Lecture 2: An invitation to natural dualities

Brian A. Davey

TACL 2015 School
Campus of Salerno (Fisciano)
15-19 June 2015

Outline

Examples of natural dualities

Natural dualities: the basics

Duality theorems

Outline

Examples of natural dualities
Boolean algebras - Stone
Distributive lattices - Priestley
Abelian groups - Pontryagin

Natural dualities: the basics

Duality theorems

Boolean algebras - Stone duality

Boolean algebras

Boolean spaces
(i.e., compact, Hausdorff and a basis of clopen sets)

Boolean algebras - Stone duality

Boolean spaces
(i.e., compact, Hausdorff and a basis of clopen sets)

Boolean algebras - Stone duality

Boolean algebras

Boolean algebra of all finite or cofinite subsets of \mathbb{N}

Boolean spaces
(i.e., compact, Hausdorff and a basis of clopen sets)

0	0	0	0	\cdots	0
1	2	3	4	∞	

Boolean algebras - Stone duality

Boolean algebras

Countable atomless
Boolean algebra
$\mathbf{F}_{\mathcal{B}}(\omega)$

Boolean spaces
(i.e., compact, Hausdorff and a basis of clopen sets)

0000	∞	000	∞	∞	000
0	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{7}{9}$

Boolean algebras - Stone duality

Boolean spaces
$0 \quad 0 \quad 0 \quad 0 \quad 0$

Boolean algebras - Stone duality

Boolean algebras

Boolean spaces

Boolean algebras - Stone duality

Boolean algebras

Boolean spaces

$$
\begin{aligned}
& \mathcal{Z}=I S_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{B}}) \text {, where } \\
& \underset{\sim}{\mathbf{B}}=\langle\{0,1\} ; \mathcal{T}\rangle \\
& E(\mathbf{X}):=\boldsymbol{Z}(\mathbf{X}, \underset{\sim}{\mathbf{B}}) \leqslant \mathbf{B}^{X}
\end{aligned}
$$

Bounded distributive lattices - Priestley duality

Bounded distributive lattices

Priestley spaces

Bounded distributive lattices - Priestley duality

Bounded distributive lattices

Priestley spaces

Bounded distributive lattices - Priestley duality

Bounded distributive lattices
?

Priestley spaces

Bounded distributive lattices - Priestley duality

Bounded distributive lattices

Priestley spaces

Bounded distributive lattices - Priestley duality

Bounded distributive lattices

Priestley spaces

Bounded distributive lattices - Priestley duality

Bounded distributive lattices

$$
\begin{aligned}
& \mathcal{D}=\operatorname{ISP}(\underline{\mathbf{D}}), \text { where } \\
& \underline{\mathbf{D}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle \\
& D(\mathbf{A}):=\mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \leqslant{\underset{\sim}{\mathbf{D}}}^{A}
\end{aligned}
$$

Priestley spaces

$$
\begin{aligned}
& \mathcal{P}=\mathrm{IS}_{\mathrm{C}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{D}}), \text { where } \\
& \underset{\sim}{\mathbf{D}}=\langle\{0,1\} ; \leqslant, \mathcal{T}\rangle
\end{aligned}
$$

$$
0
$$

$$
E(\mathbf{X}):=\mathcal{P}(\mathbf{X}, \underline{\mathbf{D}}) \leqslant \underline{\mathbf{D}}^{X}
$$

Abelian groups - Pontryagin duality

Abelian groups

Compact top. abelian groups (i.e., compact, Hausdorff and - and ${ }^{-1}$ continuous)

Abelian groups - Pontryagin duality

Abelian groups

Compact top. abelian groups

$$
\underset{\sim}{\mathbf{T}}=\left\langle T ; \cdot,^{-1}, 1, \mathcal{T}\right\rangle
$$

The circle group

Abelian groups - Pontryagin duality

Abelian groups

Compact top. abelian groups

$$
\mathbf{Z}_{n}^{\mathcal{T}}=\left\langle\mathbb{Z}_{n} ; \oplus_{n}, \ominus_{n}, 0, \mathcal{T}\right\rangle
$$

Abelian groups - Pontryagin duality

Abelian groups

Compact top. abelian groups

$$
D(\mathbf{A}) \longleftarrow D(\mathbf{B})
$$

Abelian groups - Pontryagin duality

Abelian groups

Compact top. abelian groups

$$
D(\mathbf{A}) \longleftrightarrow D(\mathbf{B})
$$

Abelian groups - Pontryagin duality

Abelian groups

Compact top. abelian groups

$$
\begin{aligned}
& \mathcal{X}=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{T}}), \text { where } \\
& \mathbf{T}=\left\langle T ; \cdot{ }^{-1}, \mathbf{1}, \mathcal{T}\right\rangle
\end{aligned}
$$

$$
E(\mathbf{X}):=X(\mathbf{X}, \mathbf{T}) \leqslant \mathbf{T}^{X}
$$

Generalising to natural dualities: "why bother?"

Generalising to natural dualities: "why bother?"

Let $\underline{\mathbf{M}}=\langle M ; F\rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\mathbf{M}=\langle M ; G, R, \mathcal{T}\rangle$ be the corresponding topological structure, $\underset{\sim}{\mathbf{B}}, \underset{\sim}{\mathbf{D}}$ or $\underset{\sim}{\mathbf{T}}$.

Generalising to natural dualities: "why bother?"

Let $\underline{\mathbf{M}}=\langle M ; F\rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underset{\sim}{\mathbf{M}}=\langle M ; \boldsymbol{G}, R, \mathcal{T}\rangle$ be the corresponding topological structure, $\underset{\sim}{\mathbf{B}}, \underset{\sim}{\mathbf{D}}$ or $\underset{\sim}{\mathbf{T}}$.

- A duality for $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ gives a uniform way to represent each algebra $\mathbf{A} \in \mathcal{A}$ as an algebra of continuous functions.

Generalising to natural dualities: "why bother?"

Let $\underline{\mathbf{M}}=\langle M ; F\rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underline{\mathbf{M}}=\langle M ; \boldsymbol{G}, R, \mathcal{T}\rangle$ be the corresponding topological structure, $\underset{\sim}{\mathbf{B}}, \underset{\sim}{\mathbf{D}}$ or $\underset{\sim}{\mathbf{T}}$.

- A duality for $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ gives a uniform way to represent each algebra $\mathbf{A} \in \mathcal{A}$ as an algebra of continuous functions.
- If we have a full duality and have axiomatised the class $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{M}})$, we can find examples of algebras in \mathcal{A} by simply constructing objects in X.

Generalising to natural dualities: "why bother?"

Let $\underline{\mathbf{M}}=\langle M ; F\rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underline{\mathbf{M}}=\langle M ; \boldsymbol{G}, R, \mathcal{T}\rangle$ be the corresponding topological structure, $\underset{\sim}{\mathbf{B}}, \underset{\sim}{\mathbf{D}}$ or $\underset{\sim}{\mathbf{T}}$.

- A duality for $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ gives a uniform way to represent each algebra $\mathbf{A} \in \mathcal{A}$ as an algebra of continuous functions.
- If we have a full duality and have axiomatised the class $\mathcal{X}:=I \mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{M}})$, we can find examples of algebras in \mathcal{A} by simply constructing objects in X.
- Some dualities have the powerful property of being "logarithmic"-they turn products into sums; e.g., in both \mathcal{B} and \mathcal{D} we have $D(\mathbf{A} \times \mathbf{B}) \cong D(\mathbf{A}) \dot{\cup} D(\mathbf{B})$.

Generalising to natural dualities: "why bother?"

- Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathcal{X}. For example,

Generalising to natural dualities: "why bother?"

- Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathcal{X}. For example,
(1) free algebras in \mathcal{A} are easily described via their duals in \mathcal{X},

Generalising to natural dualities: "why bother?"

- Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathcal{X}. For example,
(1) free algebras in \mathcal{A} are easily described via their duals in \boldsymbol{X},
(2) while a coproduct $\mathbf{A} * \mathbf{B}$ is often difficult to describe, its dual, $D(\mathbf{A} * \mathbf{B})$, is simply the cartesian product $D(\mathbf{A}) \times D(\mathbf{B})$,

Generalising to natural dualities: "why bother?"

- Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathcal{X}. For example,
(1) free algebras in \mathcal{A} are easily described via their duals in \boldsymbol{X},
(2) while a coproduct $\mathbf{A} * \mathbf{B}$ is often difficult to describe, its dual, $D(\mathbf{A} * \mathbf{B})$, is simply the cartesian product $D(\mathbf{A}) \times D(\mathbf{B})$,
(3) congruence lattices in \mathcal{A} may be studied by looking at lattices of closed substructures in \mathcal{X},

Generalising to natural dualities: "why bother?"

- Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathcal{X}. For example,
(1) free algebras in \mathcal{A} are easily described via their duals in \boldsymbol{X},
(2) while a coproduct $\mathbf{A} * \mathbf{B}$ is often difficult to describe, its dual, $D(\mathbf{A} * \mathbf{B})$, is simply the cartesian product $D(\mathbf{A}) \times D(\mathbf{B})$,
(3) congruence lattices in \mathcal{A} may be studied by looking at lattices of closed substructures in \mathcal{X},
(4) injective algebras in \mathcal{A} may be characterised by first studying projective structures in \boldsymbol{X},

Generalising to natural dualities: "why bother?"

- Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathcal{X}. For example,
(1) free algebras in \mathcal{A} are easily described via their duals in \mathcal{X},
(2) while a coproduct $\mathbf{A} * \mathbf{B}$ is often difficult to describe, its dual, $D(\mathbf{A} * \mathbf{B})$, is simply the cartesian product $D(\mathbf{A}) \times D(\mathbf{B})$,
(3) congruence lattices in \mathcal{A} may be studied by looking at lattices of closed substructures in \mathcal{X},
(4) injective algebras in \mathcal{A} may be characterised by first studying projective structures in \boldsymbol{X},
(5) algebraically closed and existentially closed algebras may be described via their duals.

Some observations on \mathcal{B}, \mathcal{D} and \mathcal{A}

For the functors D and E to be well defined, we need the algebras $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$ and the corresponding topological structures $\underset{\sim}{B}, \underset{\sim}{\mathbf{D}}$ and $\underset{\sim}{T}$ to be compatible.

Some observations on \mathcal{B}, \mathcal{D} and \mathcal{A}

For the functors D and E to be well defined, we need the algebras $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$ and the corresponding topological structures $\underset{\sim}{B}, \underset{\sim}{D}$ and $\underset{\sim}{T}$ to be compatible.
Let $\underline{\mathbf{M}}=\langle M ; F\rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underline{\mathbf{M}}=\langle M ; \boldsymbol{G}, R, \mathcal{T}\rangle$ be the corresponding topological structure, $\underset{\sim}{\mathbf{B}}, \mathbf{\sim}$ or $\underset{\sim}{\mathbf{T}}$.
Define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ and $\mathcal{X}:=\mathrm{IS}_{\mathbf{c}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{M}})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$.

Some observations on \mathcal{B}, \mathcal{D} and \mathcal{A}

For the functors D and E to be well defined, we need the algebras $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$ and the corresponding topological structures $\underset{\sim}{B}, \underset{\sim}{\mathbf{D}}$ and $\underset{\sim}{\mathbf{T}}$ to be compatible.
Let $\underline{\mathbf{M}}=\langle M ; F\rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underline{\mathbf{M}}=\langle M ; \boldsymbol{G}, R, \mathcal{T}\rangle$ be the corresponding topological structure, $\underset{\sim}{\mathbf{B}}, \underset{\sim}{\mathbf{D}}$ or $\underset{\sim}{\mathbf{T}}$.
Define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ and $\mathcal{X}:=\mathrm{IS}_{\mathbf{c}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{M}})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$.

Since we define $D(\mathbf{A}):=\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ and $E(\mathbf{X}):=\mathcal{X}(\mathbf{X}, \underset{\sim}{\mathbf{M}})$, in order to have $D(\mathbf{A}) \in I \mathrm{~S}_{\mathrm{c}} \mathrm{P}^{+}(\underline{\mathbf{M}})$ and $E(\mathbf{X}) \in \mathrm{ISP}(\underline{\mathbf{M}})$, we need

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ to be a topologically closed substructure of \mathbf{M}^{A}, and

Some observations on \mathcal{B}, \mathcal{D} and \mathcal{A}

For the functors D and E to be well defined, we need the algebras $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and \mathbf{T} and the corresponding topological structures $\underset{\sim}{\mathbf{B}}, \underset{\sim}{\mathbf{D}}$ and $\underset{\sim}{\mathbf{T}}$ to be compatible.
Let $\underline{\mathbf{M}}=\langle M ; F\rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underset{\mathbf{M}}{\boldsymbol{\sim}}=\langle M ; \boldsymbol{G}, R, \mathcal{T}\rangle$ be the corresponding topological structure, $\underset{\sim}{\mathrm{B}}, \mathrm{D}$ or T .
Define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ and $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{M}})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$.

Since we define $D(\mathbf{A}):=\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ and $E(\mathbf{X}):=\boldsymbol{X}(\mathbf{X}, \underline{\mathbf{M}})$, in order to have $D(\mathbf{A}) \in \mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\mathbf{M})$ and $E(\mathbf{X}) \in \operatorname{ISP}(\mathbf{M})$, we need

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ to be a topologically closed substructure of $\mathbf{M}^{\boldsymbol{A}}$, and
- $X(\mathbf{X}, \underset{\sim}{\mathbf{M}})$ to be a subalgebra of $\underline{\mathbf{M}}^{X}$.

Some observations

Let $\underline{\mathbf{M}}=\langle M ; F\rangle$, let $\mathbf{M}=\langle M ; G, R, \mathcal{T}\rangle$, define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ and $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{M}})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$. We need $\underline{\mathbf{M}}$ and $\underset{\sim}{\mathbf{M}}$ to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of \mathbf{M}^{A}, and
- $\boldsymbol{X}(\mathbf{X}, \mathbf{M})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.

Some observations

Let $\mathbf{M}=\langle\boldsymbol{M} ; \boldsymbol{F}\rangle$, let $\mathbf{M}=\langle M ; \boldsymbol{G}, R, \mathcal{T}\rangle$, define $\mathcal{A}:=\operatorname{ISP}(\mathbf{M})$ and $\boldsymbol{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\mathbf{M}}{\mathbf{M}})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \boldsymbol{X}$. We need $\underline{\mathbf{M}}$ and $\underset{\sim}{\mathbf{M}}$ to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of $\mathbf{M}^{\boldsymbol{A}}$, and
- $X(\mathbf{X}, \mathbf{M})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
- $\mathcal{A}(\mathbf{A}, \mathbf{M})$ will be topologically closed in M^{A}, provided the topology on M is Hausdorff and the operations in F are continuous.

Some observations

Let $\mathbf{M}=\langle\boldsymbol{M} ; \boldsymbol{F}\rangle$, let $\mathbf{M}=\langle M ; \boldsymbol{G}, R, \mathcal{T}\rangle$, define $\mathcal{A}:=\operatorname{ISP}(\mathbf{M})$ and $\boldsymbol{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\mathbf{M}}{)})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \boldsymbol{X}$. We need $\underline{\mathbf{M}}$ and $\underset{\sim}{\mathbf{M}}$ to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of $\mathbf{M}^{\boldsymbol{A}}$, and
- $X(\mathbf{X}, \mathbf{M})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
- $\mathcal{A}(\mathbf{A}, \mathbf{M})$ will be topologically closed in M^{A}, provided the topology on M is Hausdorff and the operations in F are continuous. (If \mathbf{M} is compact, then so is $\mathcal{A}(\mathbf{A}, \mathbf{M})$.)

Some observations

Let $\underline{\mathbf{M}}=\langle\boldsymbol{M} ; F\rangle$, let $\mathbf{M}=\langle M ; G, R, \mathcal{T}\rangle$, define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ and $\left.\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+} \underset{\sim}{\mathbf{M}}\right)$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$. We need $\underline{\mathbf{M}}$ and $\underset{\sim}{\mathbf{M}}$ to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of \mathbf{M}^{A}, and
- $\mathcal{X}(\mathbf{X}, \mathbf{M})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be topologically closed in M^{A}, provided the topology on M is Hausdorff and the operations in F are continuous. (If $\underset{\sim}{\mathbf{M}}$ is compact, then so is $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$.)
- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be closed under the operations in G provided each (n-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^{n}$ to $\underline{\mathbf{M}}$.

Some observations

Let $\underline{\mathbf{M}}=\langle\boldsymbol{M} ; F\rangle$, let $\mathbf{M}=\langle M ; G, R, \mathcal{T}\rangle$, define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ and $\mathcal{X}:=\mathrm{IS}_{\mathrm{C}} \mathrm{P}^{+}(\underset{\mathbf{M}}{\mathbf{M}})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$. We need $\underline{\mathbf{M}}$ and $\underset{\sim}{\mathbf{M}}$ to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of \mathbf{M}^{A}, and
- $\mathcal{X}(\mathbf{X}, \mathbf{M})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be topologically closed in M^{A}, provided the topology on M is Hausdorff and the operations in F are continuous. (If $\underset{\sim}{\mathbf{M}}$ is compact, then so is $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$.)
- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be closed under the operations in G provided each (n-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^{n}$ to $\underline{\mathbf{M}}$.
- $\boldsymbol{X}(\mathbf{X}, \underline{\mathbf{M}})$ will be a subalgebra of $\underline{\mathbf{M}}^{X}$ provided
- each (n-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^{n}$ to $\underline{\mathbf{M}}$,
- each (n-ary) relation $r \in R$ is a subuniverse of $\underline{\mathbf{M}}^{n}$, and
- each operation in F is continuous.

Some observations

Let $\underline{\mathbf{M}}=\langle\boldsymbol{M} ; F\rangle$, let $\mathbf{M}=\langle M ; G, R, \mathcal{T}\rangle$, define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ and $\mathcal{X}:=\mathrm{IS}_{\mathrm{C}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{M}})$, and $\operatorname{let} \mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$. We need $\underline{\mathbf{M}}$ and $\underset{\sim}{\mathbf{M}}$ to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of \mathbf{M}^{A}, and
- $\boldsymbol{X}(\mathbf{X}, \mathbf{M})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be topologically closed in M^{A}, provided the topology on M is Hausdorff and the operations in F are continuous. (If $\underset{\sim}{\mathbf{M}}$ is compact, then so is $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$.)
- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be closed under the operations in G provided each (n-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^{n}$ to $\underline{\mathbf{M}}$.
- $X(\mathbf{X}, \underset{\sim}{\mathbf{M}})$ will be a subalgebra of $\underline{\mathbf{M}}^{X}$ provided
- each (n-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^{n}$ to $\underline{\mathbf{M}}$,
- each (n-ary) relation $r \in R$ is a subuniverse of $\underline{\mathbf{M}}^{n}$, and
- each operation in F is continuous.

Some observations

Let $\mathbf{M}=\langle\boldsymbol{M} ; \boldsymbol{F}\rangle$, let $\mathbf{M}=\langle M ; \mathcal{G}, R, \mathcal{T}\rangle$, define $\mathcal{A}:=\operatorname{ISP}(\mathbf{M})$ and $\boldsymbol{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{M}})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$. We need $\underline{\mathbf{M}}$ and $\underset{\sim}{\mathbf{M}}$ to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of \mathbf{M}^{A}, and
- $X(\mathbf{X}, \mathbf{M})$ is a subalgebra of \mathbf{M}^{X}.
- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be topologically closed in M^{A}, provided the topology on M is Hausdorff and the operations in F are continuous. (If $\underset{\sim}{M}$ is compact, then so is $\mathcal{A}(\mathbf{A}, \mathbf{M})$.)
- $\mathcal{A}(\mathbf{A}, \mathbf{M})$ will be closed under the operations in G provided each (n-ary) $g \in G$ is a homomorphism from \mathbf{M}^{n} to \mathbf{M}.
- $X(\mathbf{X}, \mathbf{M})$ will be a subalgebra of \mathbf{M}^{X} provided
- each (n-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^{n}$ to \mathbf{M},
- each (n-ary) relation $r \in R$ is a subuniverse of $\underline{\mathbf{M}}^{n}$, and
- each operation in F is continuous.

Some observations

Let $\mathbf{M}=\langle M ; F\rangle$, let $\mathbf{M}=\langle M ; G, R, \mathcal{T}\rangle$, define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ and $\mathcal{X}:=\mathrm{IS}_{\mathrm{C}} \mathrm{P}^{+}(\underset{\mathbf{M}}{\mathbf{)}}$), and $\operatorname{let} \mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$. We need $\underline{\mathbf{M}}$ and $\underset{\sim}{\mathbf{M}}$ to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of \mathbf{M}^{A}, and
- $\boldsymbol{X}(\mathbf{X}, \mathbf{M})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be topologically closed in M^{A}, provided the topology on M is Hausdorff and the operations in F are continuous. (If $\underset{\sim}{\mathbf{M}}$ is compact, then so is $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$.)
- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be closed under the operations in G provided each (n-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^{n}$ to $\underline{\mathbf{M}}$.
- $\boldsymbol{X}(\mathbf{X}, \underline{\mathbf{M}})$ will be a subalgebra of $\underline{\mathbf{M}}^{X}$ provided
- each (n-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^{n}$ to $\underline{\mathbf{M}}$,
- each (n-ary) relation $r \in R$ is a subuniverse of $\underline{\mathbf{M}}^{n}$, and
- each operation in F is continuous.

When these highlighted conditions hold, we say that g and r are compatible with or algebraic over \mathbf{M}.

Outline

Examples of natural dualities

Natural dualities: the basics
Alter egos
Categories, functors and natural transformations The basic definitions: duality, full duality, strong duality Further examples

Duality theorems

Natural dualities: alter egos

Generalizing our examples, we start with an algebra $\underline{\mathbf{M}}$ and wish to find a dual category for the prevariety $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$.

Natural dualities: alter egos

Generalizing our examples, we start with an algebra \mathbf{M} and wish to find a dual category for the prevariety $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$.

An alter ego of an algebra
A structure $\underset{\sim}{\mathbf{M}}=\langle\boldsymbol{M} ; \mathbf{G}, \quad, R, \mathcal{T}\rangle$ is an alter ego of $\underline{\mathbf{M}}$ if it is compatible with $\underline{\mathbf{M}}$, that is,

Natural dualities: alter egos

Generalizing our examples, we start with an algebra \mathbf{M} and wish to find a dual category for the prevariety $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$.

An alter ego of an algebra
A structure $\underset{\sim}{\mathbf{M}}=\langle\boldsymbol{M} ; \mathbf{G}, \quad, R, \mathcal{T}\rangle$ is an alter ego of $\underline{\mathbf{M}}$ if it is compatible with $\underline{\mathbf{M}}$, that is,

- G is a set of operations on M, each of which is a homomorphism with respect to $\underline{\mathbf{M}}$,
- R is a set of relations on M, each of which is a subuniverse of the appropriate power of $\underline{\mathbf{M}}$, and
- \mathcal{T} is a compact Hausdorff topology on M with respect to which the operations on $\underline{\mathbf{M}}$ are continuous.

Natural dualities: alter egos

Generalizing our examples, we start with an algebra \mathbf{M} and wish to find a dual category for the prevariety $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$.

An alter ego of an algebra
A structure $\underset{\sim}{\mathbf{M}}=\langle\mathbf{M} ; \mathbf{G}, H, R, \mathcal{T}\rangle$ is an alter ego of $\underline{\mathbf{M}}$ if it is compatible with \mathbf{M}, that is,

- G is a set of operations on M, each of which is a homomorphism with respect to \mathbf{M},
- H is a set of partial operations on M, each of which is a homomorphism with respect to \mathbf{M},
- R is a set of relations on M, each of which is a subuniverse of the appropriate power of $\underline{\mathbf{M}}$, and
- \mathcal{T} is a compact Hausdorff topology on M with respect to which the operations on $\underline{\mathbf{M}}$ are continuous.

Natural dualities: categories and functors

Let $\mathbf{M}=\langle M ; G, H, R, \mathcal{T}\rangle$ be an alter ego of $\underline{\mathbf{M}}$.

Natural dualities: categories and functors

Let $\mathbf{M}=\langle\boldsymbol{M} ; G, H, R, \mathcal{T}\rangle$ be an alter ego of $\underline{\mathbf{M}}$.
The categories \mathcal{A} and \mathcal{X}

- Define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$: the algebraic category of interest.
- Define $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\mathbf{M})$: the potential dual category for \mathcal{A}.

Natural dualities: categories and functors

Let $\underset{\sim}{\mathbf{M}}=\langle\boldsymbol{M} ; G, H, R, \mathcal{T}\rangle$ be an alter ego of $\underline{\mathbf{M}}$.
The categories \mathcal{A} and \mathcal{X}

- Define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$: the algebraic category of interest.
- Define $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underset{\sim}{\mathbf{M}})$: the potential dual category for \mathcal{A}.

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \rightarrow \mathcal{X}$ and $E: \mathcal{X} \rightarrow \mathcal{A}$.

Natural dualities: categories and functors

Let $\underset{\sim}{\mathbf{M}}=\langle\boldsymbol{M} ; G, H, R, \mathcal{T}\rangle$ be an alter ego of $\underline{\mathbf{M}}$.
The categories \mathcal{A} and \mathcal{X}

- Define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$: the algebraic category of interest.
- Define $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\mathbf{M})$: the potential dual category for \mathcal{A}.

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \rightarrow \mathcal{X}$ and $E: \mathcal{X} \rightarrow \mathcal{A}$.
- For each algebra \mathbf{A} in \mathcal{A}, the underlying set of $D(\mathbf{A})$ is the set hom $(\mathbf{A}, \underline{\mathbf{M}})$ of all homomorphisms from \mathbf{A} into $\underline{\mathbf{M}}$, and $D(\mathbf{A})$ is a topologically closed substructure of $\mathbf{M}^{\boldsymbol{A}}$.

Natural dualities: categories and functors

Let $\underset{\sim}{\mathbf{M}}=\langle\boldsymbol{M} ; G, H, R, \mathcal{T}\rangle$ be an alter ego of $\underline{\mathbf{M}}$.
The categories \mathcal{A} and \mathcal{X}

- Define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$: the algebraic category of interest.
- Define $\mathcal{X}:=\mathrm{IS}_{\mathrm{C}} \mathrm{P}^{+}(\mathbf{M})$: the potential dual category for \mathcal{A}.

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \rightarrow \mathcal{X}$ and $E: \mathcal{X} \rightarrow \mathcal{A}$.
- For each algebra \mathbf{A} in \mathcal{A}, the underlying set of $D(\mathbf{A})$ is the set hom $(\mathbf{A}, \underline{\mathbf{M}})$ of all homomorphisms from \mathbf{A} into $\underline{\mathbf{M}}$, and $D(\mathbf{A})$ is a topologically closed substructure of $\mathbf{M}^{\boldsymbol{A}}$.

Natural dualities: categories and functors

Let $\underset{\sim}{\mathbf{M}}=\langle\boldsymbol{M} ; G, H, R, \mathcal{T}\rangle$ be an alter ego of $\underline{\mathbf{M}}$.
The categories \mathcal{A} and \mathcal{X}

- Define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$: the algebraic category of interest.
- Define $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\mathbf{M})$: the potential dual category for \mathcal{A}.

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \rightarrow \mathcal{X}$ and $E: \mathcal{X} \rightarrow \mathcal{A}$.
- For each algebra \mathbf{A} in \mathcal{A}, the underlying set of $D(\mathbf{A})$ is the set hom $(\mathbf{A}, \underline{\mathbf{M}})$ of all homomorphisms from \mathbf{A} into \mathbf{M}, and $D(\mathbf{A})$ is a topologically closed substructure of $\mathbf{M}^{\boldsymbol{A}}$.
- For each structure \mathbf{X} in \mathcal{X}, the underlying set of $E(\mathbf{X})$ is the set hom (\mathbf{X}, \mathbf{M}) of all continuous homomorphisms from \mathbf{X} into \mathbf{M}, and $E(\mathbf{X})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.

Natural dualities: embeddings

Natural embeddings

For all $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$, there are embeddings

$$
\begin{aligned}
e_{\mathbf{A}}: & \mathbf{A} \rightarrow E D(\mathbf{A})=X(\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}), \mathbf{M}), \quad \text { given by } \\
& (\forall a \in A) e_{\mathbf{A}}(a): \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \rightarrow \mathbf{M} \text { with } \\
& (\forall x \in \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})) e_{\mathbf{A}}(a)(x):=x(a),
\end{aligned}
$$

Natural dualities: embeddings

Natural embeddings

For all $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$, there are embeddings

$$
\begin{aligned}
e_{\mathbf{A}}: & \mathbf{A} \rightarrow E D(\mathbf{A})=\mathcal{X}(\mathcal{A}(\mathbf{A}, \mathbf{M}), \mathbf{M}), \quad \text { given by } \\
& (\forall a \in A) e_{\mathbf{A}}(a): \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \rightarrow \mathbf{M} \text { with } \\
& (\forall x \in \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})) e_{\mathbf{A}}(a)(x):=x(a),
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon_{\mathbf{X}}: & \mathbf{X} \rightarrow D E(\mathbf{X})=\mathcal{A}(\boldsymbol{X}(\mathbf{X}, \underset{\sim}{\mathbf{M}}), \mathbf{M}), \quad \text { given by } \\
& (\forall x \in X) \varepsilon_{\mathbf{X}}(x): \mathcal{X}(\mathbf{X}, \underset{\mathbf{M}}{\mathbf{M}}) \rightarrow \underline{\mathbf{M}} \text { with } \\
& (\forall \alpha \in \boldsymbol{X}(\mathbf{X}, \underset{\sim}{\mathbf{M}})) \varepsilon_{\mathbf{X}}(x)(\alpha):=\alpha(x)
\end{aligned}
$$

Natural dualities: embeddings

Natural embeddings

For all $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$, there are embeddings

$$
\begin{aligned}
e_{\mathbf{A}}: & \mathbf{A} \rightarrow E D(\mathbf{A})=\mathcal{X}(\mathcal{A}(\mathbf{A}, \mathbf{M}), \mathbf{M}), \quad \text { given by } \\
& (\forall a \in A) e_{\mathbf{A}}(a): \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \rightarrow \mathbf{M} \text { with } \\
& (\forall x \in \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})) e_{\mathbf{A}}(a)(x):=x(a),
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon_{\mathbf{X}}: & \mathbf{X} \rightarrow D E(\mathbf{X})=\mathcal{A}(\boldsymbol{X}(\mathbf{X}, \underset{\sim}{\mathbf{M}}), \mathbf{M}), \quad \text { given by } \\
& (\forall x \in X) \varepsilon_{\mathbf{X}}(x): \mathcal{X}(\mathbf{X}, \underset{\mathbf{M}}{\mathbf{M}}) \rightarrow \underline{\mathbf{M}} \text { with } \\
& (\forall \alpha \in \boldsymbol{X}(\mathbf{X}, \underset{\sim}{\mathbf{M}})) \varepsilon_{\mathbf{X}}(x)(\alpha):=\alpha(x)
\end{aligned}
$$

These embeddings yield natural transformations

$$
e: \operatorname{id}_{\mathcal{A}} \rightarrow E D \quad \text { and } \quad \varepsilon: \operatorname{id}_{x} \rightarrow D E
$$

and $\langle D, E, e, \varepsilon\rangle$ is a dual adjunction between \mathcal{A} and \mathcal{X}.

Natural dualities: embeddings

Natural embeddings

For all $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$, there are embeddings

$$
\begin{aligned}
e_{\mathbf{A}}: & \mathbf{A} \rightarrow E D(\mathbf{A})=\mathcal{X}(\mathcal{A}(\mathbf{A}, \mathbf{M}), \mathbf{M}), \quad \text { given by } \\
& (\forall a \in A) e_{\mathbf{A}}(a): \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \rightarrow \mathbf{M} \text { with } \\
& (\forall x \in \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})) e_{\mathbf{A}}(a)(x):=x(a),
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon_{\mathbf{X}}: & \mathbf{X} \rightarrow D E(\mathbf{X})=\mathcal{A}(\boldsymbol{X}(\mathbf{X}, \underset{\sim}{\mathbf{M}}), \mathbf{M}), \quad \text { given by } \\
& (\forall x \in X) \varepsilon_{\mathbf{X}}(x): \mathcal{X}(\mathbf{X}, \underset{\mathbf{M}}{\mathbf{M}}) \rightarrow \underline{\mathbf{M}} \text { with } \\
& (\forall \alpha \in \boldsymbol{X}(\mathbf{X}, \underset{\sim}{\mathbf{M}})) \varepsilon_{\mathbf{X}}(x)(\alpha):=\alpha(x)
\end{aligned}
$$

These embeddings yield natural transformations

$$
e: \operatorname{id}_{\mathcal{A}} \rightarrow E D \quad \text { and } \quad \varepsilon: \operatorname{id}_{x} \rightarrow D E
$$

and $\langle D, E, e, \varepsilon\rangle$ is a dual adjunction between \mathcal{A} and \boldsymbol{X}.

A dual adjunction

- For $u: \mathbf{A} \rightarrow \mathbf{B}$ and $\varphi: \mathbf{X} \rightarrow \mathbf{Y}$, the two squares commute.
- $\mathcal{A}(\mathbf{A}, E(\mathbf{X})) \cong \mathcal{X}(\mathbf{X}, D(\mathbf{A}))$ via the triangles:

$$
u=E\left(D(u) \circ \varepsilon_{\mathbf{X}}\right) \circ e_{\mathbf{A}} \text { and } \varphi=D\left(E(\varphi) \circ e_{\mathbf{A}}\right) \circ \varepsilon_{\mathbf{X}} .
$$

Duality

If $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ is surjective and therefore an isomorphism, for all \mathbf{A} in \mathcal{A}, then we say that \mathbf{M} yields a duality on \mathcal{A} (or that \mathbf{M} dualises \mathbf{M}).

Duality

If $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ is surjective and therefore an isomorphism, for all \mathbf{A} in \mathcal{A}, then we say that $\underset{\sim}{\mathbf{M}}$ yields a duality on \mathcal{A} (or that $\underset{\sim}{\mathbf{M}}$ dualises \mathbf{M}).

Equivalently, \mathbf{M} yields a duality on \mathcal{A} if the dual adjunction $\langle D, E, e, \varepsilon\rangle$ is a dual category equivalence between \mathcal{A} and a full subcategory of X.

Full duality

If, in addition, $\varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow D E(\mathbf{X})$ is a surjection and therefore an isomorphism, for all \mathbf{X} in \mathcal{X}, then \mathbf{M} yields a full duality on \mathcal{A} (or $\underset{\sim}{\mathbf{M}}$ fully dualises $\underline{\mathbf{M}}$).

Equivalently, \mathbf{M} yields a full duality on \mathcal{A} if the dual adjunction $\langle D, E, e, \varepsilon\rangle$ is a dual category equivalence between \mathcal{A} and \mathcal{X}.

Embeddings, injectivity and strong duality

Let \mathbf{M} be any alter ego of an algebra \mathbf{M}, and let

$$
D: \mathcal{A} \rightarrow \mathcal{X} \quad \text { and } \quad E: X \rightarrow \mathcal{A}
$$

be the induced hom-functors.

Embeddings, injectivity and strong duality

Let \mathbf{M} be any alter ego of an algebra \mathbf{M}, and let

$$
D: \mathcal{A} \rightarrow \mathcal{X} \quad \text { and } \quad E: X \rightarrow \mathcal{A}
$$

be the induced hom-functors.
It is easy to see that:

- D and E send surjections to embeddings,

Embeddings, injectivity and strong duality

Let \mathbf{M} be any alter ego of an algebra $\underline{\mathbf{M}}$, and let

$$
D: \mathcal{A} \rightarrow \mathcal{X} \quad \text { and } \quad E: \mathcal{X} \rightarrow \mathcal{A}
$$

be the induced hom-functors.
It is easy to see that:

- D and E send surjections to embeddings,
- D sends embeddings in \mathcal{A} to surjections in \mathcal{X} if and only if $\underline{\mathbf{M}}$ is injective in \mathcal{A}, and

Embeddings, injectivity and strong duality

Let \mathbf{M} be any alter ego of an algebra $\underline{\mathbf{M}}$, and let

$$
D: \mathcal{A} \rightarrow \mathcal{X} \quad \text { and } \quad E: X \rightarrow \mathcal{A}
$$

be the induced hom-functors.
It is easy to see that:

- D and E send surjections to embeddings,
- D sends embeddings in \mathcal{A} to surjections in \mathcal{X} if and only if $\underline{\mathbf{M}}$ is injective in \mathcal{A}, and
- E sends embeddings in \mathcal{X} to surjections in \mathcal{A} if and only if \mathbb{M} is injective in \mathcal{X}.

Embeddings, injectivity and strong duality

Let \mathbf{M} be any alter ego of an algebra \mathbf{M}, and let

$$
D: \mathcal{A} \rightarrow \mathcal{X} \quad \text { and } \quad E: X \rightarrow \mathcal{A}
$$

be the induced hom-functors.
It is easy to see that:

- D and E send surjections to embeddings,
- D sends embeddings in \mathcal{A} to surjections in \mathcal{X} if and only if $\underline{\mathbf{M}}$ is injective in \mathcal{A}, and
- E sends embeddings in \mathcal{X} to surjections in \mathcal{A} if and only if $\underset{\sim}{\mathbb{M}}$ is injective in \mathcal{X}.

Strong duality
If \mathbf{M} fully dualises $\underline{\mathbf{M}}$ and \mathbf{M} is injective in \mathcal{X} (so that surjections in \mathcal{A} correspond to embeddings in \mathcal{X}), we say that \mathbb{M} yields a strong duality on \mathcal{A} (or that \mathbf{M} strongly dualises \mathbf{M}).

Further examples

- All three of our original examples - Stone duality, Priestley duality and Pontryagin duality - are examples of strong dualities.

Further examples

- All three of our original examples - Stone duality, Priestley duality and Pontryagin duality - are examples of strong dualities.
- Every finite lattice-based algebra admits a strong duality. [Davey, Werner 1980 and Clark, Davey 1995]

Further examples

- All three of our original examples - Stone duality, Priestley duality and Pontryagin duality - are examples of strong dualities.
- Every finite lattice-based algebra admits a strong duality. [Davey, Werner 1980 and Clark, Davey 1995]
- The unary algebra \subset ค admits a duality, but not a full duality. [Hyndman, Willard 2000]

Further examples

- All three of our original examples - Stone duality, Priestley duality and Pontryagin duality - are examples of strong dualities.
- Every finite lattice-based algebra admits a strong duality. [Davey, Werner 1980 and Clark, Davey 1995]
- The unary algebra \subset O not a full duality. [Hyndman, Willard 2000]
- There is an example of a three-element algebra that admits a full duality that can not be upgraded to a strong duality. [Pitkethly 2009]

Further examples

- All three of our original examples - Stone duality, Priestley duality and Pontryagin duality - are examples of strong dualities.
- Every finite lattice-based algebra admits a strong duality. [Davey, Werner 1980 and Clark, Davey 1995]
- The unary algebra \subset ค admits a duality, but not a full duality. [Hyndman, Willard 2000]
- There is an example of a three-element algebra that admits a full duality that can not be upgraded to a strong duality. [Pitkethly 2009]
- The two-element implication algebra $\mathbf{I}:=\langle\{0,1\} ; \rightarrow\rangle$ does not admit a natural duality. [Davey, Werner 1980]

Outline

Examples of natural dualities

Natural dualities: the basics

Duality theorems
Duals of free algebras
(IC) and the Second Duality Theorem
Priestley duality via the Second Duality Theorem
Further applications of the Second Duality Theorem

For duality, relations will do

- Let $\underline{\mathbf{M}}=\langle M ; F\rangle$ be a finite algebra,
- let $\underset{\sim}{\mathbf{M}}=\langle\boldsymbol{M} ; G, H, R, \mathcal{T}\rangle$ be an alter ego of $\underline{\mathbf{M}}$, and
- define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ and $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underline{\mathbf{M}})$.

For duality, relations will do

- Let $\underline{\mathbf{M}}=\langle M ; F\rangle$ be a finite algebra,
- let $\underset{\sim}{\mathbf{M}}=\langle M ; G, H, R, \mathcal{T}\rangle$ be an alter ego of $\underline{\mathbf{M}}$, and
- define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ and $\mathcal{X}:=\operatorname{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underline{\mathbf{M}})$.

Recall that to prove that $\underset{\sim}{\mathbf{M}}$ yields a duality on \mathcal{A}, it remains to show that

- for all $\mathbf{A} \in \mathcal{A}$, the evaluation maps $e_{\mathbf{A}}$, for $a \in A$, are the only \mathcal{X}-morphisms from $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ to $\underset{\sim}{\mathbf{M}}$.

For duality, relations will do

- Let $\underline{\mathbf{M}}=\langle M ; F\rangle$ be a finite algebra,
- let $\underset{\sim}{\mathbf{M}}=\langle\boldsymbol{M} ; G, H, R, \mathcal{T}\rangle$ be an alter ego of $\underline{\mathbf{M}}$, and
- define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ and $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\underline{\mathbf{M}})$.

Recall that to prove that $\underset{\sim}{\mathbf{M}}$ yields a duality on \mathcal{A}, it remains to show that

- for all $\mathbf{A} \in \mathcal{A}$, the evaluation maps $e_{\mathbf{A}}$, for $a \in A$, are the only \mathcal{X}-morphisms from $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ to $\underset{\sim}{\mathbf{M}}$.

Lemma (2.1.2)
Let $\underset{\sim}{\mathbf{M}}=\langle M ; \mathcal{G}, H, R, \mathcal{T}\rangle$, define ${\underset{\sim}{\mathbf{M}}}^{\prime}=\left\langle M ; R^{\prime}, \mathcal{T}\right\rangle$ where

$$
R^{\prime}:=R \cup\{\operatorname{graph}(h) \mid h \in G \cup H\}
$$

Then \mathbf{M} yields a duality on \mathcal{A} if and only if \mathbf{M}^{\prime} does.

For duality, relations will do

- Let $\underline{\mathbf{M}}=\langle M ; F\rangle$ be a finite algebra,
- let $\underset{\sim}{\mathbf{M}}=\langle\boldsymbol{M} ; G, H, R, \mathcal{T}\rangle$ be an alter ego of $\underline{\mathbf{M}}$, and
- define $\mathcal{A}:=\operatorname{ISP}(\underline{\mathbf{M}})$ and $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\mathbf{M})$.

Recall that to prove that $\underset{\sim}{\mathbf{M}}$ yields a duality on \mathcal{A}, it remains to show that

- for all $\mathbf{A} \in \mathcal{A}$, the evaluation maps $e_{\mathbf{A}}$, for $a \in A$, are the only \mathcal{X}-morphisms from $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ to $\underset{\sim}{\mathbf{M}}$.

Lemma (2.1.2)
Let $\underset{\sim}{\mathbf{M}}=\langle M ; G, H, R, \mathcal{T}\rangle$, define ${\underset{\sim}{\mathbf{M}}}^{\prime}=\left\langle M ; R^{\prime}, \mathcal{T}\right\rangle$ where

$$
R^{\prime}:=R \cup\{\operatorname{graph}(h) \mid h \in G \cup H\}
$$

Then \mathbf{M} yields a duality on \mathcal{A} if and only if \mathbf{M}^{\prime} does.

- Thus, as far as obtaining a duality is concerned, we can restrict our attention to purely relational alter egos.

Duals of free algebras

- Given a non-empty set S, the set
$\mathrm{F}_{\underline{\mathbf{M}}}(S)=\left\{t: M^{S} \rightarrow M \mid t\right.$ is an S-ary term function on $\left.\underline{\mathbf{M}}\right\}$ is the free S-generated algebra in \mathcal{A} (the projections $\pi_{s}: M^{S} \rightarrow M$, for $s \in S$, are the free generators).

Duals of free algebras

- Given a non-empty set S, the set

$$
\mathbf{F}_{\underline{\mathbf{M}}}(S)=\left\{t: M^{S} \rightarrow M \mid t \text { is an } S \text {-ary term function on } \underline{\mathbf{M}}\right\}
$$

is the free S-generated algebra in \mathcal{A} (the projections $\pi_{s}: M^{S} \rightarrow M$, for $s \in S$, are the free generators).

Lemma (2.2.1)
Let S be a non-empty set. The then dual of $\mathrm{F}_{\underline{\mathrm{M}}}(S)$, namely

$$
D\left(\mathbf{F}_{\underline{\mathbf{M}}}(S)\right)=\mathcal{A}\left(\mathbf{F}_{\underline{\mathbf{M}}}(S), \underline{\mathbf{M}}\right)
$$

is isomorphic in X to \mathbb{M}^{S}.

Duals of free algebras

- Given a non-empty set S, the set

$$
\mathbf{F}_{\underline{\mathbf{M}}}(S)=\left\{t: M^{S} \rightarrow M \mid t \text { is an } S \text {-ary term function on } \underline{\mathbf{M}}\right\}
$$

is the free S-generated algebra in \mathcal{A} (the projections $\pi_{s}: M^{S} \rightarrow M$, for $s \in S$, are the free generators).

Lemma (2.2.1)
Let S be a non-empty set. The then dual of $\boldsymbol{F}_{\underline{M}}(S)$, namely

$$
D\left(\mathbf{F}_{\underline{\mathbf{M}}}(S)\right)=\mathcal{A}\left(\mathbf{F}_{\underline{\mathbf{M}}}(S), \underline{\mathbf{M}}\right)
$$

is isomorphic in X to \mathbb{M}^{S}.

- It is easy to see that every S-ary term function t on $\underline{\mathbf{M}}$ is an X-morphism, i.e., $t:{\underset{\sim}{M}}^{\mathbf{S}} \rightarrow \underset{\sim}{\mathbf{M}}$.

Duals of free algebras

- Given a non-empty set S, the set

$$
\mathbf{F}_{\underline{\mathbf{M}}}(S)=\left\{t: M^{S} \rightarrow M \mid t \text { is an } S \text {-ary term function on } \underline{\mathbf{M}}\right\}
$$

is the free S-generated algebra in \mathcal{A} (the projections $\pi_{s}: M^{S} \rightarrow M$, for $s \in S$, are the free generators).

Lemma (2.2.1)
Let S be a non-empty set. The then dual of $\mathrm{F}_{\underline{\mathrm{M}}}(S)$, namely

$$
D\left(\mathbf{F}_{\underline{\mathbf{M}}}(S)\right)=\mathcal{A}\left(\mathbf{F}_{\underline{\mathbf{M}}}(S), \underline{\mathbf{M}}\right)
$$

is isomorphic in X to \mathbb{M}^{S}.

- It is easy to see that every S-ary term function t on $\underline{\mathbf{M}}$ is an X-morphism, i.e., $t:{\underset{\sim}{M}}^{\mathbf{S}} \rightarrow \underset{\sim}{\mathbf{M}}$.
- If $\underset{\sim}{\mathbb{M}}$ yields a duality on \mathcal{A}, then

$$
\mathrm{F}_{\underline{\mathbf{M}}}(S) \cong E D\left(\mathbf{F}_{\underline{\mathbf{M}}}(S)\right) \cong E\left(\mathbf{M}_{\sim}^{S}\right) \cong \mathcal{X}\left({\underset{\sim}{\mathbf{M}}}^{S}, \underline{\mathbf{M}}\right)
$$

Duals of free algebras

- Given a non-empty set S, the set

$$
\mathbf{F}_{\underline{\mathbf{M}}}(S)=\left\{t: M^{S} \rightarrow M \mid t \text { is an } S \text {-ary term function on } \underline{\mathbf{M}}\right\}
$$

is the free S-generated algebra in \mathcal{A} (the projections $\pi_{s}: M^{S} \rightarrow M$, for $s \in S$, are the free generators).

Lemma (2.2.1)
Let S be a non-empty set. The then dual of $\boldsymbol{F}_{\underline{M}}(S)$, namely

$$
D\left(\boldsymbol{F}_{\underline{\mathbf{M}}}(S)\right)=\mathcal{A}\left(\boldsymbol{F}_{\underline{\mathbf{M}}}(S), \underline{\mathbf{M}}\right)
$$

is isomorphic in X to \mathbb{M}^{S}.

- It is easy to see that every S-ary term function t on $\underline{\mathbf{M}}$ is an X-morphism, i.e., $t:{\underset{\sim}{M}}^{\mathbf{S}} \rightarrow \underset{\sim}{\mathbf{M}}$.
- If $\underset{\sim}{\mathbb{M}}$ yields a duality on \mathcal{A}, then

$$
\boldsymbol{F}_{\underline{\mathbf{M}}}(S) \cong E D\left(\mathbf{F}_{\underline{\mathbf{M}}}(S)\right) \cong E\left(\mathbf{M}^{S}\right) \cong \mathcal{X}\left({\underset{\sim}{\mathbf{M}}}^{S}, \underset{\sim}{\mathbf{M}}\right)
$$

In fact, we have $\mathbf{F}_{\underline{\mathbf{M}}}(S)=X\left({\underset{\sim}{\mathbf{M}}}^{S}, \underset{\sim}{\mathbf{M}}\right)$.

Duals of free algebras

- Given a non-empty set S, the set

$$
\mathbf{F}_{\underline{\mathbf{M}}}(S)=\left\{t: M^{S} \rightarrow M \mid t \text { is an } S \text {-ary term function on } \underline{\mathbf{M}}\right\}
$$

is the free S-generated algebra in \mathcal{A} (the projections $\pi_{s}: M^{S} \rightarrow M$, for $s \in S$, are the free generators).

Lemma (2.2.1)
Let S be a non-empty set. The then dual of $\boldsymbol{F}_{\underline{M}}(S)$, namely

$$
D\left(\boldsymbol{F}_{\underline{\mathbf{M}}}(S)\right)=\mathcal{A}\left(\boldsymbol{F}_{\underline{\mathbf{M}}}(S), \underline{\mathbf{M}}\right)
$$

is isomorphic in X to \mathbb{M}^{S}.

- It is easy to see that every S-ary term function t on $\underline{\mathbf{M}}$ is an X-morphism, i.e., $t:{\underset{\sim}{M}}^{\mathbf{S}} \rightarrow \underset{\sim}{\mathbf{M}}$.
- If $\underset{\sim}{\mathbb{M}}$ yields a duality on \mathcal{A}, then

$$
\boldsymbol{F}_{\underline{\mathbf{M}}}(S) \cong E D\left(\mathbf{F}_{\underline{\mathbf{M}}}(S)\right) \cong E\left(\mathbf{M}^{S}\right) \cong \mathcal{X}\left({\underset{\sim}{\mathbf{M}}}^{S}, \underset{\sim}{\mathbf{M}}\right)
$$

In fact, we have $\mathbf{F}_{\underline{\mathbf{M}}}(S)=X\left({\underset{\sim}{\mathbf{M}}}^{S}, \underset{\sim}{\mathbf{M}}\right)$.

The interpolation condition (IC)

Let $\mathcal{A}_{\text {fin }}$ and $\mathcal{X}_{\text {fin }}$ consist of the finite members of \mathcal{A} and \mathcal{X}.
Lemma (2.2.5)
The following are equivalent:
(i) (IC) for each $n \in \mathbb{N}$ and each substructure \mathbf{X} of \mathbf{M}^{n}, every morphism $\alpha: \mathbf{X} \rightarrow \mathbf{M}$ extends to a term function $t: M^{n} \rightarrow M$ of the algebra \mathbf{M},
(ii) $(\mathrm{INJ})_{\text {fin }}^{+} \underset{\mathcal{M}}{\mathbf{M}}$ is injective in $\mathcal{X}_{\text {fin }}$, and
(CLO) for each $n \in \mathbb{N}$, every morphism $t: \mathbf{M}^{n} \rightarrow \mathbf{M}$ is an n-ary term function on \mathbf{M},
(iii) $\underset{\sim}{\mathbf{M}}$ yields a duality on $\mathcal{A}_{\text {fin }}$ and is injective in $\mathcal{X}_{\text {fin }}$.

The interpolation condition (IC)

Let $\mathcal{A}_{\text {fin }}$ and $\mathcal{X}_{\text {fin }}$ consist of the finite members of \mathcal{A} and \mathcal{X}.
Lemma (2.2.5)
The following are equivalent:
(i) (IC) for each $n \in \mathbb{N}$ and each substructure \mathbf{X} of \mathbf{M}^{n}, every morphism $\alpha: \mathbf{X} \rightarrow \mathbf{M}$ extends to a term function $t: M^{n} \rightarrow M$ of the algebra \mathbf{M},
(ii) $(\mathrm{INJ})_{\text {fin }}^{+} \underset{\sim}{\mathbf{M}}$ is injective in $\mathcal{X}_{\text {fin }}$, and
(CLO) for each $n \in \mathbb{N}$, every morphism $t: \mathbf{M}^{n} \rightarrow \mathbf{M}$ is an n-ary term function on \mathbf{M},
(iii) $\underset{\sim}{\mathbf{M}}$ yields a duality on $\mathcal{A}_{\text {fin }}$ and is injective in $\mathcal{X}_{\text {fin }}$.

We would like to obtain a duality for \mathcal{A} in two steps:

- first show that $\underset{\sim}{\mathbf{M}}$ yields a duality on $\mathcal{A}_{\text {fin }}$, then

The interpolation condition (IC)

Let $\mathcal{A}_{\text {fin }}$ and $\mathcal{X}_{\text {fin }}$ consist of the finite members of \mathcal{A} and \mathcal{X}.
Lemma (2.2.5)
The following are equivalent:
(i) (IC) for each $n \in \mathbb{N}$ and each substructure \mathbf{X} of \mathbf{M}^{n}, every morphism $\alpha: \mathbf{X} \rightarrow \mathbf{M}$ extends to a term function $t: M^{n} \rightarrow M$ of the algebra \mathbf{M},
(ii) $(\mathrm{INJ})_{\text {fin }}^{+} \underset{\mathcal{M}}{\mathbf{M}}$ is injective in $\mathcal{X}_{\text {fin }}$, and
(CLO) for each $n \in \mathbb{N}$, every morphism $t: \mathbf{M}^{n} \rightarrow \mathbf{M}$ is an n-ary term function on \mathbf{M},
(iii) $\underset{\sim}{\mathbf{M}}$ yields a duality on $\mathcal{A}_{\text {fin }}$ and is injective in $\mathcal{X}_{\text {fin }}$.

We would like to obtain a duality for \mathcal{A} in two steps:

- first show that $\underset{\sim}{\mathbf{M}}$ yields a duality on $\mathcal{A}_{\text {fin }}$, then
- apply some general theory to show that the duality lifts automatically to a duality on the whole of \mathcal{A}.

The interpolation condition (IC)

Let $\mathcal{A}_{\text {fin }}$ and $\mathcal{X}_{\text {fin }}$ consist of the finite members of \mathcal{A} and \mathcal{X}.
Lemma (2.2.5)
The following are equivalent:
(i) (IC) for each $n \in \mathbb{N}$ and each substructure \mathbf{X} of \mathbf{M}^{n}, every morphism $\alpha: \mathbf{X} \rightarrow \mathbf{M}$ extends to a term function $t: M^{n} \rightarrow M$ of the algebra $\underline{\mathbf{M}}$,
(ii) $(\mathrm{INJ})_{\text {fin }}^{+} \underset{\sim}{\mathbf{M}}$ is injective in $\mathcal{X}_{\text {fin }}$, and
(CLO) for each $n \in \mathbb{N}$, every morphism $t: \mathbf{M}^{n} \rightarrow \mathbf{M}$ is an n-ary term function on \mathbf{M},
(iii) $\underset{\sim}{\mathbf{M}}$ yields a duality on $\mathcal{A}_{\text {fin }}$ and is injective in $\mathcal{X}_{\text {fin }}$.

We would like to obtain a duality for \mathcal{A} in two steps:

- first show that $\underset{\sim}{\mathbf{M}}$ yields a duality on $\mathcal{A}_{\text {fin }}$, then
- apply some general theory to show that the duality lifts automatically to a duality on the whole of \mathcal{A}.

This is achievable provided \mathbf{M} enjoys some degree of finiteness.

The Second Duality Theorem

If $\underset{\sim}{\mathbf{M}}=\langle\boldsymbol{M} ; \boldsymbol{G}, R, \mathcal{T}\rangle$, that is, the type of \mathbf{M} includes no partial operations, then we call $\underset{\sim}{\mathbf{M}}$ a total structure.

Theorem (2.2.7 Second Duality Theorem) Assume that $\underset{\sim}{\mathbf{M}}$ is a total structure with R finite. If (IC) holds, then $\underset{\sim}{\mathcal{M}}$ yields a duality on \mathcal{A} and is injective in \mathcal{X}.

The Second Duality Theorem

If $\underset{\sim}{\mathbf{M}}=\langle\boldsymbol{M} ; \boldsymbol{G}, R, \mathcal{T}\rangle$, that is, the type of \mathbf{M} includes no partial operations, then we call $\underset{\sim}{\mathbf{M}}$ a total structure.

Theorem (2.2.7 Second Duality Theorem) Assume that $\underset{\sim}{\mathbf{M}}$ is a total structure with R finite. If (IC) holds, then $\underset{\sim}{\mathcal{M}}$ yields a duality on \mathcal{A} and is injective in \mathcal{X}.

This result is rather surprising.

- It gives us simple finitary conditions which yield both a dual adjunction between the categories \mathcal{A} and \mathcal{X} and a topological representation of every algebra in \mathcal{A},

The Second Duality Theorem

If $\underset{\sim}{\mathbf{M}}=\langle\boldsymbol{M} ; \boldsymbol{G}, R, \mathcal{T}\rangle$, that is, the type of \mathbf{M} includes no partial operations, then we call \mathbf{M} a total structure.

Theorem (2.2.7 Second Duality Theorem) Assume that $\underset{\sim}{\mathbf{M}}$ is a total structure with R finite. If (IC) holds, then $\underset{\sim}{\mathcal{M}}$ yields a duality on \mathcal{A} and is injective in \mathcal{X}.

This result is rather surprising.

- It gives us simple finitary conditions which yield both a dual adjunction between the categories \mathcal{A} and \mathcal{X} and a topological representation of every algebra in \mathcal{A},
- but it requires us to do no category theory and no topology!

Priestley duality via the Second Duality Theorem

Recall that

- $\underline{\mathbf{D}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle$ is the two-element bounded lattice,
- $\underset{\sim}{\mathbf{D}}=\langle\{0,1\} ; \leqslant, \mathcal{T}\rangle$ is the two-element chain endowed with the discrete topology.

Theorem (Half of Priestley duality)
$\underset{\sim}{\mathrm{D}}$ yields a duality on the class $\mathcal{D}:=\operatorname{ISP}(\underline{\mathbf{D}})$ of bounded distributive lattices, i.e., $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ is an isomorphism, for all $\mathbf{A} \in \mathcal{D}$.

Proof.

We will prove that (IC) holds. Let \mathbf{X} be a substructure of \mathbf{D}^{n} and let $\varphi: \mathbf{X} \rightarrow \underset{\sim}{\mathbf{D}}$ be a morphism, i.e., φ is order-preserving.
[We need to find a term function $t:\{0,1\}^{n} \rightarrow\{0,1\}$ on $\underline{\mathbf{D}}$ such that $t(x)=\varphi(x)$, for all $x \in X$.]

Priestley duality via the Second Duality Theorem

The proof continued
[\mathbf{X} is a substructure of ${\underset{\sim}{D}}^{n}$ and $\varphi: \mathbf{X} \rightarrow \underset{\sim}{\mathbf{D}}$ is order-preserving.
We need to find a term function $t:\{0,1\}^{n} \rightarrow\{0,1\}$ on $\underline{\mathbf{D}}$ such that $t(x)=\varphi(x)$, for all $x \in X$.]

Priestley duality via the Second Duality Theorem

The proof continued
[\mathbf{X} is a substructure of ${\underset{\sim}{D}}^{n}$ and $\varphi: \mathbf{X} \rightarrow \underset{\sim}{\mathbf{D}}$ is order-preserving. We need to find a term function $t:\{0,1\}^{n} \rightarrow\{0,1\}$ on $\underline{\mathbf{D}}$ such that $t(x)=\varphi(x)$, for all $x \in X$.]
If $\varphi^{-1}(1)=\varnothing$, then define $t\left(v_{1}, \ldots, v_{n}\right)=0$, and
if $\varphi^{-1}(1)=X$, then define $t\left(v_{1}, \ldots, v_{n}\right)=1$.

Priestley duality via the Second Duality Theorem

The proof continued
[\mathbf{X} is a substructure of ${\underset{\sim}{D}}^{n}$ and $\varphi: \mathbf{X} \rightarrow \underset{\sim}{\mathbf{D}}$ is order-preserving.
We need to find a term function $t:\{0,1\}^{n} \rightarrow\{0,1\}$ on $\underline{\mathbf{D}}$ such that $t(x)=\varphi(x)$, for all $x \in X$.]
If $\varphi^{-1}(1)=\varnothing$, then define $t\left(v_{1}, \ldots, v_{n}\right)=0$, and
if $\varphi^{-1}(1)=X$, then define $t\left(v_{1}, \ldots, v_{n}\right)=1$.
Otherwise, define $t\left(v_{1}, \ldots, v_{n}\right)$ by

$$
t\left(v_{1}, \ldots, v_{n}\right):=\bigvee_{a \in \varphi^{-1}(1)}\left(\bigwedge_{a_{i}=1} v_{i}\right) .
$$

Priestley duality via the Second Duality Theorem

The proof continued
[\mathbf{X} is a substructure of ${\underset{\sim}{D}}^{n}$ and $\varphi: \mathbf{X} \rightarrow \underset{\sim}{\mathbf{D}}$ is order-preserving. We need to find a term function $t:\{0,1\}^{n} \rightarrow\{0,1\}$ on $\underline{\mathbf{D}}$ such that $t(x)=\varphi(x)$, for all $x \in X$.]
If $\varphi^{-1}(1)=\varnothing$, then define $t\left(v_{1}, \ldots, v_{n}\right)=0$, and
if $\varphi^{-1}(1)=X$, then define $t\left(v_{1}, \ldots, v_{n}\right)=1$.
Otherwise, define $t\left(v_{1}, \ldots, v_{n}\right)$ by

$$
t\left(v_{1}, \ldots, v_{n}\right):=\bigvee_{a \in \varphi^{-1}(1)}\left(\bigwedge_{a_{i}=1} v_{i}\right) .
$$

Let $x \in X$. If $\varphi(x)=1$, then $t(x)=1$, by construction.

Priestley duality via the Second Duality Theorem

The proof continued
[\mathbf{X} is a substructure of ${\underset{\sim}{D}}^{n}$ and $\varphi: \mathbf{X} \rightarrow \underset{\sim}{\mathbf{D}}$ is order-preserving. We need to find a term function $t:\{0,1\}^{n} \rightarrow\{0,1\}$ on $\underline{\mathbf{D}}$ such that $t(x)=\varphi(x)$, for all $x \in X$.]
If $\varphi^{-1}(1)=\varnothing$, then define $t\left(v_{1}, \ldots, v_{n}\right)=0$, and
if $\varphi^{-1}(1)=X$, then define $t\left(v_{1}, \ldots, v_{n}\right)=1$.
Otherwise, define $t\left(v_{1}, \ldots, v_{n}\right)$ by

$$
t\left(v_{1}, \ldots, v_{n}\right):=\bigvee_{a \in \varphi^{-1}(1)}\left(\bigwedge_{a_{i}=1} v_{i}\right) .
$$

Let $x \in X$. If $\varphi(x)=1$, then $t(x)=1$, by construction.
If $t(x)=1$, then there exists $a \in \varphi^{-1}(1)$ with $a_{i}=1 \Rightarrow x_{i}=1$. Hence $\varphi(a)=1$ and $a \leqslant x$. As φ is order-preserving, we have $\varphi(x)=1$.

Priestley duality via the Second Duality Theorem

The proof continued
[\mathbf{X} is a substructure of ${\underset{\sim}{D}}^{n}$ and $\varphi: \mathbf{X} \rightarrow \underset{\sim}{\mathbf{D}}$ is order-preserving. We need to find a term function $t:\{0,1\}^{n} \rightarrow\{0,1\}$ on $\underline{\mathbf{D}}$ such that $t(x)=\varphi(x)$, for all $x \in X$.]
If $\varphi^{-1}(1)=\varnothing$, then define $t\left(v_{1}, \ldots, v_{n}\right)=0$, and
if $\varphi^{-1}(1)=X$, then define $t\left(v_{1}, \ldots, v_{n}\right)=1$.
Otherwise, define $t\left(v_{1}, \ldots, v_{n}\right)$ by

$$
t\left(v_{1}, \ldots, v_{n}\right):=\bigvee_{a \in \varphi^{-1}(1)}\left(\bigwedge_{a_{i}=1} v_{i}\right) .
$$

Let $x \in X$. If $\varphi(x)=1$, then $t(x)=1$, by construction.
If $t(x)=1$, then there exists $a \in \varphi^{-1}(1)$ with $a_{i}=1 \Rightarrow x_{i}=1$. Hence $\varphi(a)=1$ and $a \leqslant x$. As φ is order-preserving, we have $\varphi(x)=1$.

Priestley duality via the Second Duality Theorem

The proof continued
[\mathbf{X} is a substructure of ${\underset{\sim}{D}}^{n}$ and $\varphi: \mathbf{X} \rightarrow \underset{\sim}{\mathbf{D}}$ is order-preserving. We need to find a term function $t:\{0,1\}^{n} \rightarrow\{0,1\}$ on $\underline{\mathbf{D}}$ such that $t(x)=\varphi(x)$, for all $x \in X$.]
If $\varphi^{-1}(1)=\varnothing$, then define $t\left(v_{1}, \ldots, v_{n}\right)=0$, and
if $\varphi^{-1}(1)=X$, then define $t\left(v_{1}, \ldots, v_{n}\right)=1$.
Otherwise, define $t\left(v_{1}, \ldots, v_{n}\right)$ by

$$
t\left(v_{1}, \ldots, v_{n}\right):=\bigvee_{a \in \varphi^{-1}(1)}\left(\bigwedge_{a_{i}=1} v_{i}\right) .
$$

Let $x \in X$. If $\varphi(x)=1$, then $t(x)=1$, by construction.
If $t(x)=1$, then there exists $a \in \varphi^{-1}(1)$ with $a_{i}=1 \Rightarrow x_{i}=1$. Hence $\varphi(a)=1$ and $a \leqslant x$. As φ is order-preserving, we have $\varphi(x)=1$. Hence $t(x)=\varphi(x)$, for all $x \in X$.

Priestley duality via the Second Duality Theorem

The proof continued
[\mathbf{X} is a substructure of ${\underset{\sim}{D}}^{n}$ and $\varphi: \mathbf{X} \rightarrow \underset{\sim}{\mathbf{D}}$ is order-preserving. We need to find a term function $t:\{0,1\}^{n} \rightarrow\{0,1\}$ on $\underline{\mathbf{D}}$ such that $t(x)=\varphi(x)$, for all $x \in X$.]
If $\varphi^{-1}(1)=\varnothing$, then define $t\left(v_{1}, \ldots, v_{n}\right)=0$, and
if $\varphi^{-1}(1)=X$, then define $t\left(v_{1}, \ldots, v_{n}\right)=1$.
Otherwise, define $t\left(v_{1}, \ldots, v_{n}\right)$ by

$$
t\left(v_{1}, \ldots, v_{n}\right):=\bigvee_{a \in \varphi^{-1}(1)}\left(\bigwedge_{a_{i}=1} v_{i}\right) .
$$

Let $x \in X$. If $\varphi(x)=1$, then $t(x)=1$, by construction.
If $t(x)=1$, then there exists $a \in \varphi^{-1}(1)$ with $a_{i}=1 \Rightarrow x_{i}=1$. Hence $\varphi(a)=1$ and $a \leqslant x$. As φ is order-preserving, we have $\varphi(x)=1$. Hence $t(x)=\varphi(x)$, for all $x \in X$.

Further applications of the Second Duality Theorem

Some exercises for you. In each case, prove that (IC) holds.
(1) [Stone] Let $\underline{\mathbf{B}}=\left\langle\{0,1\} ; \vee, \wedge,{ }^{\prime}, 0,1\right\rangle$; then $\mathcal{B}=\operatorname{ISP}(\underline{\mathbf{B}})$ is the class of Boolean algebras. Show that $\underset{\sim}{\mathbf{B}}=\langle\{0,1\} ; \mathcal{T}\rangle$ yields a duality on \mathcal{B}.
(2) [Priestley] Let $\underline{\mathbf{L}}=\langle\{0,1\} ; \vee, \wedge\rangle$; then $\mathcal{L}=\operatorname{ISP}(\underline{\mathbf{L}})$ is the class of distributive lattices. Show that $\underset{\sim}{L}=\langle\{0,1\} ; 0,1, \leqslant, \mathcal{T}\rangle$ yields a duality on \mathcal{L}.
(3) [Hofmann-Mislove-Stralka] Let $\underline{\mathbf{S}}=\langle\{0,1\} ; \wedge\rangle$; then $\mathcal{S}=\operatorname{ISP}(\underline{\mathbf{S}})$ is the class of meet semilattices. Show that $\underset{\sim}{S}=\langle\{0,1\} ; \wedge, 0,1, \mathcal{T}\rangle$ yields a duality on \mathcal{S}.
(4) [Pontryagin] Let $\underline{Z}_{m}=\left\langle\mathbb{Z}_{m} ;+{ }^{-}, 0\right\rangle$; then $\mathcal{A}_{m}=\operatorname{ISP}\left(\underline{Z}_{m}\right)$ is the class of abelian groups of exponent m. Show that $\mathbf{Z}=\left\langle\mathbb{Z}_{m} ;+,{ }^{-}, 0, \mathcal{T}\right\rangle$ yields a duality on \mathcal{A}_{m}.

