter ego of M if it is
compatible with M, that is,

I G is a set of operations on M, each of which is a
homomorphism with respect to M,

I H is a set of partial operations on M, each of which is a
homomorphism with respect to M,

I R is a set of relations on M, each of which is a
subuniverse of the appropriate power of M, and

I T is a compact Hausdorff topology on M with respect to
which the operations on M are continuous.
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An alter ego of an algebra

A structure M∼ = 〈M;G,H,R,T〉 is an alter ego of M if it is
compatible with M, that is,

I G is a set of operations on M, each of which is a
homomorphism with respect to M,
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Natural dualities: categories and functors

Let M∼ = 〈M;G,H,R,T〉 be an alter ego of M.

The categories A and X

I Define A := ISP(M): the algebraic category of interest.

I Define X := IScP+(M∼): the potential dual category for A.

The contravariant functors D and E

I There are natural hom-functors D : A→ X and E : X→ A.

I For each algebra A in A, the underlying set of D(A) is the
set hom(A,M) of all homomorphisms from A into M, and
D(A) is a topologically closed substructure of M∼

A.

I For each structure X in X, the underlying set of E(X) is the
set hom(X,M∼) of all continuous homomorphisms from X
into M∼, and E(X) is a subalgebra of MX .
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Natural dualities: embeddings

Natural embeddings

For all A ∈ A and X ∈ X, there are embeddings

eA : A→ ED(A) = X(A(A,M),M∼), given by(
∀a ∈ A

)
eA(a) : A(A,M)→ M∼ with(

∀x ∈ A(A,M)
)

eA(a)(x) := x(a),

and
εX : X→ DE(X) = A(X(X,M∼),M), given by(

∀x ∈ X
)
εX(x) : X(X,M∼)→ M with(

∀α ∈ X(X,M∼)
)
εX(x)(α) := α(x).

These embeddings yield natural transformations

e : idA → ED and ε : idX → DE ,

and 〈D,E ,e, ε〉 is a dual adjunction between A and X.
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A dual adjunction
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Figure 1.2 a dual adjunction

1.5.3 Dual Adjunction Theorem If M∼ is algebraic over M, then ⟨D, E, e, ε⟩ is a dual
adjunction between A and X such that the evaluation maps eA and εX are embeddings.

We assume without further mention that all operations, partial operations and relations on
M∼ are algebraic over M.

Chapter 2: Natural Dualities

Having set the scene in the previous chapter, we can now begin to address the most
immediate issues. As algebraists, our first aim is to obtain a representation of each algebra
in A = ISPM as an algebra of continuous, structure-preserving maps.

Given a discrete topological structure M∼ = ⟨M ; G, H, R, T ⟩ which is algebraic over M,
we have a dual adjunction ⟨D, E, e, ε⟩ between A and X := IScP+ M∼ as described in the
last section of the previous chapter. In particular, by the Dual Adjunction Theorem 1.5.3,
the homomorphism eA : A → ED(A) is an embedding for all A ∈ A. We shall say that M∼
yields a (natural) duality on an algebra A in A if eA is an isomorphism, that is, if the only
continuous structure-preserving maps from D(A) to M∼ are the evaluations. If C ⊆ A and
M∼ yields a duality on every algebra A in C, then we say that M∼ yields a (natural) duality
on C. Thus M∼ yields a natural duality on A precisely when the preduality determined by
M∼ is a dual representation. Instead of saying that M∼ yields a duality, we shall sometimes
say that G ∪ H ∪ R yields a duality. Putting the emphasis back on the algebra M, we say
that M admits a (natural) duality, or that M is dualisable, if there exists some structure
M∼ which yields a duality on A, in which case we often say simply that M∼ (or G ∪ H ∪ R)
dualises M.

Brute force We shall see in the next chapter that the operations in G and the partial
operations in H play a vital role when we wish to upgrade a natural duality (= dual
representation) to a full duality (= dual equivalence). Nevertheless, our first lemma implies

I For u : A→ B and ϕ : X→ Y, the two squares commute.
I A(A,E(X)) ∼= X(X,D(A)) via the triangles:

u = E(D(u) ◦ εX) ◦ eA and ϕ = D(E(ϕ) ◦ eA) ◦ εX.
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Duality

If eA : A→ ED(A) is surjective and therefore an isomorphism,
for all A in A, then we say that M∼ yields a duality on A (or that
M∼ dualises M).

Equivalently, M∼ yields a duality on A if the dual adjunction
〈D,E ,e, ε〉 is a dual category equivalence between A and
a full subcategory of X.
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Full duality

If, in addition, εX : X→ DE(X) is a surjection and therefore an
isomorphism, for all X in X, then M∼ yields a full duality on A (or
M∼ fully dualises M).

Equivalently, M∼ yields a full duality on A if the dual adjunction
〈D,E ,e, ε〉 is a dual category equivalence between A and X.
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Embeddings, injectivity and strong duality

Let M∼ be any alter ego of an algebra M, and let

D : A→ X and E : X→ A

be the induced hom-functors.

It is easy to see that:

I D and E send surjections to embeddings,
I D sends embeddings in A to surjections in X if

and only if M is injective in A, and
I E sends embeddings in X to surjections in A if

and only if M∼ is injective in X.

Strong duality
If M∼ fully dualises M and M∼ is injective in X (so that surjections
in A correspond to embeddings in X), we say that M∼ yields a
strong duality on A (or that M∼ strongly dualises M).
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Further examples

I All three of our original examples — Stone duality,
Priestley duality and Pontryagin duality — are examples of
strong dualities.

I Every finite lattice-based algebra admits a strong duality.
[Davey, Werner 1980 and Clark, Davey 1995]

I The unary algebra admits a duality, but
not a full duality. [Hyndman, Willard 2000]

I There is an example of a three-element algebra that admits
a full duality that can not be upgraded to a strong duality.
[Pitkethly 2009]

I The two-element implication algebra I := 〈{0,1};→〉 does
not admit a natural duality. [Davey, Werner 1980]
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Outline

Examples of natural dualities

Natural dualities: the basics

Duality theorems
Duals of free algebras
(IC) and the Second Duality Theorem
Priestley duality via the Second Duality Theorem
Further applications of the Second Duality Theorem
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For duality, relations will do

I Let M = 〈M;F 〉 be a finite algebra,
I let M∼ = 〈M;G,H,R,T〉 be an alter ego of M, and
I define A := ISP(M) and X := IScP+(M∼).

Recall that to prove that M∼ yields a duality on A, it remains to
show that

I for all A ∈ A, the evaluation maps eA, for a ∈ A, are the
only X-morphisms from A(A,M) to M∼.

Lemma (2.1.2)
Let M∼ = 〈M;G,H,R,T〉, define M∼

′ = 〈M;R′,T〉 where

R′ := R ∪ {graph(h) | h ∈ G ∪ H}
Then M∼ yields a duality on A if and only if M∼

′ does.

I Thus, as far as obtaining a duality is concerned, we can
restrict our attention to purely relational alter egos.
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Duals of free algebras

I Given a non-empty set S, the set

FM(S) = {t : MS → M | t is an S-ary term function on M}
is the free S-generated algebra in A (the projections
πs : MS → M, for s ∈ S, are the free generators).

Lemma (2.2.1)
Let S be a non-empty set. The then dual of FM(S), namely

D(FM(S)) = A(FM(S),M),

is isomorphic in X to M∼
S.

I It is easy to see that every S-ary term function t on M is an
X-morphism, i.e., t : M∼

S → M∼.
I If M∼ yields a duality on A, then

FM(S) ∼= ED(FM(S)) ∼= E(M∼
S) ∼= X(M∼

S,M∼).
In fact, we have FM(S) = X(M∼

S,M∼).
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I It is easy to see that every S-ary term function t on M is an
X-morphism, i.e., t : M∼

S → M∼.
I If M∼ yields a duality on A, then

FM(S) ∼= ED(FM(S)) ∼= E(M∼
S) ∼= X(M∼

S,M∼).
In fact, we have FM(S) = X(M∼

S,M∼).
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The interpolation condition (IC)

Let Afin and Xfin consist of the finite members of A and X.

Lemma (2.2.5)
The following are equivalent:

(i) (IC) for each n ∈ N and each substructure X of M∼
n,

every morphism α : X→ M∼ extends to a term function
t : Mn → M of the algebra M,

(ii) (INJ)+fin M∼ is injective in Xfin, and
(CLO) for each n ∈ N, every morphism t : M∼

n → M∼ is an n-ary
term function on M,

(iii) M∼ yields a duality on Afin and is injective in Xfin.

We would like to obtain a duality for A in two steps:
I first show that M∼ yields a duality on Afin, then
I apply some general theory to show that the duality lifts

automatically to a duality on the whole of A.

This is achievable provided M∼ enjoys some degree of finiteness.
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The Second Duality Theorem

If M∼ = 〈M;G,R,T〉, that is, the type of M∼ includes no partial
operations, then we call M∼ a total structure.

Theorem (2.2.7 Second Duality Theorem)
Assume that M∼ is a total structure with R finite. If (IC) holds,
then M∼ yields a duality on A and is injective in X.

This result is rather surprising.
I It gives us simple finitary conditions which yield both a

dual adjunction between the categories A and X and a
topological representation of every algebra in A,

I but it requires us to do no category theory and no topology!
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Priestley duality via the Second Duality Theorem

Recall that
I D = 〈{0,1};∨,∧,0,1〉 is the two-element bounded lattice,
I D∼ = 〈{0,1};6,T〉 is the two-element chain endowed with

the discrete topology.

Theorem (Half of Priestley duality)
D∼ yields a duality on the class D := ISP(D) of bounded
distributive lattices, i.e., eA : A→ ED(A) is an isomorphism, for
all A ∈D.

Proof.
We will prove that (IC) holds. Let X be a substructure of D∼

n and
let ϕ : X→ D∼ be a morphism, i.e., ϕ is order-preserving.

[We need to find a term function t : {0,1}n → {0,1} on D such
that t(x) = ϕ(x), for all x ∈ X .]
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Priestley duality via the Second Duality Theorem

The proof continued
[X is a substructure of D∼

n and ϕ : X→ D∼ is order-preserving.

We need to find a term function t : {0,1}n → {0,1} on D such
that t(x) = ϕ(x), for all x ∈ X.]

If ϕ−1(1) = ∅, then define t(v1, . . . , vn) = 0, and
if ϕ−1(1) = X , then define t(v1, . . . , vn) = 1.

Otherwise, define t(v1, . . . , vn) by

t(v1, . . . , vn) :=
∨

a∈ϕ−1(1)

( ∧
ai = 1

vi

)
.

Let x ∈ X . If ϕ(x) = 1, then t(x) = 1, by construction.
If t(x) = 1, then there exists a ∈ ϕ−1(1) with ai = 1⇒ xi = 1.
Hence ϕ(a) = 1 and a 6 x . As ϕ is order-preserving, we have
ϕ(x) = 1. Hence t(x) = ϕ(x), for all x ∈ X .

26 / 27



Priestley duality via the Second Duality Theorem

The proof continued
[X is a substructure of D∼

n and ϕ : X→ D∼ is order-preserving.

We need to find a term function t : {0,1}n → {0,1} on D such
that t(x) = ϕ(x), for all x ∈ X.]

If ϕ−1(1) = ∅, then define t(v1, . . . , vn) = 0, and
if ϕ−1(1) = X , then define t(v1, . . . , vn) = 1.

Otherwise, define t(v1, . . . , vn) by

t(v1, . . . , vn) :=
∨

a∈ϕ−1(1)

( ∧
ai = 1

vi

)
.

Let x ∈ X . If ϕ(x) = 1, then t(x) = 1, by construction.
If t(x) = 1, then there exists a ∈ ϕ−1(1) with ai = 1⇒ xi = 1.
Hence ϕ(a) = 1 and a 6 x . As ϕ is order-preserving, we have
ϕ(x) = 1. Hence t(x) = ϕ(x), for all x ∈ X .

26 / 27



Priestley duality via the Second Duality Theorem

The proof continued
[X is a substructure of D∼

n and ϕ : X→ D∼ is order-preserving.

We need to find a term function t : {0,1}n → {0,1} on D such
that t(x) = ϕ(x), for all x ∈ X.]

If ϕ−1(1) = ∅, then define t(v1, . . . , vn) = 0, and
if ϕ−1(1) = X , then define t(v1, . . . , vn) = 1.

Otherwise, define t(v1, . . . , vn) by

t(v1, . . . , vn) :=
∨

a∈ϕ−1(1)

( ∧
ai = 1

vi

)
.

Let x ∈ X . If ϕ(x) = 1, then t(x) = 1, by construction.
If t(x) = 1, then there exists a ∈ ϕ−1(1) with ai = 1⇒ xi = 1.
Hence ϕ(a) = 1 and a 6 x . As ϕ is order-preserving, we have
ϕ(x) = 1. Hence t(x) = ϕ(x), for all x ∈ X .

26 / 27



Priestley duality via the Second Duality Theorem

The proof continued
[X is a substructure of D∼

n and ϕ : X→ D∼ is order-preserving.

We need to find a term function t : {0,1}n → {0,1} on D such
that t(x) = ϕ(x), for all x ∈ X.]

If ϕ−1(1) = ∅, then define t(v1, . . . , vn) = 0, and
if ϕ−1(1) = X , then define t(v1, . . . , vn) = 1.

Otherwise, define t(v1, . . . , vn) by

t(v1, . . . , vn) :=
∨

a∈ϕ−1(1)

( ∧
ai = 1

vi

)
.

Let x ∈ X . If ϕ(x) = 1, then t(x) = 1, by construction.

If t(x) = 1, then there exists a ∈ ϕ−1(1) with ai = 1⇒ xi = 1.
Hence ϕ(a) = 1 and a 6 x . As ϕ is order-preserving, we have
ϕ(x) = 1. Hence t(x) = ϕ(x), for all x ∈ X .

26 / 27



Priestley duality via the Second Duality Theorem

The proof continued
[X is a substructure of D∼

n and ϕ : X→ D∼ is order-preserving.

We need to find a term function t : {0,1}n → {0,1} on D such
that t(x) = ϕ(x), for all x ∈ X.]

If ϕ−1(1) = ∅, then define t(v1, . . . , vn) = 0, and
if ϕ−1(1) = X , then define t(v1, . . . , vn) = 1.

Otherwise, define t(v1, . . . , vn) by

t(v1, . . . , vn) :=
∨

a∈ϕ−1(1)

( ∧
ai = 1

vi

)
.

Let x ∈ X . If ϕ(x) = 1, then t(x) = 1, by construction.
If t(x) = 1, then there exists a ∈ ϕ−1(1) with ai = 1⇒ xi = 1.
Hence ϕ(a) = 1 and a 6 x . As ϕ is order-preserving, we have
ϕ(x) = 1.

Hence t(x) = ϕ(x), for all x ∈ X .

26 / 27



Priestley duality via the Second Duality Theorem

The proof continued
[X is a substructure of D∼

n and ϕ : X→ D∼ is order-preserving.

We need to find a term function t : {0,1}n → {0,1} on D such
that t(x) = ϕ(x), for all x ∈ X.]

If ϕ−1(1) = ∅, then define t(v1, . . . , vn) = 0, and
if ϕ−1(1) = X , then define t(v1, . . . , vn) = 1.

Otherwise, define t(v1, . . . , vn) by

t(v1, . . . , vn) :=
∨

a∈ϕ−1(1)

( ∧
ai = 1

vi

)
.

Let x ∈ X . If ϕ(x) = 1, then t(x) = 1, by construction.
If t(x) = 1, then there exists a ∈ ϕ−1(1) with ai = 1⇒ xi = 1.
Hence ϕ(a) = 1 and a 6 x . As ϕ is order-preserving, we have
ϕ(x) = 1.

Hence t(x) = ϕ(x), for all x ∈ X .

26 / 27



Priestley duality via the Second Duality Theorem

The proof continued
[X is a substructure of D∼

n and ϕ : X→ D∼ is order-preserving.

We need to find a term function t : {0,1}n → {0,1} on D such
that t(x) = ϕ(x), for all x ∈ X.]

If ϕ−1(1) = ∅, then define t(v1, . . . , vn) = 0, and
if ϕ−1(1) = X , then define t(v1, . . . , vn) = 1.

Otherwise, define t(v1, . . . , vn) by

t(v1, . . . , vn) :=
∨

a∈ϕ−1(1)

( ∧
ai = 1

vi

)
.

Let x ∈ X . If ϕ(x) = 1, then t(x) = 1, by construction.
If t(x) = 1, then there exists a ∈ ϕ−1(1) with ai = 1⇒ xi = 1.
Hence ϕ(a) = 1 and a 6 x . As ϕ is order-preserving, we have
ϕ(x) = 1. Hence t(x) = ϕ(x), for all x ∈ X .

26 / 27



Priestley duality via the Second Duality Theorem

The proof continued
[X is a substructure of D∼

n and ϕ : X→ D∼ is order-preserving.

We need to find a term function t : {0,1}n → {0,1} on D such
that t(x) = ϕ(x), for all x ∈ X.]

If ϕ−1(1) = ∅, then define t(v1, . . . , vn) = 0, and
if ϕ−1(1) = X , then define t(v1, . . . , vn) = 1.

Otherwise, define t(v1, . . . , vn) by

t(v1, . . . , vn) :=
∨

a∈ϕ−1(1)

( ∧
ai = 1

vi

)
.

Let x ∈ X . If ϕ(x) = 1, then t(x) = 1, by construction.
If t(x) = 1, then there exists a ∈ ϕ−1(1) with ai = 1⇒ xi = 1.
Hence ϕ(a) = 1 and a 6 x . As ϕ is order-preserving, we have
ϕ(x) = 1. Hence t(x) = ϕ(x), for all x ∈ X .

26 / 27



Further applications of the Second Duality Theorem

Some exercises for you. In each case, prove that (IC) holds.

(1) [Stone] Let B = 〈{0,1};∨,∧,′ ,0,1〉; then B = ISP(B) is the
class of Boolean algebras. Show that B∼ = 〈{0,1};T〉 yields
a duality on B.

(2) [Priestley] Let L = 〈{0,1};∨,∧〉; then L = ISP(L) is the
class of distributive lattices. Show that
L∼ = 〈{0,1};0,1,6,T〉 yields a duality on L.

(3) [Hofmann–Mislove–Stralka] Let S = 〈{0,1};∧〉; then
S = ISP(S) is the class of meet semilattices. Show that
S∼ = 〈{0,1};∧,0,1,T〉 yields a duality on S.

(4) [Pontryagin] Let Zm = 〈Zm; +,
−,0〉; then Am = ISP(Zm) is

the class of abelian groups of exponent m. Show that
Z∼ = 〈Zm; +,

−,0,T〉 yields a duality on Am.
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