Lecture 2: An invitation to natural dualities

Brian A. Davey

TACL 2015 School
Campus of Salerno (Fisciano)
15–19 June 2015
Examples of natural dualities

Natural dualities: the basics

Duality theorems
Examples of natural dualities
 Boolean algebras – Stone
 Distributive lattices – Priestley
 Abelian groups – Pontryagin

Natural dualities: the basics

Duality theorems
Boolean algebras — Stone duality

Boolean algebras

Boolean spaces

(i.e., compact, Hausdorff and a basis of clopen sets)
Boolean algebras — Stone duality

Boolean algebras

Boolean spaces

(i.e., compact, Hausdorff and a basis of clopen sets)
Boolean algebras — Stone duality

Boolean algebra of all finite or cofinite subsets of \(\mathbb{N} \)

Boolean spaces
(i.e., compact, Hausdorff and a basis of clopen sets)
Boolean algebras — Stone duality

Boolean algebras and Boolean spaces
(i.e., compact, Hausdorff and a basis of clopen sets)

Countable atomless Boolean algebra
\(F_B(\omega) \)

| 0 | 1/9 | 2/9 | 1/3 | 2/3 | 7/9 | 8/9 | 1 |
Boolean algebras — Stone duality

Boolean algebras

Boolean spaces
Boolean algebras — Stone duality

Boolean algebras

Boolean spaces
Boolean algebras — Stone duality

\[\mathcal{B} = \text{ISP}(\mathcal{B}), \text{ where} \]
\[\mathcal{B} = \langle \{0, 1\}; \lor, \land, ', 0, 1 \rangle \]
\[D(A) := \mathcal{B}(A, \mathcal{B}) \leq \mathcal{B}^A \]

\[\mathcal{Z} = \text{IS}_c \mathcal{P}^+(\mathcal{B}), \text{ where} \]
\[\mathcal{Z} = \langle \{0, 1\}; \mathcal{I} \rangle \]
\[E(X) := \mathcal{Z}(X, \mathcal{B}) \leq \mathcal{B}^X \]
Bounded distributive lattices — Priestley duality
Bounded distributive lattices — Priestley duality

Bounded distributive lattices

Priestley spaces
Bounded distributive lattices — Priestley duality

Bounded distributive lattices

?

 Priestley spaces

\[
\begin{align*}
\text{0} & \quad 2 & \quad 4 & \quad 6 & \quad \top \\
& \quad & \quad & \quad & \\
1 & \quad 3 & \quad 5 & \quad \bot
\end{align*}
\]
Bounded distributive lattices — Priestley duality

Bounded distributive lattices

Priestley spaces
Bounded distributive lattices — Priestley duality

Bounded distributive lattices

Priestley spaces
Bounded distributive lattices — Priestley duality

\[\mathcal{D} = \text{ISP}(D), \text{ where} \]
\[D = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle \]
\[D(A) := \mathcal{D}(A, D) \leq D^A \]

\[\mathcal{P} = \text{ISP}^+(\mathcal{D}), \text{ where} \]
\[\mathcal{D} = \langle \{0, 1\}; \leq, \cong \rangle \]
\[E(X) := \mathcal{P}(X, \mathcal{D}) \leq D^X \]
Abelian groups — Pontryagin duality

Abelian groups

Compact top. abelian groups
(i.e., compact, Hausdorff and \(\cdot \) and \(\cdot^{-1} \) continuous)
Abelian groups — Pontryagin duality

Z = \langle \mathbb{Z}; +, −, 0 \rangle
The integers

\mathcal{T} = \langle \mathcal{T}; \cdot, −1, 1, \mathcal{T} \rangle
The circle group
Abelian groups — Pontryagin duality

\[\mathbb{Z}_n = \langle \mathbb{Z}_n; \oplus_n, \ominus_n, 0 \rangle \]

The integers modulo \(n \)

\[\mathbb{Z}_n^\mathcal{T} = \langle \mathbb{Z}_n; \oplus_n, \ominus_n, 0, \mathcal{T} \rangle \]

Compact top. abelian groups
Abelian groups — Pontryagin duality

Abelian groups

Compact top. abelian groups

A ↦ B

D(A) ↦ D(B)
Abelian groups — Pontryagin duality

Abelian groups

$A \rightarrow B$

Compact top. abelian groups

$D(A) \rightarrow D(B)$
Abelian groups — Pontryagin duality

\[\mathcal{A} = \text{ISP}(T), \text{ where} \]
\[T = \langle T; \cdot, -1, 1 \rangle \]
and \[T := \{ z \in \mathbb{C} : |x| = 1 \} \]

\[D(\mathcal{A}) := \mathcal{A}(\mathcal{A}, T) \leq T^A \]

\[\mathcal{X} = \text{IS}_c^+P(T), \text{ where} \]
\[T = \langle T; \cdot, -1, 1, \mathcal{T} \rangle \]
\[E(X) := \mathcal{X}(X, T) \leq T^X \]
Generalising to natural dualities: “why bother?”
Generalising to natural dualities: “why bother?"

Let \(M = \langle M; F \rangle \) be one of \(B, D \) and \(T \), and let \(\mathcal{M} = \langle M; G, R, \mathcal{J} \rangle \) be the corresponding topological structure, \(\mathcal{B}, \mathcal{D} \) or \(\mathcal{T} \).
Generalising to natural dualities: “why bother?"

Let $\mathbf{M} = \langle M; F \rangle$ be one of \mathcal{B}, \mathcal{D} and \mathcal{T}, and let $\mathbf{M} = \langle M; G, R, \mathcal{J} \rangle$ be the corresponding topological structure, \mathcal{B}, \mathcal{D} or \mathcal{T}.

- A duality for $\mathcal{A} := \text{ISP}(\mathbf{M})$ gives a uniform way to represent each algebra $\mathbf{A} \in \mathcal{A}$ as an algebra of continuous functions.
Generalising to natural dualities: “why bother?”

Let $\mathcal{M} = \langle M; F \rangle$ be one of \mathcal{B}, \mathcal{D} and \mathcal{T}, and let $\mathcal{M} = \langle M; G, R, T \rangle$ be the corresponding topological structure, \mathcal{B}, \mathcal{D} or \mathcal{T}.

- A duality for $\mathcal{A} := \text{ISP}(\mathcal{M})$ gives a uniform way to represent each algebra $A \in \mathcal{A}$ as an algebra of continuous functions.
- If we have a full duality and have axiomatised the class $\mathcal{X} := \text{ISP}^+(\mathcal{M})$, we can find examples of algebras in \mathcal{A} by simply constructing objects in \mathcal{X}.
Generalising to natural dualities: “why bother?"

Let $\mathbf{M} = \langle M; F \rangle$ be one of \mathbf{B}, \mathbf{D} and \mathbf{T}, and let $\mathbf{M} = \langle M; G, R, \mathcal{T} \rangle$ be the corresponding topological structure, \mathbf{B}, \mathbf{D} or \mathbf{T}.

- A duality for $\mathcal{A} := \text{ISP}(\mathbf{M})$ gives a uniform way to represent each algebra $\mathbf{A} \in \mathcal{A}$ as an algebra of continuous functions.
- If we have a full duality and have axiomatised the class $\mathbf{X} := \text{ISP}^+(\mathbf{M})$, we can find examples of algebras in \mathcal{A} by simply constructing objects in \mathbf{X}.
- Some dualities have the powerful property of being “logarithmic”—they turn products into sums; e.g., in both \mathbf{B} and \mathbf{D} we have $D(\mathbf{A} \times \mathbf{B}) \cong D(\mathbf{A}) \cup D(\mathbf{B})$.
Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathcal{X}. For example,
Generalising to natural dualities: “why bother?”

- Algebraic questions in \(\mathcal{A} \) can be answered by translating them into (often simpler) questions in \(\mathcal{X} \). For example,

 (1) free algebras in \(\mathcal{A} \) are easily described via their duals in \(\mathcal{X} \),
Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathcal{X}. For example,

(1) free algebras in \mathcal{A} are easily described via their duals in \mathcal{X},

(2) while a coproduct $A \ast B$ is often difficult to describe, its dual, $D(A \ast B)$, is simply the cartesian product $D(A) \times D(B)$,
Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathcal{X}. For example,

1. free algebras in \mathcal{A} are easily described via their duals in \mathcal{X},
2. while a coproduct $A \ast B$ is often difficult to describe, its dual, $D(A \ast B)$, is simply the cartesian product $D(A) \times D(B)$,
3. congruence lattices in \mathcal{A} may be studied by looking at lattices of closed substructures in \mathcal{X},
Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathcal{X}. For example,

1. free algebras in \mathcal{A} are easily described via their duals in \mathcal{X},
2. while a coproduct $A \star B$ is often difficult to describe, its dual, $D(A \star B)$, is simply the cartesian product $D(A) \times D(B)$,
3. congruence lattices in \mathcal{A} may be studied by looking at lattices of closed substructures in \mathcal{X},
4. injective algebras in \mathcal{A} may be characterised by first studying projective structures in \mathcal{X},
• Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathcal{X}. For example,

1. free algebras in \mathcal{A} are easily described via their duals in \mathcal{X},
2. while a coproduct $A \ast B$ is often difficult to describe, its dual, $D(A \ast B)$, is simply the cartesian product $D(A) \times D(B)$,
3. congruence lattices in \mathcal{A} may be studied by looking at lattices of closed substructures in \mathcal{X},
4. injective algebras in \mathcal{A} may be characterised by first studying projective structures in \mathcal{X},
5. algebraically closed and existentially closed algebras may be described via their duals.
Some observations on \mathcal{B}, \mathcal{D} and \mathcal{A}

For the functors D and E to be well defined, we need the algebras \mathcal{B}, \mathcal{D} and \mathcal{T} and the corresponding topological structures \mathcal{B}, \mathcal{D} and \mathcal{T} to be compatible.
Some observations on \mathcal{B}, \mathcal{D} and \mathcal{A}

For the functors D and E to be well defined, we need the algebras \mathcal{B}, \mathcal{D} and \mathcal{T} and the corresponding topological structures \mathcal{B}, \mathcal{D} and \mathcal{T} to be compatible.

Let $\mathcal{M} = \langle M; F \rangle$ be one of \mathcal{B}, \mathcal{D} and \mathcal{T}, and let $\mathcal{M} \sim = \langle M; G, R, \mathcal{T} \rangle$ be the corresponding topological structure, \mathcal{B}, \mathcal{D} or \mathcal{T}.

Define $\mathcal{A} := \text{ISP}(\mathcal{M})$ and $\mathcal{X} := \text{IS}_cP^+(\mathcal{M})$, and let $A \in \mathcal{A}$ and $X \in \mathcal{X}$.
Some observations on \mathcal{B}, \mathcal{D} and \mathcal{A}

For the functors D and E to be well defined, we need the algebras \mathcal{B}, \mathcal{D} and \mathcal{T} and the corresponding topological structures $\mathcal{B} \sim$, $\mathcal{D} \sim$ and $\mathcal{T} \sim$ to be compatible.

Let $\underline{M} = \langle M; F \rangle$ be one of \mathcal{B}, \mathcal{D} and \mathcal{T}, and let $\underline{\sim} = \langle M; G, R, T \rangle$ be the corresponding topological structure, $\mathcal{B} \sim$, $\mathcal{D} \sim$ or $\mathcal{T} \sim$.

Define $\mathcal{A} := \text{ISP}(\underline{M})$ and $\mathcal{X} := \text{IS}_c\text{P}^+(\underline{M})$, and let $\underline{A} \in \mathcal{A}$ and $\underline{X} \in \mathcal{X}$.

Since we define $D(\underline{A}) := \mathcal{A}(\underline{A}, \underline{M})$ and $E(\underline{X}) := \mathcal{X}(\underline{X}, \underline{M})$, in order to have $D(\underline{A}) \in \text{IS}_c\text{P}^+(\underline{M})$ and $E(\underline{X}) \in \text{ISP}(\underline{M})$, we need

- $\mathcal{A}(\underline{A}, \underline{M})$ to be a topologically closed substructure of \underline{M}^A, and
Some observations on \mathcal{B}, \mathcal{D} and \mathcal{A}

For the functors D and E to be well defined, we need the algebras \mathcal{B}, \mathcal{D} and \mathcal{T} and the corresponding topological structures \mathcal{B}, \mathcal{D} and \mathcal{T} to be compatible.

Let $\underline{M} = \langle M; F \rangle$ be one of \mathcal{B}, \mathcal{D} and \mathcal{T}, and let $\underline{M} \sim = \langle M; G, R, \mathcal{T} \rangle$ be the corresponding topological structure, \mathcal{B}, \mathcal{D} or \mathcal{T}.

Define $\mathcal{A} := \text{ISP}(\underline{M})$ and $\mathcal{X} := \text{IS}_c \mathcal{P}^+(\underline{M})$, and let $A \in \mathcal{A}$ and $X \in \mathcal{X}$.

Since we define $D(A) := \mathcal{A}(A, \underline{M})$ and $E(X) := \mathcal{X}(X, \underline{M})$, in order to have $D(A) \in \text{IS}_c \mathcal{P}^+(\underline{M})$ and $E(X) \in \text{ISP}(\underline{M})$, we need

- $\mathcal{A}(A, \underline{M})$ to be a topologically closed substructure of \underline{M}^A,
 and
- $\mathcal{X}(X, \underline{M})$ to be a subalgebra of \underline{M}^X.
Some observations

Let $\mathbf{M} = \langle M; F \rangle$, let $\mathbf{M} = \langle M; G, R, \top \rangle$, define $\mathcal{A} := \text{ISP}(\mathbf{M})$ and $\mathcal{X} := \text{IS}_{c}P^{+}(\mathbf{M})$, and let $A \in \mathcal{A}$ and $X \in \mathcal{X}$. We need \mathbf{M} and \mathbf{M} to be compatible in such a way that

- $\mathcal{A}(A, \mathbf{M})$ is a topologically closed substructure of \mathbf{M}^{A}, and
- $\mathcal{X}(X, \mathbf{M})$ is a subalgebra of \mathbf{M}^{X}.
Let $\underline{M} = \langle M; F \rangle$, let $\underline{M} = \langle M; G, R, T \rangle$, define $\mathcal{A} := \text{ISP}(\underline{M})$ and $\mathcal{X} := \text{IS}_{c}P^{+}(\underline{M})$, and let $\mathcal{A} \in \mathcal{A}$ and $\mathcal{X} \in \mathcal{X}$. We need \underline{M} and \underline{M} to be compatible in such a way that

- $\mathcal{A}(\mathcal{A}, \underline{M})$ is a topologically closed substructure of $\underline{M}^\mathcal{A}$, and
- $\mathcal{X}(\mathcal{X}, \underline{M})$ is a subalgebra of $\underline{M}^\mathcal{X}$.

\triangleright $\mathcal{A}(\mathcal{A}, \underline{M})$ will be topologically closed in $M^\mathcal{A}$, provided the topology on M is Hausdorff and the operations in F are continuous.
Some observations

Let $\mathbf{M} = \langle M; F \rangle$, let $\mathbf{\sim} = \langle M; G, R, \mathcal{T} \rangle$, define $\mathcal{A} := \text{ISP}(\mathbf{M})$ and $\mathcal{X} := \text{IScP}^+(\mathbf{\sim})$, and let $A \in \mathcal{A}$ and $X \in \mathcal{X}$. We need \mathbf{M} and $\mathbf{\sim}$ to be compatible in such a way that

- $\mathcal{A}(A, \mathbf{M})$ is a topologically closed substructure of $\mathbf{\sim}^A$, and
- $\mathcal{X}(X, \mathbf{\sim})$ is a subalgebra of \mathbf{M}^X.

$\mathcal{A}(A, \mathbf{M})$ will be topologically closed in M^A, provided the topology on M is Hausdorff and the operations in F are continuous. (If \mathbf{M} is compact, then so is $\mathcal{A}(A, \mathbf{M})$.)
Some observations

Let $\mathbf{M} = \langle M; F \rangle$, let $\mathbf{M} = \langle M; G, R, \mathcal{I} \rangle$, define $\mathcal{A} := \text{ISP}(\mathbf{M})$ and $\mathcal{X} := \text{IScP}^+(\mathbf{M})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$. We need \mathbf{M} and \mathbf{M} to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, \mathbf{M})$ is a topologically closed substructure of \mathbf{M}^A, and
- $\mathcal{X}(\mathbf{X}, \mathbf{M})$ is a subalgebra of \mathbf{M}^X.

- $\mathcal{A}(\mathbf{A}, \mathbf{M})$ will be topologically closed in M^A, provided the topology on M is Hausdorff and the operations in F are continuous. (If \mathbf{M} is compact, then so is $\mathcal{A}(\mathbf{A}, \mathbf{M})$.)

- $\mathcal{A}(\mathbf{A}, \mathbf{M})$ will be closed under the operations in G provided each $(n$-ary) $g \in G$ is a homomorphism from \mathbf{M}^n to \mathbf{M}.

Some observations

Let $\mathbf{M} = \langle M; F \rangle$, let $\mathbf{M} = \langle M; G, R, \mathcal{T} \rangle$, define $\mathcal{A} := \ISP(\mathbf{M})$ and $\mathcal{X} := \ISC P^+(\mathbf{M})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$. We need \mathbf{M} and $\mathbf{M} \sim$ to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, \mathbf{M})$ is a topologically closed substructure of \mathbf{M}^A, and
- $\mathcal{X}(\mathbf{X}, \mathbf{M})$ is a subalgebra of \mathbf{M}^X.

- $\mathcal{A}(\mathbf{A}, \mathbf{M})$ will be topologically closed in \mathbf{M}^A, provided the topology on M is Hausdorff and the operations in F are continuous. (If \mathbf{M} is compact, then so is $\mathcal{A}(\mathbf{A}, \mathbf{M})$.)
- $\mathcal{A}(\mathbf{A}, \mathbf{M})$ will be closed under the operations in G provided each (n-ary) $g \in G$ is a homomorphism from \mathbf{M}^n to \mathbf{M}.
- $\mathcal{X}(\mathbf{X}, \mathbf{M})$ will be a subalgebra of \mathbf{M}^X provided
 - each (n-ary) $g \in G$ is a homomorphism from \mathbf{M}^n to \mathbf{M},
 - each (n-ary) relation $r \in R$ is a subuniverse of \mathbf{M}^n, and
 - each operation in F is continuous.
Let $\mathbf{M} = \langle M; F \rangle$, let $\mathbf{\sim} = \langle M; G, R, T \rangle$, define $\mathcal{A} := \text{ISP}(\mathbf{M})$ and $\mathcal{X} := \text{IScP}^+(\mathbf{M})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$. We need \mathbf{M} and $\mathbf{\sim}$ to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, M)$ is a topologically closed substructure of M^A, and
- $\mathcal{X}(\mathbf{X}, M)$ is a subalgebra of M^X.

- $\mathcal{A}(\mathbf{A}, M)$ will be topologically closed in M^A, provided the topology on M is Hausdorff and the operations in F are continuous. (If \mathbf{M} is compact, then so is $\mathcal{A}(\mathbf{A}, M)$.)
- $\mathcal{A}(\mathbf{A}, M)$ will be closed under the operations in G provided each $(n$-ary $) g \in G$ is a homomorphism from M^n to M.
- $\mathcal{X}(\mathbf{X}, M)$ will be a subalgebra of M^X provided
 - each $(n$-ary $) g \in G$ is a homomorphism from M^n to M,
 - each $(n$-ary $) relation r \in R$ is a subuniverse of M^n, and
 - each operation in F is continuous.
Some observations

Let $M = \langle M; F \rangle$, let $\bar{M} = \langle M; G, R, I \rangle$, define $\mathcal{A} := \text{ISP}(\overline{M})$ and $X := \text{IS}_{c}P^{+}(\overline{M})$, and let $A \in \mathcal{A}$ and $X \in X$. We need M and \bar{M} to be compatible in such a way that

- $\mathcal{A}(A, M)$ is a topologically closed substructure of \bar{M}^{A}, and
- $X(X, \bar{M})$ is a subalgebra of \bar{M}^{X}.

- $\mathcal{A}(A, M)$ will be topologically closed in M^{A}, provided the topology on M is Hausdorff and the operations in F are continuous. (If \bar{M} is compact, then so is $\mathcal{A}(A, M)$.)

- $\mathcal{A}(A, M)$ will be closed under the operations in G provided each $(n$-ary) $g \in G$ is a homomorphism from M^{n} to M.

- $X(X, \bar{M})$ will be a subalgebra of \bar{M}^{X} provided
 - each $(n$-ary) $g \in G$ is a homomorphism from M^{n} to M,
 - each $(n$-ary) relation $r \in R$ is a subuniverse of M^{n}, and
 - each operation in F is continuous.
Some observations

Let $\mathbf{M} = \langle M; F \rangle$, let $\mathbf{M} = \langle M; G, R, \mathcal{T} \rangle$, define $\mathcal{A} := \text{ISP}(\mathbf{M})$ and $\mathcal{X} := \text{ISC}^P(\mathbf{M})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$. We need \mathbf{M} and $\mathbf{M} \sim$ to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, \mathbf{M})$ is a topologically closed substructure of \mathbf{M}^A, and
- $\mathcal{X}(\mathbf{X}, \mathbf{M})$ is a subalgebra of \mathbf{M}^X.

- $\mathcal{A}(\mathbf{A}, \mathbf{M})$ will be topologically closed in M^A, provided the topology on M is Hausdorff and the operations in F are continuous. (If \mathbf{M} is compact, then so is $\mathcal{A}(\mathbf{A}, \mathbf{M})$.)
- $\mathcal{A}(\mathbf{A}, \mathbf{M})$ will be closed under the operations in G provided each $(n$-ary) $g \in G$ is a homomorphism from M^n to M.
- $\mathcal{X}(\mathbf{X}, \mathbf{M})$ will be a subalgebra of \mathbf{M}^X provided
 - each $(n$-ary) $g \in G$ is a homomorphism from M^n to M,
 - each $(n$-ary) relation $r \in R$ is a subuniverse of M^n, and
 - each operation in F is continuous.

When these highlighted conditions hold, we say that g and r are compatible with or algebraic over \mathbf{M}.
Examples of natural dualities

Natural dualities: the basics
 Alter egos
 Categories, functors and natural transformations
 The basic definitions: duality, full duality, strong duality
 Further examples

Duality theorems
Generalizing our examples, we start with an algebra \mathbf{M} and wish to find a dual category for the prevariety $\mathcal{A} := \text{ISP}(\mathbf{M})$.

An alter ego of an algebra \mathbf{A} structure $\mathbf{M} \sim \langle \mathbf{M}; G, H, R, T \rangle$ is an alter ego of \mathbf{M} if it is compatible with \mathbf{M}, that is,

- G is a set of operations on \mathbf{M}, each of which is a homomorphism with respect to \mathbf{M},
- H is a set of partial operations on \mathbf{M}, each of which is a homomorphism with respect to \mathbf{M},
- R is a set of relations on \mathbf{M}, each of which is a subuniverse of the appropriate power of \mathbf{M}, and
- T is a compact Hausdorff topology on \mathbf{M} with respect to which the operations on \mathbf{M} are continuous.
Natural dualities: alter egos

Generalizing our examples, we start with an algebra \mathbf{M} and wish to find a dual category for the prevariety $\mathcal{A} := \text{ISP}(\mathbf{M})$.

An alter ego of an algebra

A structure $\mathfrak{M} = \langle M; G, H, R, T \rangle$ is an alter ego of \mathbf{M} if it is compatible with \mathbf{M}, that is,
Natural dualities: alter egos

Generalizing our examples, we start with an algebra \mathbf{M} and wish to find a dual category for the prevariety $\mathcal{A} := \text{ISP}(\mathbf{M})$.

An alter ego of an algebra

A structure $\mathcal{M} = \langle M; G, H, R, \mathcal{T} \rangle$ is an alter ego of \mathbf{M} if it is compatible with \mathbf{M}, that is,

- G is a set of operations on M, each of which is a homomorphism with respect to \mathbf{M},
- R is a set of relations on M, each of which is a subuniverse of the appropriate power of \mathbf{M}, and
- \mathcal{T} is a compact Hausdorff topology on M with respect to which the operations on \mathbf{M} are continuous.
Natural dualities: alter egos

Generalizing our examples, we start with an algebra \mathbf{M} and wish to find a dual category for the prevariety $\mathcal{A} := \text{ISP}(\mathbf{M})$.

An alter ego of an algebra

A structure $\mathbf{M} = \langle M; G, H, R, T \rangle$ is an alter ego of \mathbf{M} if it is compatible with \mathbf{M}, that is,

- G is a set of operations on M, each of which is a homomorphism with respect to \mathbf{M},
- H is a set of partial operations on M, each of which is a homomorphism with respect to \mathbf{M},
- R is a set of relations on M, each of which is a subuniverse of the appropriate power of \mathbf{M}, and
- T is a compact Hausdorff topology on M with respect to which the operations on \mathbf{M} are continuous.
Let $\mathcal{M} = \langle M; G, H, R, \mathcal{T} \rangle$ be an alter ego of \mathcal{M}.
Let $\mathcal{M} = \langle M; G, H, R, \mathcal{I} \rangle$ be an alter ego of \mathcal{M}.

The categories \mathcal{A} and \mathcal{X}

- Define $\mathcal{A} := \text{ISP}(\mathcal{M})$: the algebraic category of interest.
- Define $\mathcal{X} := \text{IScP}^+(\mathcal{M})$: the potential dual category for \mathcal{A}.
Natural dualities: categories and functors

Let $\mathcal{M} = \langle M; G, H, R, T \rangle$ be an alter ego of \mathcal{M}.

The categories \mathcal{A} and \mathcal{X}

- Define $\mathcal{A} := \text{ISP}(\mathcal{M})$: the algebraic category of interest.
- Define $\mathcal{X} := \text{IS}_cP^+(\mathcal{M})$: the potential dual category for \mathcal{A}.

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \to \mathcal{X}$ and $E: \mathcal{X} \to \mathcal{A}$.
Natural dualities: categories and functors

Let $\mathcal{M} = \langle M; G, H, R, \mathcal{T} \rangle$ be an alter ego of \mathcal{M}.

The categories \mathcal{A} and \mathcal{X}

- Define $\mathcal{A} := \text{ISP(}M\text{)}$: the algebraic category of interest.
- Define $\mathcal{X} := \text{IScP}^+(\mathcal{M})$: the potential dual category for \mathcal{A}.

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \rightarrow \mathcal{X}$ and $E: \mathcal{X} \rightarrow \mathcal{A}$.
- For each algebra \mathcal{A} in \mathcal{A}, the underlying set of $D(\mathcal{A})$ is the set $\text{hom}(\mathcal{A}, \mathcal{M})$ of all homomorphisms from \mathcal{A} into \mathcal{M}, and $D(\mathcal{A})$ is a topologically closed substructure of $\mathcal{M}^\mathcal{A}$.
Natural dualities: categories and functors

Let $\mathcal{M} = \langle M; G, H, R, \tau \rangle$ be an alter ego of \mathcal{M}.

The categories \mathcal{A} and \mathcal{X}

- Define $\mathcal{A} := ISP(\mathcal{M})$: the algebraic category of interest.
- Define $\mathcal{X} := IS_c P^+(\mathcal{M})$: the potential dual category for \mathcal{A}.

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \to \mathcal{X}$ and $E: \mathcal{X} \to \mathcal{A}$.
- For each algebra A in \mathcal{A}, the underlying set of $D(A)$ is the set $\text{hom}(A, \mathcal{M})$ of all homomorphisms from A into \mathcal{M}, and $D(A)$ is a topologically closed substructure of \mathcal{M}^A.
Natural dualities: categories and functors

Let $\mathcal{M} = \langle M; G, H, R, \tau \rangle$ be an alter ego of \mathfrak{M}.

The categories \mathcal{A} and \mathcal{X}

- Define $\mathcal{A} := \text{ISP}(\mathcal{M})$: the algebraic category of interest.
- Define $\mathcal{X} := \text{IS}_{c}P^{+}(\mathcal{M})$: the potential dual category for \mathcal{A}.

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \rightarrow \mathcal{X}$ and $E: \mathcal{X} \rightarrow \mathcal{A}$.
- For each algebra \mathfrak{A} in \mathcal{A}, the underlying set of $D(\mathfrak{A})$ is the set $\text{hom}(\mathfrak{A}, M)$ of all homomorphisms from \mathfrak{A} into M, and $D(\mathfrak{A})$ is a topologically closed substructure of $\mathcal{M}^{\mathfrak{A}}$.
- For each structure \mathfrak{X} in \mathcal{X}, the underlying set of $E(\mathfrak{X})$ is the set $\text{hom}(\mathfrak{X}, M)$ of all continuous homomorphisms from \mathfrak{X} into M, and $E(\mathfrak{X})$ is a subalgebra of $M^{\mathfrak{X}}$.
Natural dualities: embeddings

Natural embeddings

For all $A \in \mathcal{A}$ and $X \in \mathcal{X}$, there are embeddings

$$e_A : A \rightarrow ED(A) = X(\mathcal{A}(A, M), M),$$

given by

$$\forall a \in A \quad e_A(a) : \mathcal{A}(A, M) \rightarrow M$$

with

$$\forall x \in \mathcal{A}(A, M) \quad e_A(a)(x) := x(a),$$
Natural dualities: embeddings

Natural embeddings

For all $A \in \mathcal{A}$ and $X \in \mathcal{X}$, there are embeddings

$$e_A : A \to ED(A) = \mathcal{X}(\mathcal{A}(A, \mathcal{M}), \mathcal{M}),$$

given by

$$(\forall a \in A) \ e_A(a) : \mathcal{A}(A, \mathcal{M}) \to \mathcal{M} \ with$$

$$(\forall x \in \mathcal{A}(A, \mathcal{M})) \ e_A(a)(x) := x(a),$$

and

$$\varepsilon_X : X \to DE(X) = \mathcal{A}(\mathcal{X}(X, \mathcal{M}), \mathcal{M}),$$

given by

$$(\forall x \in X) \ \varepsilon_X(x) : \mathcal{X}(X, \mathcal{M}) \to \mathcal{M} \ with$$

$$(\forall \alpha \in \mathcal{X}(X, \mathcal{M})) \ \varepsilon_X(x)(\alpha) := \alpha(x).$$
Natural dualities: embeddings

Natural embeddings

For all $A \in \mathcal{A}$ and $X \in \mathcal{X}$, there are embeddings

$$e_A : A \rightarrow ED(A) = \mathcal{X}(\mathcal{A}(A, M), M), \text{ given by }$$

$$(\forall a \in A) \ e_A(a) : \mathcal{A}(A, M) \rightarrow M \text{ with }$$

$$(\forall x \in \mathcal{A}(A, M)) \ e_A(a)(x) := x(a),$$

and

$$\varepsilon_X : X \rightarrow DE(X) = \mathcal{A}(\mathcal{X}(X, M), M), \text{ given by }$$

$$(\forall x \in X) \ \varepsilon_X(x) : \mathcal{X}(X, M) \rightarrow M \text{ with }$$

$$(\forall \alpha \in \mathcal{X}(X, M)) \ \varepsilon_X(x)(\alpha) := \alpha(x).$$

These embeddings yield natural transformations

$$e : \text{id}_\mathcal{A} \rightarrow ED \quad \text{and} \quad \varepsilon : \text{id}_\mathcal{X} \rightarrow DE,$$

and $\langle D, E, e, \varepsilon \rangle$ is a dual adjunction between \mathcal{A} and \mathcal{X}.
Natural embeddings

For all \(A \in \mathcal{A} \) and \(X \in \mathcal{X} \), there are embeddings

\[
e_A : A \to ED(A) = \mathcal{X}(\mathcal{A}(A, M), M), \quad \text{given by}
\]
\[
(\forall a \in A) \ e_A(a) : \mathcal{A}(A, M) \to M \quad \text{with}
\]
\[
(\forall x \in \mathcal{A}(A, M)) \ e_A(a)(x) := x(a),
\]

and

\[
\varepsilon_X : X \to DE(X) = \mathcal{A}(\mathcal{X}(X, M), M), \quad \text{given by}
\]
\[
(\forall x \in X) \ \varepsilon_X(x) : \mathcal{X}(X, M) \to M \quad \text{with}
\]
\[
(\forall \alpha \in \mathcal{X}(X, M)) \ \varepsilon_X(x)(\alpha) := \alpha(x).
\]

These embeddings yield natural transformations

\[
e : \text{id}_\mathcal{A} \to ED \quad \text{and} \quad \varepsilon : \text{id}_\mathcal{X} \to DE,
\]

and \(\langle D, E, e, \varepsilon \rangle \) is a dual adjunction between \(\mathcal{A} \) and \(\mathcal{X} \).
A dual adjunction

\[
\begin{array}{ccc}
A & \overset{u}{\longrightarrow} & B \\
& e_A \downarrow & \downarrow e_B \\
ED(A) & \longrightarrow & ED(B) \\
& \downarrow ED(u) & \\
& ED(u) & \\
& \downarrow \downarrow & \\
A & \overset{e_A}{\longrightarrow} & ED(A) \\
& \downarrow u & \downarrow \downarrow \\
& \downarrow E(\varphi) & \\
& \downarrow \downarrow & \\
& E(X) & \\
& \downarrow \downarrow & \\
& \downarrow \downarrow & \\
& \downarrow \downarrow & \\
& D(A) & \\
\end{array}
\]

\[
\begin{array}{ccc}
X & \overset{\varphi}{\longrightarrow} & Y \\
& \varepsilon_X \downarrow & \downarrow \varepsilon_Y \\
DE(X) & \longrightarrow & DE(Y) \\
& \downarrow DE(\varphi) & \\
& \downarrow \downarrow & \\
X & \overset{\varepsilon_X}{\longrightarrow} & DE(X) \\
& \downarrow \varphi & \downarrow \downarrow \\
& \downarrow D(u) & \\
& \downarrow \downarrow & \\
& D(A) & \\
\end{array}
\]

- For \(u: A \to B\) and \(\varphi: X \to Y\), the two squares commute.
- \(\mathcal{A}(A, E(X)) \cong \mathcal{X}(X, D(A))\) via the triangles:

\[
u = E(D(u) \circ \varepsilon_X) \circ e_A \text{ and } \varphi = D(E(\varphi) \circ e_A) \circ \varepsilon_X.
\]
Duality

If $e_A : A \rightarrow ED(A)$ is surjective and therefore an isomorphism, for all A in \mathcal{A}, then we say that M yields a duality on \mathcal{A} (or that M dualises M).
Duality

If $e_A : A \rightarrow ED(A)$ is surjective and therefore an isomorphism, for all A in \mathcal{A}, then we say that \mathcal{M} yields a duality on \mathcal{A} (or that \mathcal{M} dualises \mathcal{M}).

Equivalently, \mathcal{M} yields a duality on \mathcal{A} if the dual adjunction $\langle D, E, e, \varepsilon \rangle$ is a dual category equivalence between \mathcal{A} and a full subcategory of \mathcal{X}.
If, in addition, $\varepsilon_X : X \rightarrow DE(X)$ is a surjection and therefore an isomorphism, for all X in \mathcal{X}, then \mathcal{M} yields a full duality on \mathcal{A} (or \mathcal{M} fully dualises \mathcal{M}).

Equivalently, \mathcal{M} yields a full duality on \mathcal{A} if the dual adjunction $\langle D, E, e, \varepsilon \rangle$ is a dual category equivalence between \mathcal{A} and \mathcal{X}.
Embeddings, injectivity and strong duality

Let M be any alter ego of an algebra M, and let

$$D: \mathcal{A} \rightarrow \mathcal{X} \quad \text{and} \quad E: \mathcal{X} \rightarrow \mathcal{A}$$

be the induced hom-functors.

It is easy to see that:

- D and E send surjections to embeddings,
- D sends embeddings in \mathcal{A} to surjections in \mathcal{X} if and only if M is injective in \mathcal{A}, and
- E sends embeddings in \mathcal{X} to surjections in \mathcal{A} if and only if M is injective in \mathcal{X}.

Strong duality

If M fully dualises M and M is injective in \mathcal{X} (so that surjections in \mathcal{A} correspond to embeddings in \mathcal{X}), we say that M yields a strong duality on \mathcal{A} (or that M strongly dualises M).

18 / 27
Let M be any alter ego of an algebra M, and let $D : \mathcal{A} \to \mathcal{X}$ and $E : \mathcal{X} \to \mathcal{A}$ be the induced hom-functors.

It is easy to see that:

- D and E send surjections to embeddings,
- D sends embeddings in \mathcal{A} to surjections in \mathcal{X} if and only if M is injective in $\mathcal{A},$ and
- E sends embeddings in \mathcal{X} to surjections in \mathcal{A} if and only if \tilde{M} is injective in $\mathcal{X}.$

Strong duality

If M fully dualises M and \tilde{M} is injective in \mathcal{X} (so that surjections in \mathcal{A} correspond to embeddings in \mathcal{X}), we say that \tilde{M} yields a strong duality on \mathcal{A} (or that \tilde{M} strongly dualises M).
Embeddings, injectivity and strong duality

Let \mathfrak{M} be any alter ego of an algebra \mathfrak{M}, and let

$$D: \mathcal{A} \to \mathcal{X} \quad \text{and} \quad E: \mathcal{X} \to \mathcal{A}$$

be the induced hom-functors.

It is easy to see that:

- D and E send surjections to embeddings,
- D sends embeddings in \mathcal{A} to surjections in \mathcal{X} if and only if \mathfrak{M} is injective in \mathcal{A}, and

Strong duality

If \mathfrak{M} fully dualises \mathfrak{M} and \mathfrak{M} is injective in \mathcal{X} (so that surjections in \mathcal{A} correspond to embeddings in \mathcal{X}), we say that \mathfrak{M} yields a strong duality on \mathcal{A} (or that \mathfrak{M} strongly dualises \mathfrak{M}).
Embeddings, injectivity and strong duality

Let \mathcal{M} be any alter ego of an algebra \mathcal{M}, and let

$$D : \mathcal{A} \to \mathcal{X} \quad \text{and} \quad E : \mathcal{X} \to \mathcal{A}$$

be the induced hom-functors.

It is easy to see that:

- D and E send surjections to embeddings,
- D sends embeddings in \mathcal{A} to surjections in \mathcal{X} if and only if \mathcal{M} is injective in \mathcal{A}, and
- E sends embeddings in \mathcal{X} to surjections in \mathcal{A} if and only if \mathcal{M} is injective in \mathcal{X}.

Strong duality

If \mathcal{M} fully dualises \mathcal{M} and \mathcal{M} is injective in \mathcal{X} (so that surjections in \mathcal{A} correspond to embeddings in \mathcal{X}), we say that \mathcal{M} yields a strong duality on \mathcal{A} (or that \mathcal{M} strongly dualises \mathcal{M}).
Embeddings, injectivity and strong duality

Let \mathcal{M} be any alter ego of an algebra \mathcal{M}, and let

$$D : \mathcal{A} \rightarrow \mathcal{X} \quad \text{and} \quad E : \mathcal{X} \rightarrow \mathcal{A}$$

be the induced hom-functors.

It is easy to see that:

- D and E send surjections to embeddings,
- D sends embeddings in \mathcal{A} to surjections in \mathcal{X} if and only if \mathcal{M} is injective in \mathcal{A}, and
- E sends embeddings in \mathcal{X} to surjections in \mathcal{A} if and only if \mathcal{M} is injective in \mathcal{X}.

Strong duality

If \mathcal{M} fully dualises \mathcal{M} and \mathcal{M} is injective in \mathcal{X} (so that surjections in \mathcal{A} correspond to embeddings in \mathcal{X}), we say that \mathcal{M} yields a strong duality on \mathcal{A} (or that \mathcal{M} strongly dualises \mathcal{M}).
Further examples

- All three of our original examples — Stone duality, Priestley duality and Pontryagin duality — are examples of strong dualities.
Further examples

- All three of our original examples — Stone duality, Priestley duality and Pontryagin duality — are examples of strong dualities.

- Every finite lattice-based algebra admits a strong duality. [Davey, Werner 1980 and Clark, Davey 1995]

- The unary algebra admits a duality, but not a full duality. [Hyndman, Willard 2000]

- There is an example of a three-element algebra that admits a full duality that can not be upgraded to a strong duality. [Pitkethly 2009]

- The two-element implication algebra does not admit a natural duality. [Davey, Werner 1980]
Further examples

- All three of our original examples — Stone duality, Priestley duality and Pontryagin duality — are examples of strong dualities.

- Every finite lattice-based algebra admits a strong duality. [Davey, Werner 1980 and Clark, Davey 1995]

- The unary algebra \[\langle \{0, 1\}; \to \rangle \] admits a duality, but not a full duality. [Hyndman, Willard 2000]
Further examples

- All three of our original examples — Stone duality, Priestley duality and Pontryagin duality — are examples of strong dualities.

- Every finite lattice-based algebra admits a strong duality. [Davey, Werner 1980 and Clark, Davey 1995]

- The unary algebra \(\langle \{0, 1\}; \to \rangle \) does not admit a natural duality. [Davey, Werner 1980]

- The two-element implication algebra \(I := \langle \{0, 1\}; \to \rangle \) does not admit a natural duality. [Davey, Werner 1980]

- The unary algebra \(\langle \{0, 1\}; \to \rangle \) admits a duality, but not a full duality. [Hyndman, Willard 2000]

- There is an example of a three-element algebra that admits a full duality that can not be upgraded to a strong duality. [Pitkethly 2009]
Further examples

- All three of our original examples — Stone duality, Priestley duality and Pontryagin duality — are examples of strong dualities.

- Every finite lattice-based algebra admits a strong duality. [Davey, Werner 1980 and Clark, Davey 1995]

- The unary algebra \(\langle \{0, 1\}; \to \rangle \) admits a duality, but not a full duality. [Hyndman, Willard 2000]

- There is an example of a three-element algebra that admits a full duality that can not be upgraded to a strong duality. [Pitkethly 2009]

- The two-element implication algebra \(I := \langle \{0, 1\}; \to \rangle \) does not admit a natural duality. [Davey, Werner 1980]
Outline

Examples of natural dualities

Natural dualities: the basics

Duality theorems

- Duals of free algebras
- (IC) and the Second Duality Theorem
- Priestley duality via the Second Duality Theorem
- Further applications of the Second Duality Theorem
For duality, relations will do

- Let $\mathbf{M} = \langle M; F \rangle$ be a finite algebra,
- let $\mathbf{M} \sim = \langle M; G, H, R, T \rangle$ be an alter ego of \mathbf{M}, and
- define $\mathcal{A} := \text{ISP}(\mathbf{M})$ and $\mathcal{X} := \text{IScP}^+(\mathbf{M})$.
For duality, relations will do

- Let $\mathbf{M} = \langle M; F \rangle$ be a finite algebra,
- let $\mathbf{M} \sim = \langle M; G, H, R, J \rangle$ be an alter ego of \mathbf{M}, and
- define $\mathcal{A} := \text{ISP}(\mathbf{M})$ and $\mathcal{X} := \text{ISP}^+(\mathbf{M})$.

Recall that to prove that $\mathbf{M} \sim$ yields a duality on \mathcal{A}, it remains to show that

- for all $A \in \mathcal{A}$, the evaluation maps e_A, for $a \in A$, are the only \mathcal{X}-morphisms from $\mathcal{A}(A, \mathbf{M})$ to \mathbf{M}.

Lemma (2.1.2) Let $\mathbf{M} \sim = \langle M; G, H, R, J \rangle$, define $\mathbf{M} \sim' = \langle M; R', T' \rangle$ where $R' := R \cup \{\text{graph}(h) | h \in G \cup H\}$.

Then $\mathbf{M} \sim$ yields a duality on \mathcal{A} if and only if $\mathbf{M} \sim'$ does.

Thus, as far as obtaining a duality is concerned, we can restrict our attention to purely relational alter egos.
For duality, relations will do

- Let $\mathcal{M} = \langle M; F \rangle$ be a finite algebra,
- let $\mathcal{M} = \langle M; G, H, R, T \rangle$ be an alter ego of \mathcal{M}, and
- define $\mathcal{A} := \text{ISP}(\mathcal{M})$ and $\mathcal{X} := \text{IS}_{c}\text{P}^+(\mathcal{M})$.

Recall that to prove that \mathcal{M} yields a duality on \mathcal{A}, it remains to show that

- for all $A \in \mathcal{A}$, the evaluation maps e_A, for $a \in A$, are the only \mathcal{X}-morphisms from $\mathcal{A}(A, \mathcal{M})$ to \mathcal{M}.

Lemma (2.1.2)

Let $\mathcal{M} = \langle M; G, H, R, T \rangle$, define $\mathcal{M}' = \langle M; R', T \rangle$ where

$$R' := R \cup \{\text{graph}(h) \mid h \in G \cup H\}$$

Then \mathcal{M} yields a duality on \mathcal{A} if and only if \mathcal{M}' does.
For duality, relations will do

Let $\mathcal{M} = \langle M; F \rangle$ be a finite algebra,

let $\mathcal{M} = \langle M; G, H, R, \mathcal{T} \rangle$ be an alter ego of \mathcal{M}, and

define $\mathcal{A} := \text{ISP}(\mathcal{M})$ and $\mathcal{X} := \text{ISP}^{+}(\mathcal{M})$.

Recall that to prove that \mathcal{M} yields a duality on \mathcal{A}, it remains to show that

for all $A \in \mathcal{A}$, the evaluation maps e_A, for $a \in A$, are the only \mathcal{X}-morphisms from $\mathcal{A}(A, \mathcal{M})$ to \mathcal{M}.

Lemma (2.1.2)

Let $\mathcal{M} = \langle M; G, H, R, \mathcal{T} \rangle$, define $\mathcal{M}' = \langle M; R', \mathcal{T} \rangle$ where

$$R' := R \cup \{\text{graph}(h) \mid h \in G \cup H\}$$

Then \mathcal{M} yields a duality on \mathcal{A} if and only if \mathcal{M}' does.

Thus, as far as obtaining a duality is concerned, we can restrict our attention to purely relational alter egos.
Given a non-empty set S, the set
\[F_M(S) = \{ t : M^S \to M \mid t \text{ is an } S\text{-ary term function on } M \} \]
is the free S-generated algebra in \mathcal{A} (the projections $\pi_s : M^S \to M$, for $s \in S$, are the free generators).
Duals of free algebras

Given a non-empty set S, the set
\[F_M(S) = \{ t : M^S \to M \mid t \text{ is an } S\text{-ary term function on } M \} \]
is the free S-generated algebra in \mathcal{A} (the projections $\pi_s : M^S \to M$, for $s \in S$, are the free generators).

Lemma (2.2.1)

Let S be a non-empty set. The then dual of $F_M(S)$, namely
\[D(F_M(S)) = \mathcal{A}(F_M(S), M), \]
is isomorphic in \mathcal{X} to M^S.

Duals of free algebras

Given a non-empty set S, the set

$$F_M(S) = \{ t: M^S \to M \mid t \text{ is an } S\text{-ary term function on } M \}$$

is the free S-generated algebra in \mathcal{A} (the projections $\pi_s: M^S \to M$, for $s \in S$, are the free generators).

Lemma (2.2.1)

Let S be a non-empty set. The then dual of $F_M(S)$, namely

$$D(F_M(S)) = \mathcal{A}(F_M(S), M),$$

is isomorphic in \mathcal{X} to M^S.

It is easy to see that every S-ary term function t on M is an \mathcal{X}-morphism, i.e., $t: M^S \to M$.

Duals of free algebras

- Given a non-empty set S, the set
 \[F_M(S) = \{ t: M^S \to M \mid t \text{ is an } S\text{-ary term function on } M \} \]
is the free S-generated algebra in \mathcal{A} (the projections $\pi_s: M^S \to M$, for $s \in S$, are the free generators).

Lemma (2.2.1)

Let S be a non-empty set. The then dual of $F_M(S)$, namely
\[D(F_M(S)) = \mathcal{A}(F_M(S), M), \]
is isomorphic in \mathcal{X} to M^S.

- It is easy to see that every S-ary term function t on M is an \mathcal{X}-morphism, i.e., $t: M^S \to M$.
- If M yields a duality on \mathcal{A}, then
 \[F_M(S) \cong ED(F_M(S)) \cong E(M^S) \cong \mathcal{X}(M^S, M). \]
Given a non-empty set S, the set
\[F_M(S) = \{ t : M^S \to M \mid t \text{ is an } S\text{-ary term function on } M \} \]
is the free S-generated algebra in \mathcal{A} (the projections $\pi_s : M^S \to M$, for $s \in S$, are the free generators).

Lemma (2.2.1)

Let S be a non-empty set. The then dual of $F_M(S)$, namely
\[D(F_M(S)) = \mathcal{A}(F_M(S), M), \]
is isomorphic in \mathcal{X} to M^S.

- It is easy to see that every S-ary term function t on M is an \mathcal{X}-morphism, i.e., $t : M^S \to M$.
- If \sim yields a duality on \mathcal{A}, then
\[F_M(S) \cong ED(F_M(S)) \cong E(M^S) \cong \mathcal{X}(M^S, M). \]
In fact, we have $F_M(S) = \mathcal{X}(M^S, M)$.
Duals of free algebras

Given a non-empty set S, the set

$$F_M(S) = \{ t : M^S \to M \mid t \text{ is an } S\text{-ary term function on } M \}$$

is the free S-generated algebra in \mathcal{A} (the projections $\pi_s : M^S \to M$, for $s \in S$, are the free generators).

Lemma (2.2.1)

Let S be a non-empty set. The then dual of $F_M(S)$, namely

$$D(F_M(S)) = \mathcal{A}(F_M(S), M),$$

is isomorphic in \mathcal{X} to M^S.

- It is easy to see that every S-ary term function t on M is an \mathcal{X}-morphism, i.e., $t : M^S \to M$.
- If M yields a duality on \mathcal{A}, then

$$F_M(S) \cong ED(F_M(S)) \cong E(M^S) \cong \mathcal{X}(M^S, M).$$

In fact, we have $F_M(S) = \mathcal{X}(M^S, M)$.

22/27
The interpolation condition (IC)

Let \mathcal{A}_{fin} and \mathcal{X}_{fin} consist of the finite members of \mathcal{A} and \mathcal{X}.

Lemma (2.2.5)

The following are equivalent:

(i) (IC) for each $n \in \mathbb{N}$ and each substructure \mathbb{X} of \mathcal{M}^n, every morphism $\alpha : \mathbb{X} \to \mathcal{M}$ extends to a term function $t : \mathcal{M}^n \to \mathcal{M}$ of the algebra \mathcal{M},

(ii) $(\text{INJ})^+_\text{fin}$ \mathcal{M} is injective in \mathcal{X}_{fin}, and

(CLO) for each $n \in \mathbb{N}$, every morphism $t : \mathcal{M}^n \to \mathcal{M}$ is an n-ary term function on \mathcal{M},

(iii) \mathcal{M} yields a duality on \mathcal{A}_{fin} and is injective in \mathcal{X}_{fin}.
The interpolation condition (IC)

Let \mathcal{A}_{fin} and \mathcal{X}_{fin} consist of the finite members of \mathcal{A} and \mathcal{X}.

Lemma (2.2.5)

The following are equivalent:

(i) (IC) for each $n \in \mathbb{N}$ and each substructure \mathcal{X} of \mathcal{M}^n, every morphism $\alpha : \mathcal{X} \to \mathcal{M}$ extends to a term function $t : \mathcal{M}^n \to \mathcal{M}$ of the algebra \mathcal{M},

(ii) $(\text{INJ})_{\text{fin}}^+$ \mathcal{M} is injective in \mathcal{X}_{fin}, and

(CLO) for each $n \in \mathbb{N}$, every morphism $t : \mathcal{M}^n \to \mathcal{M}$ is an n-ary term function on \mathcal{M},

(iii) \mathcal{M} yields a duality on \mathcal{A}_{fin} and is injective in \mathcal{X}_{fin}.

We would like to obtain a duality for \mathcal{A} in two steps:

- first show that \mathcal{M} yields a duality on \mathcal{A}_{fin}, then...
The interpolation condition (IC)

Let A_{fin} and X_{fin} consist of the finite members of A and X.

Lemma (2.2.5)

The following are equivalent:

(i) *(IC)* for each $n \in \mathbb{N}$ and each substructure X of M^n, every morphism $\alpha: X \to M$ extends to a term function $t: M^n \to M$ of the algebra M,

(ii) $(\text{INJ})_{\text{fin}}^+$ M is injective in X_{fin}, and

(CLO) for each $n \in \mathbb{N}$, every morphism $t: M^n \to M$ is an n-ary term function on M,

(iii) M yields a duality on A_{fin} and is injective in X_{fin}.

We would like to obtain a duality for A in two steps:

- first show that M yields a duality on A_{fin}, then
- apply some general theory to show that the duality lifts automatically to a duality on the whole of A.

This is achievable provided M enjoys some degree of finiteness.
The interpolation condition (IC)

Let \mathcal{A}_{fin} and \mathcal{X}_{fin} consist of the finite members of \mathcal{A} and \mathcal{X}.

Lemma (2.2.5)

The following are equivalent:

(i) (IC) for each $n \in \mathbb{N}$ and each substructure X of \mathcal{M}^n, every morphism $\alpha : X \to \mathcal{M}$ extends to a term function $t : M^n \to M$ of the algebra \mathcal{M},

(ii) $(\text{INJ})^+_{\text{fin}}$ \mathcal{M} is injective in \mathcal{X}_{fin}, and

(CLO) for each $n \in \mathbb{N}$, every morphism $t : \mathcal{M}^n \to \mathcal{M}$ is an n-ary term function on \mathcal{M},

(iii) \mathcal{M} yields a duality on \mathcal{A}_{fin} and is injective in \mathcal{X}_{fin}.

We would like to obtain a duality for \mathcal{A} in two steps:

- first show that \mathcal{M} yields a duality on \mathcal{A}_{fin}, then

- apply some general theory to show that the duality lifts automatically to a duality on the whole of \mathcal{A}.

This is achievable provided \mathcal{M} enjoys some degree of finiteness.
The Second Duality Theorem

If $\mathcal{M} = \langle M; G, R, \mathcal{T} \rangle$, that is, the type of \mathcal{M} includes no partial operations, then we call \mathcal{M} a total structure.

Theorem (2.2.7 Second Duality Theorem)
Assume that \mathcal{M} is a total structure with R finite. If (IC) holds, then \mathcal{M} yields a duality on \mathcal{A} and is injective in \mathcal{X}.

This result is rather surprising. ▶ It gives us simple finitary conditions which yield both a dual adjunction between the categories \mathcal{A} and \mathcal{X} and a topological representation of every algebra in \mathcal{A}, but it requires us to do no category theory and no topology!
The Second Duality Theorem

If $\mathfrak{M} = \langle M; G, R, \tau \rangle$, that is, the type of \mathfrak{M} includes no partial operations, then we call \mathfrak{M} a total structure.

Theorem (2.2.7 Second Duality Theorem)

Assume that \mathfrak{M} is a total structure with R finite. If (IC) holds, then \mathfrak{M} yields a duality on \mathcal{A} and is injective in \mathcal{X}.

This result is rather surprising.

- It gives us simple finitary conditions which yield both a dual adjunction between the categories \mathcal{A} and \mathcal{X} and a topological representation of every algebra in \mathcal{A},
The Second Duality Theorem

If $\bar{M} = \langle M; G, R, \mathcal{T} \rangle$, that is, the type of \bar{M} includes no partial operations, then we call \bar{M} a total structure.

Theorem (2.2.7 Second Duality Theorem)
Assume that \bar{M} is a total structure with R finite. If (IC) holds, then \bar{M} yields a duality on \mathcal{A} and is injective in \mathcal{X}.

This result is rather surprising.

- It gives us simple finitary conditions which yield both a dual adjunction between the categories \mathcal{A} and \mathcal{X} and a topological representation of every algebra in \mathcal{A},
- but it requires us to do no category theory and no topology!
Priestley duality via the Second Duality Theorem

Recall that

- $\mathbb{D} = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle$ is the two-element bounded lattice,
- $\mathbb{D} \sim = \langle \{0, 1\}; \leq, T \rangle$ is the two-element chain endowed with the discrete topology.

Theorem (Half of Priestley duality)

$\mathbb{D} \sim$ yields a duality on the class $\mathcal{D} := \text{ISP}(\mathbb{D})$ of bounded distributive lattices, i.e., $e_A : A \to ED(A)$ is an isomorphism, for all $A \in \mathcal{D}$.

Proof.

We will prove that (IC) holds. Let X be a substructure of \mathcal{D}^n and let $\varphi : X \to \mathcal{D}$ be a morphism, i.e., φ is order-preserving.

[We need to find a term function $t : \{0, 1\}^n \to \{0, 1\}$ on \mathbb{D} such that $t(x) = \varphi(x)$, for all $x \in X$.]
The proof continued

[X is a substructure of D^n and $\varphi : X \to D$ is order-preserving.

We need to find a term function $t : \{0, 1\}^n \to \{0, 1\}$ on D such that $t(x) = \varphi(x)$, for all $x \in X$.]

The proof continued

[X is a substructure of D^n and $\varphi : X \to D$ is order-preserving.

We need to find a term function $t : \{0, 1\}^n \to \{0, 1\}$ on D such that $t(x) = \varphi(x)$, for all $x \in X$.]

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.
Priestley duality via the Second Duality Theorem

The proof continued

[X is a substructure of \mathbb{D}^n and $\varphi: X \to \mathbb{D}$ is order-preserving.

We need to find a term function $t: \{0, 1\}^n \to \{0, 1\}$ on \mathbb{D} such that $t(x) = \varphi(x)$, for all $x \in X$.]

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

Otherwise, define $t(v_1, \ldots, v_n)$ by

$$t(v_1, \ldots, v_n) := \bigvee_{a \in \varphi^{-1}(1), a_i = 1} \left(\bigwedge_{a \in \varphi^{-1}(1)} v_i \right).$$
The proof continued

[X is a substructure of D^n and $\varphi : X \to D$ is order-preserving.]

We need to find a term function $t : \{0, 1\}^n \to \{0, 1\}$ on D such that $t(x) = \varphi(x)$, for all $x \in X$.

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

Otherwise, define $t(v_1, \ldots, v_n)$ by

$$t(v_1, \ldots, v_n) := \bigvee_{a \in \varphi^{-1}(1) \text{ } a_i = 1} \left(\bigwedge v_i \right).$$

Let $x \in X$. If $\varphi(x) = 1$, then $t(x) = 1$, by construction.
The proof continued

[X is a substructure of \mathcal{D}^n and $\varphi : X \to \mathcal{D}$ is order-preserving.]

We need to find a term function $t : \{0, 1\}^n \to \{0, 1\}$ on \mathcal{D} such that $t(x) = \varphi(x)$, for all $x \in X$.

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

Otherwise, define $t(v_1, \ldots, v_n)$ by

\[
t(v_1, \ldots, v_n) := \bigvee_{a \in \varphi^{-1}(1)} \left(\bigwedge_{a_i = 1} v_i \right).
\]

Let $x \in X$. If $\varphi(x) = 1$, then $t(x) = 1$, by construction.
If $t(x) = 1$, then there exists $a \in \varphi^{-1}(1)$ with $a_i = 1 \Rightarrow x_i = 1$.
Hence $\varphi(a) = 1$ and $a \leq x$. As φ is order-preserving, we have $\varphi(x) = 1$.

The proof continued

[X is a substructure of D^n and $\varphi: X \to D$ is order-preserving.

We need to find a term function $t: \{0, 1\}^n \to \{0, 1\}$ on D such that $t(x) = \varphi(x)$, for all $x \in X$.]

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

Otherwise, define $t(v_1, \ldots, v_n)$ by

$$t(v_1, \ldots, v_n) := \bigvee_{a \in \varphi^{-1}(1)} \left(\bigwedge_{a_i = 1} v_i \right).$$

Let $x \in X$. If $\varphi(x) = 1$, then $t(x) = 1$, by construction.

If $t(x) = 1$, then there exists $a \in \varphi^{-1}(1)$ with $a_i = 1 \Rightarrow x_i = 1$.

Hence $\varphi(a) = 1$ and $a \preceq x$. As φ is order-preserving, we have $\varphi(x) = 1$.

[X is a substructure of \mathbb{D}^n and $\varphi: X \to \mathbb{D}$ is order-preserving.

We need to find a term function $t: \{0, 1\}^n \to \{0, 1\}$ on \mathbb{D} such that $t(x) = \varphi(x)$, for all $x \in X$.]

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

Otherwise, define $t(v_1, \ldots, v_n)$ by

$$t(v_1, \ldots, v_n) := \bigvee_{a \in \varphi^{-1}(1)} \bigwedge_{a_i = 1} v_i.$$

Let $x \in X$. If $\varphi(x) = 1$, then $t(x) = 1$, by construction.
If $t(x) = 1$, then there exists $a \in \varphi^{-1}(1)$ with $a_i = 1 \Rightarrow x_i = 1$. Hence $\varphi(a) = 1$ and $a \leq x$. As φ is order-preserving, we have $\varphi(x) = 1$. Hence $t(x) = \varphi(x)$, for all $x \in X$.
The proof continued

[X is a substructure of \mathfrak{D}^n and $\varphi : X \rightarrow \mathfrak{D}$ is order-preserving.]

We need to find a term function $t : \{0, 1\}^n \rightarrow \{0, 1\}$ on \mathfrak{D} such that $t(x) = \varphi(x)$, for all $x \in X$.

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

Otherwise, define $t(v_1, \ldots, v_n)$ by

$$t(v_1, \ldots, v_n) := \bigvee_{a \in \varphi^{-1}(1)} \left(\bigwedge_{a_i = 1} v_i \right).$$

Let $x \in X$. If $\varphi(x) = 1$, then $t(x) = 1$, by construction.
If $t(x) = 1$, then there exists $a \in \varphi^{-1}(1)$ with $a_i = 1 \Rightarrow x_i = 1$.
Hence $\varphi(a) = 1$ and $a \leq x$. As φ is order-preserving, we have $\varphi(x) = 1$. Hence $t(x) = \varphi(x)$, for all $x \in X$. □
Further applications of the Second Duality Theorem

Some exercises for you. In each case, prove that (IC) holds.

(1) [Stone] Let $\mathcal{B} = \langle \{0, 1\}; \lor, \land, ', 0, 1 \rangle$; then $\mathcal{B} = \text{ISP}(\mathcal{B})$ is the class of Boolean algebras. Show that $\mathcal{B} \cong \langle \{0, 1\}; \top \rangle$ yields a duality on \mathcal{B}.

(2) [Priestley] Let $\mathcal{L} = \langle \{0, 1\}; \lor, \land \rangle$; then $\mathcal{L} = \text{ISP}(\mathcal{L})$ is the class of distributive lattices. Show that $\mathcal{L} \cong \langle \{0, 1\}; 0, 1, \leq, \top \rangle$ yields a duality on \mathcal{L}.

(3) [Hofmann–Mislove–Stralka] Let $\mathcal{S} = \langle \{0, 1\}; \land \rangle$; then $\mathcal{S} = \text{ISP}(\mathcal{S})$ is the class of meet semilattices. Show that $\mathcal{S} \cong \langle \{0, 1\}; \land, 0, 1, \top \rangle$ yields a duality on \mathcal{S}.

(4) [Pontryagin] Let $\mathcal{Z}_m = \langle \mathbb{Z}_m; +, -, 0 \rangle$; then $\mathcal{A}_m = \text{ISP}(\mathcal{Z}_m)$ is the class of abelian groups of exponent m. Show that $\mathcal{Z} \cong \langle \mathbb{Z}_m; +, -, 0, \top \rangle$ yields a duality on \mathcal{A}_m.