Lecture 2: An invitation to natural dualities

Brian A. Davey

TACL 2015 School Campus of Salerno (Fisciano) 15–19 June 2015 Examples of natural dualities

Natural dualities: the basics

Duality theorems

Outline

Examples of natural dualities Boolean algebras – Stone

Distributive lattices – Priestley Abelian groups – Pontryagin

Natural dualities: the basics

Duality theorems

Boolean algebras

Boolean spaces

(i.e., compact, Hausdorff and a basis of clopen sets)

Boolean spaces

(i.e., compact, Hausdorff and a basis of clopen sets)

Boolean algebras

Boolean algebra of all finite or cofinite subsets of $\ensuremath{\mathbb{N}}$

Boolean algebras

Countable atomless Boolean algebra

 $\mathbf{F}_{\mathcal{B}}(\omega)$

Boolean spaces

(i.e., compact, Hausdorff and a basis of clopen sets)

0000		∞		0000		0000	
0	$\frac{1}{9}$	<u>2</u> 9	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{7}{9}$	<u>8</u> 9	1

Bounded distributive lattices

Priestley spaces

Priestley spaces

Bounded distributive lattices

?

Priestley spaces

Priestley spaces

Priestley spaces

0

Bounded distributive lattices

 $\mathcal{D} = \mathsf{ISP}(\underline{\mathbf{D}}), \mathsf{where}$ $\underline{\mathbf{D}} = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle$

 $D(\mathbf{A}) := \mathcal{D}(\mathbf{A}, \underline{\mathbf{D}}) \leqslant \underline{\mathbf{D}}^{\mathcal{A}}$

D

Priestley spaces

 $egin{aligned} \mathcal{P} &= \mathsf{IS}_{\mathsf{c}}\mathsf{P}^+(\mathbf{D}), \, \mathsf{where} \ \mathbf{D} &= \langle \{\mathbf{0},\mathbf{1}\};\leqslant, \mathfrak{T} \rangle \end{aligned}$

 $E(\mathbf{X}) := \mathcal{P}(\mathbf{X}, \underline{\mathbf{D}}) \leq \underline{\mathbf{D}}^{X}$

0

Abelian groups

Compact top. abelian groups (i.e., compact, Hausdorff and \cdot and $^{-1}$ continuous)

Compact top. abelian groups

 $\mathbf{\tilde{T}} = \langle T; \cdot, {}^{-1}, \mathbf{1}, \mathfrak{T} \rangle$ The circle group

The integers modulo n

Compact top. abelian groups

$$\mathbf{Z}_n^{\mathfrak{T}} = \langle \mathbb{Z}_n; \oplus_n, \ominus_n, 0, \mathfrak{T} \rangle$$

Abelian groups

Compact top. abelian groups

A 🖵 🕨 B

Abelian groups

Compact top. abelian groups

Compact top. abelian groups

 $\mathfrak{X} = \mathsf{IS}_{\mathsf{c}}\mathsf{P}^{+}(\mathbf{T}), \text{ where}$ $\mathbf{T} = \langle T; \cdot, {}^{-1}, \mathbf{1}, \mathfrak{T} \rangle$

$$E(\mathbf{X}) := \mathfrak{X}(\mathbf{X}, \mathbf{T}) \leqslant \mathbf{T}^X$$

Let $\underline{\mathbf{M}} = \langle M; F \rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underline{\mathbf{M}} = \langle M; G, R, \mathfrak{T} \rangle$ be the corresponding topological structure, $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ or $\underline{\mathbf{T}}$.

Let $\underline{\mathbf{M}} = \langle M; F \rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underline{\mathbf{M}} = \langle M; G, R, \mathfrak{T} \rangle$ be the corresponding topological structure, $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ or $\underline{\mathbf{T}}$.

 A duality for A := ISP(<u>M</u>) gives a uniform way to represent each algebra A ∈ A as an algebra of continuous functions.

Let $\underline{\mathbf{M}} = \langle M; F \rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underline{\mathbf{M}} = \langle M; G, R, \mathfrak{T} \rangle$ be the corresponding topological structure, $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ or $\underline{\mathbf{T}}$.

- A duality for A := ISP(M) gives a uniform way to represent each algebra A ∈ A as an algebra of continuous functions.
- If we have a full duality and have axiomatised the class $\mathfrak{X} := IS_c \mathsf{P}^+(\underline{\mathsf{M}})$, we can find examples of algebras in \mathcal{A} by simply constructing objects in \mathfrak{X} .

Let $\underline{\mathbf{M}} = \langle M; F \rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underline{\mathbf{M}} = \langle M; G, R, \mathfrak{T} \rangle$ be the corresponding topological structure, $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ or $\underline{\mathbf{T}}$.

- A duality for A := ISP(M) gives a uniform way to represent each algebra A ∈ A as an algebra of continuous functions.
- If we have a full duality and have axiomatised the class $\mathfrak{X} := IS_c \mathsf{P}^+(\underline{\mathsf{M}})$, we can find examples of algebras in \mathcal{A} by simply constructing objects in \mathfrak{X} .
- Some dualities have the powerful property of being "logarithmic"—they turn products into sums; e.g., in both ℬ and ℬ we have D(A × B) ≅ D(A) ∪ D(B).

• Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathfrak{X} . For example,

• Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathfrak{X} . For example,

(1) free algebras in ${\cal A}$ are easily described via their duals in ${\mathfrak X},$

- Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathcal{X} . For example,
 - (1) free algebras in ${\cal A}$ are easily described via their duals in ${\mathfrak X},$
 - (2) while a coproduct A * B is often difficult to describe, its dual, D(A * B), is simply the cartesian product D(A) × D(B),

- Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathfrak{X} . For example,
 - (1) free algebras in \mathcal{A} are easily described via their duals in \mathfrak{X} ,
 - (2) while a coproduct A * B is often difficult to describe, its dual, D(A * B), is simply the cartesian product D(A) × D(B),
 - congruence lattices in A may be studied by looking at lattices of closed substructures in X,

- Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathfrak{X} . For example,
 - (1) free algebras in \mathcal{A} are easily described via their duals in \mathfrak{X} ,
 - (2) while a coproduct **A** * **B** is often difficult to describe, its dual, *D*(**A** * **B**), is simply the cartesian product *D*(**A**) × *D*(**B**),
 - (3) congruence lattices in A may be studied by looking at lattices of closed substructures in X,
 - (4) injective algebras in A may be characterised by first studying projective structures in X,

- Algebraic questions in \mathcal{A} can be answered by translating them into (often simpler) questions in \mathfrak{X} . For example,
 - (1) free algebras in ${\cal A}$ are easily described via their duals in ${\mathfrak X},$
 - (2) while a coproduct **A** * **B** is often difficult to describe, its dual, *D*(**A** * **B**), is simply the cartesian product *D*(**A**) × *D*(**B**),
 - (3) congruence lattices in A may be studied by looking at lattices of closed substructures in X,
 - (4) injective algebras in A may be characterised by first studying projective structures in X,
 - (5) algebraically closed and existentially closed algebras may be described via their duals.

Some observations on ${\mathfrak B}, {\mathfrak D}$ and ${\mathcal A}$

For the functors *D* and *E* to be well defined, we need the algebras $\underline{\mathbf{B}}$, $\underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$ and the corresponding topological structures $\underline{\mathbf{B}}$, $\underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$ to be compatible.

For the functors *D* and *E* to be well defined, we need the algebras $\underline{\mathbf{B}}$, $\underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$ and the corresponding topological structures $\underline{\mathbf{B}}$, $\underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$ to be compatible.

Let $\underline{\mathbf{M}} = \langle M; F \rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underline{\mathbf{M}} = \langle M; G, R, \mathfrak{T} \rangle$ be the corresponding topological structure, $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ or $\underline{\mathbf{T}}$.

 $\begin{array}{l} \text{Define }\mathcal{A}:=\text{ISP}(\underline{\textbf{M}}) \text{ and } \mathfrak{X}:=\text{IS}_{c}\mathsf{P}^{+}(\underline{\mathbb{M}}) \text{, and let }\textbf{A}\in\mathcal{A} \text{ and } \\ \textbf{X}\in\mathfrak{X}. \end{array}$

For the functors *D* and *E* to be well defined, we need the algebras $\underline{\mathbf{B}}$, $\underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$ and the corresponding topological structures $\underline{\mathbf{B}}$, $\underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$ to be compatible.

Let $\underline{\mathbf{M}} = \langle M; F \rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underline{\mathbf{M}} = \langle M; G, R, \mathfrak{T} \rangle$ be the corresponding topological structure, $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ or $\underline{\mathbf{T}}$.

 $\begin{array}{l} \text{Define }\mathcal{A}:=\text{ISP}(\underline{\textbf{M}}) \text{ and } \mathfrak{X}:=\text{IS}_{c}\mathsf{P}^{+}(\underline{\textbf{M}}) \text{, and let } \textbf{A}\in\mathcal{A} \text{ and } \\ \textbf{X}\in\mathfrak{X}. \end{array}$

Since we define $D(\mathbf{A}) := \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ and $E(\mathbf{X}) := \mathfrak{X}(\mathbf{X}, \underline{\mathbf{M}})$, in order to have $D(\mathbf{A}) \in IS_c P^+(\underline{\mathbf{M}})$ and $E(\mathbf{X}) \in ISP(\underline{\mathbf{M}})$, we need

► A(A, M) to be a topologically closed substructure of M^A, and
For the functors *D* and *E* to be well defined, we need the algebras $\underline{\mathbf{B}}$, $\underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$ and the corresponding topological structures $\underline{\mathbf{B}}$, $\underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$ to be compatible.

Let $\underline{\mathbf{M}} = \langle M; F \rangle$ be one of $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ and $\underline{\mathbf{T}}$, and let $\underline{\mathbf{M}} = \langle M; G, R, \mathfrak{T} \rangle$ be the corresponding topological structure, $\underline{\mathbf{B}}, \underline{\mathbf{D}}$ or $\underline{\mathbf{T}}$.

 $\begin{array}{l} \text{Define }\mathcal{A}:=\text{ISP}(\underline{\textbf{M}}) \text{ and } \mathfrak{X}:=\text{IS}_{c}\mathsf{P}^{+}(\underline{\textbf{M}}) \text{, and let } \textbf{A}\in\mathcal{A} \text{ and } \\ \textbf{X}\in\mathfrak{X}. \end{array}$

Since we define $D(\mathbf{A}) := \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ and $E(\mathbf{X}) := \mathfrak{X}(\mathbf{X}, \underline{\mathbf{M}})$, in order to have $D(\mathbf{A}) \in \mathsf{ISc}\mathsf{P}^+(\underline{\mathbf{M}})$ and $E(\mathbf{X}) \in \mathsf{ISP}(\underline{\mathbf{M}})$, we need

- ► A(A, M) to be a topologically closed substructure of M^A, and
- $\mathfrak{X}(\mathbf{X}, \mathbf{M})$ to be a subalgebra of \mathbf{M}^{X} .

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of $\underline{\mathbf{M}}^{A}$, and
- $\mathfrak{X}(\mathbf{X}, \underline{\mathsf{M}})$ is a subalgebra of $\underline{\mathsf{M}}^{\mathsf{X}}$.

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of $\underline{\mathbf{M}}^{\mathcal{A}}$, and
- $\mathfrak{X}(\mathbf{X}, \underline{\mathbf{M}})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
 - ► A(A, M) will be topologically closed in M^A, provided the topology on M is Hausdorff and the operations in F are continuous.

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of $\underline{\mathbf{M}}^{\mathcal{A}}$, and
- $\mathfrak{X}(\mathbf{X}, \underline{\mathbf{M}})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
 - ► A(A, M) will be topologically closed in M^A, provided the topology on M is Hausdorff and the operations in F are continuous. (If M is compact, then so is A(A, M).)

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of $\underline{\mathbf{M}}^{\mathcal{A}}$, and
- $\mathfrak{X}(\mathbf{X}, \underline{\mathbf{M}})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
 - ► A(A, M) will be topologically closed in M^A, provided the topology on M is Hausdorff and the operations in F are continuous. (If M is compact, then so is A(A, M).)
 - ▶ $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be closed under the operations in *G* provided each (*n*-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^n$ to $\underline{\mathbf{M}}$.

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of $\underline{\mathbf{M}}^{\mathcal{A}}$, and
- $\mathfrak{X}(\mathbf{X}, \underline{\mathbf{M}})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
 - ► A(A, M) will be topologically closed in M^A, provided the topology on M is Hausdorff and the operations in F are continuous. (If M is compact, then so is A(A, M).)
 - ► $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be closed under the operations in *G* provided each (*n*-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^n$ to $\underline{\mathbf{M}}$.
 - $\mathfrak{X}(\mathbf{X}, \mathbf{M})$ will be a subalgebra of \mathbf{M}^{X} provided
 - each (*n*-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^n$ to $\underline{\mathbf{M}}$,
 - each (*n*-ary) relation $r \in R$ is a subuniverse of $\underline{\mathbf{M}}^n$, and
 - each operation in F is continuous.

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of $\underline{\mathbf{M}}^{\mathcal{A}}$, and
- $\mathfrak{X}(\mathbf{X}, \underline{\mathbf{M}})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
 - ► A(A, M) will be topologically closed in M^A, provided the topology on M is Hausdorff and the operations in F are continuous. (If M is compact, then so is A(A, M).)
 - ► $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be closed under the operations in *G* provided each (*n*-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^n$ to $\underline{\mathbf{M}}$.
 - $\mathfrak{X}(\mathbf{X}, \mathbf{M})$ will be a subalgebra of \mathbf{M}^{X} provided
 - each (*n*-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^n$ to $\underline{\mathbf{M}}$,
 - each (*n*-ary) relation $r \in R$ is a subuniverse of $\underline{\mathbf{M}}^n$, and
 - each operation in F is continuous.

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of $\underline{\mathbf{M}}^{\mathcal{A}}$, and
- $\mathfrak{X}(\mathbf{X}, \underline{\mathbf{M}})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
 - ► A(A, M) will be topologically closed in M^A, provided the topology on M is Hausdorff and the operations in F are continuous. (If M is compact, then so is A(A, M).)
 - ▶ $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be closed under the operations in *G* provided each (*n*-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^n$ to $\underline{\mathbf{M}}$.
 - $\mathfrak{X}(\mathbf{X}, \mathbf{M})$ will be a subalgebra of \mathbf{M}^{X} provided
 - each (*n*-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^n$ to $\underline{\mathbf{M}}$,
 - each (*n*-ary) relation $r \in R$ is a subuniverse of $\underline{\mathbf{M}}^n$, and
 - each operation in F is continuous.

Let $\underline{\mathbf{M}} = \langle M; F \rangle$, let $\underline{\mathbf{M}} = \langle M; G, R, \mathfrak{T} \rangle$, define $\mathcal{A} := \mathsf{ISP}(\underline{\mathbf{M}})$ and $\mathfrak{X} := \mathsf{IS}_c\mathsf{P}^+(\underline{\mathbf{M}})$, and let $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathfrak{X}$. We need $\underline{\mathbf{M}}$ and $\underline{\mathbf{M}}$ to be compatible in such a way that

- $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ is a topologically closed substructure of $\underline{\mathbf{M}}^{\mathcal{A}}$, and
- $\mathfrak{X}(\mathbf{X}, \underline{\mathbf{M}})$ is a subalgebra of $\underline{\mathbf{M}}^{X}$.
 - ► A(A, M) will be topologically closed in M^A, provided the topology on M is Hausdorff and the operations in F are continuous. (If M is compact, then so is A(A, M).)
 - ► $\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})$ will be closed under the operations in *G* provided each (*n*-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^n$ to $\underline{\mathbf{M}}$.
 - $\mathfrak{X}(\mathbf{X}, \mathbf{M})$ will be a subalgebra of $\mathbf{M}^{\mathcal{X}}$ provided
 - each (*n*-ary) $g \in G$ is a homomorphism from $\underline{\mathbf{M}}^n$ to $\underline{\mathbf{M}}$,
 - each (*n*-ary) relation $r \in R$ is a subuniverse of $\underline{\mathbf{M}}^n$, and
 - each operation in F is continuous.

When these highlighted conditions hold, we say that g and r are compatible with or algebraic over <u>M</u>.

Examples of natural dualities

Natural dualities: the basics

Alter egos Categories, functors and natural transformations The basic definitions: duality, full duality, strong duality Further examples

Duality theorems

Generalizing our examples, we start with an algebra \underline{M} and wish to find a dual category for the prevariety $\mathcal{A} := ISP(\underline{M})$.

Generalizing our examples, we start with an algebra \underline{M} and wish to find a dual category for the prevariety $\mathcal{A} := ISP(\underline{M})$.

An alter ego of an algebra

A structure $\underline{M} = \langle M; G, ..., R, T \rangle$ is an alter ego of \underline{M} if it is compatible with \underline{M} , that is,

Generalizing our examples, we start with an algebra \underline{M} and wish to find a dual category for the prevariety $\mathcal{A} := ISP(\underline{M})$.

An alter ego of an algebra

A structure $\underline{M} = \langle M; G, ..., R, T \rangle$ is an alter ego of \underline{M} if it is compatible with \underline{M} , that is,

► G is a set of operations on M, each of which is a homomorphism with respect to M,

- ► *R* is a set of relations on *M*, each of which is a subuniverse of the appropriate power of <u>M</u>, and
- ➤ T is a compact Hausdorff topology on *M* with respect to which the operations on <u>M</u> are continuous.

Generalizing our examples, we start with an algebra \underline{M} and wish to find a dual category for the prevariety $\mathcal{A} := ISP(\underline{M})$.

An alter ego of an algebra

A structure $\underline{M} = \langle M; G, H, R, T \rangle$ is an alter ego of \underline{M} if it is compatible with \underline{M} , that is,

- ► G is a set of operations on M, each of which is a homomorphism with respect to M,
- ► *H* is a set of partial operations on *M*, each of which is a homomorphism with respect to <u>M</u>,
- ► R is a set of relations on M, each of which is a subuniverse of the appropriate power of <u>M</u>, and
- ➤ T is a compact Hausdorff topology on *M* with respect to which the operations on <u>M</u> are continuous.

Let $\underline{M} = \langle M; G, H, R, T \rangle$ be an alter ego of \underline{M} .

Let $\underline{M} = \langle M; G, H, R, \mathfrak{T} \rangle$ be an alter ego of \underline{M} .

The categories ${\mathcal A}$ and ${\mathfrak X}$

- Define $\mathcal{A} := \mathsf{ISP}(\underline{\mathbf{M}})$: the algebraic category of interest.
- Define $\mathfrak{X} := IS_c P^+(\mathbf{M})$: the potential dual category for \mathcal{A} .

Let $\underline{M} = \langle M; G, H, R, \mathfrak{T} \rangle$ be an alter ego of \underline{M} .

The categories $\,\mathcal{A}\,$ and $\,\mathfrak{X}\,$

- Define $\mathcal{A} := \mathsf{ISP}(\underline{\mathbf{M}})$: the algebraic category of interest.
- Define $\mathfrak{X} := \mathsf{IS}_{\mathsf{c}}\mathsf{P}^+(\mathbf{M})$: the potential dual category for \mathcal{A} .

The contravariant functors D and E

• There are natural hom-functors $D: \mathcal{A} \to \mathfrak{X}$ and $E: \mathfrak{X} \to \mathcal{A}$.

Let $\underline{M} = \langle M; G, H, R, \mathfrak{T} \rangle$ be an alter ego of \underline{M} .

The categories $\,\mathcal{A}\,$ and $\,\mathfrak{X}\,$

- Define $\mathcal{A} := \mathsf{ISP}(\underline{\mathbf{M}})$: the algebraic category of interest.
- Define $\mathfrak{X} := \mathsf{IS}_{\mathsf{c}}\mathsf{P}^+(\underline{\mathsf{M}})$: the potential dual category for \mathcal{A} .

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \to \mathfrak{X}$ and $E: \mathfrak{X} \to \mathcal{A}$.
- For each algebra A in A, the underlying set of D(A) is the set hom(A, M) of all homomorphisms from A into M, and D(A) is a topologically closed substructure of M^A.

Let $\underline{M} = \langle M; G, H, R, \mathfrak{T} \rangle$ be an alter ego of \underline{M} .

The categories $\,\mathcal{A}\,$ and $\,\mathfrak{X}\,$

- Define $\mathcal{A} := \mathsf{ISP}(\underline{\mathbf{M}})$: the algebraic category of interest.
- Define $\mathfrak{X} := \mathsf{IS}_{c}\mathsf{P}^{+}(\underline{\mathsf{M}})$: the potential dual category for \mathcal{A} .

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \to \mathfrak{X}$ and $E: \mathfrak{X} \to \mathcal{A}$.
- For each algebra A in A, the underlying set of D(A) is the set hom(A, M) of all homomorphisms from A into M, and D(A) is a topologically closed substructure of M^A.

Let $\underline{M} = \langle M; G, H, R, T \rangle$ be an alter ego of \underline{M} .

The categories $\,\mathcal{A}\,$ and $\,\mathcal{X}\,$

- Define $\mathcal{A} := \mathsf{ISP}(\underline{\mathbf{M}})$: the algebraic category of interest.
- Define $\mathfrak{X} := \mathsf{IS}_{\mathsf{c}}\mathsf{P}^+(\underline{\mathsf{M}})$: the potential dual category for \mathcal{A} .

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \to \mathfrak{X}$ and $E: \mathfrak{X} \to \mathcal{A}$.
- For each algebra A in A, the underlying set of D(A) is the set hom(A, M) of all homomorphisms from A into M, and D(A) is a topologically closed substructure of M^A.
- For each structure X in X, the underlying set of E(X) is the set hom(X, M) of all continuous homomorphisms from X into M, and E(X) is a subalgebra of M^X.

Natural embeddings

For all $\textbf{A} \in \mathcal{A}$ and $\textbf{X} \in \mathfrak{X},$ there are embeddings

$$e_{\mathbf{A}} \colon \mathbf{A} \to ED(\mathbf{A}) = \mathfrak{X}(\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}), \underline{\mathbf{M}}), \text{ given by}$$

 $(\forall a \in A) \ e_{\mathbf{A}}(a) \colon \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \to \underline{\mathbf{M}} \text{ with}$
 $(\forall x \in \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})) \ e_{\mathbf{A}}(a)(x) := x(a),$

Natural embeddings

For all $\textbf{A} \in \mathcal{A}$ and $\textbf{X} \in \mathfrak{X},$ there are embeddings

$$e_{\mathbf{A}} : \mathbf{A} \to ED(\mathbf{A}) = \mathfrak{X}(\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}), \underline{\mathbf{M}}), \text{ given by}$$

 $(\forall a \in A) \ e_{\mathbf{A}}(a) : \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \to \underline{\mathbf{M}} \text{ with}$
 $(\forall x \in \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})) \ e_{\mathbf{A}}(a)(x) := x(a),$

and

$$\begin{split} \varepsilon_{\mathbf{X}} \colon \mathbf{X} &\to DE(\mathbf{X}) = \mathcal{A}(\mathfrak{X}(\mathbf{X}, \underline{\mathsf{M}}), \underline{\mathsf{M}}), & \text{given by} \\ (\forall x \in X) \ \varepsilon_{\mathbf{X}}(x) \colon \mathfrak{X}(\mathbf{X}, \underline{\mathsf{M}}) \to \underline{\mathsf{M}} & \text{with} \\ (\forall \alpha \in \mathfrak{X}(\mathbf{X}, \underline{\mathsf{M}})) \ \varepsilon_{\mathbf{X}}(x)(\alpha) := \alpha(x). \end{split}$$

Natural embeddings

For all $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$, there are embeddings

$$e_{\mathbf{A}} : \mathbf{A} \to ED(\mathbf{A}) = \mathfrak{X}(\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}), \underline{\mathbf{M}}), \text{ given by}$$

 $(\forall a \in A) \ e_{\mathbf{A}}(a) : \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \to \underline{\mathbf{M}} \text{ with}$
 $(\forall x \in \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})) \ e_{\mathbf{A}}(a)(x) := x(a),$

and

$$\begin{split} \varepsilon_{\mathbf{X}} \colon \mathbf{X} &\to DE(\mathbf{X}) = \mathcal{A}(\mathfrak{X}(\mathbf{X}, \underline{\mathsf{M}}), \underline{\mathsf{M}}), \quad \text{given by} \\ (\forall x \in X) \ \varepsilon_{\mathbf{X}}(x) \colon \mathfrak{X}(\mathbf{X}, \underline{\mathsf{M}}) \to \underline{\mathsf{M}} \quad \text{with} \\ (\forall \alpha \in \mathfrak{X}(\mathbf{X}, \underline{\mathsf{M}})) \ \varepsilon_{\mathbf{X}}(x)(\alpha) := \alpha(x). \end{split}$$

These embeddings yield natural transformations

$$e: \operatorname{id}_{\mathcal{A}} \to ED$$
 and $\varepsilon: \operatorname{id}_{\mathfrak{X}} \to DE$,

and $\langle D, E, e, \varepsilon \rangle$ is a dual adjunction between \mathcal{A} and \mathfrak{X} .

Natural embeddings

For all $\textbf{A} \in \mathcal{A}$ and $\textbf{X} \in \mathfrak{X},$ there are embeddings

$$e_{\mathbf{A}} : \mathbf{A} \to ED(\mathbf{A}) = \mathfrak{X}(\mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}), \underline{\mathbf{M}}), \text{ given by}$$

 $(\forall a \in A) \ e_{\mathbf{A}}(a) : \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}}) \to \underline{\mathbf{M}} \text{ with}$
 $(\forall x \in \mathcal{A}(\mathbf{A}, \underline{\mathbf{M}})) \ e_{\mathbf{A}}(a)(x) := x(a),$

and

$$\begin{split} \varepsilon_{\mathbf{X}} \colon \mathbf{X} &\to DE(\mathbf{X}) = \mathcal{A}(\mathfrak{X}(\mathbf{X}, \underline{\mathsf{M}}), \underline{\mathsf{M}}), & \text{given by} \\ (\forall x \in X) \ \varepsilon_{\mathbf{X}}(x) \colon \mathfrak{X}(\mathbf{X}, \underline{\mathsf{M}}) \to \underline{\mathsf{M}} & \text{with} \\ (\forall \alpha \in \mathfrak{X}(\mathbf{X}, \underline{\mathsf{M}})) \ \varepsilon_{\mathbf{X}}(x)(\alpha) := \alpha(x). \end{split}$$

These embeddings yield natural transformations

$$e: \operatorname{id}_{\mathcal{A}} \to ED$$
 and $\varepsilon: \operatorname{id}_{\mathfrak{X}} \to DE$,

and $\langle D, E, e, \varepsilon \rangle$ is a dual adjunction between \mathcal{A} and \mathfrak{X} .

A dual adjunction

For *u*: A → B and φ: X → Y, the two squares commute.
A(A, E(X)) ≅ X(X, D(A)) via the triangles:

 $u = E(D(u) \circ \varepsilon_{\mathbf{X}}) \circ e_{\mathbf{A}} \text{ and } \varphi = D(E(\varphi) \circ e_{\mathbf{A}}) \circ \varepsilon_{\mathbf{X}}.$

Duality

If $e_{\mathbf{A}} : \mathbf{A} \to ED(\mathbf{A})$ is surjective and therefore an isomorphism, for all \mathbf{A} in \mathcal{A} , then we say that \underline{M} yields a duality on \mathcal{A} (or that \underline{M} dualises \underline{M}).

Duality

If $e_{\mathbf{A}} : \mathbf{A} \to ED(\mathbf{A})$ is surjective and therefore an isomorphism, for all \mathbf{A} in \mathcal{A} , then we say that \underline{M} yields a duality on \mathcal{A} (or that \underline{M} dualises \underline{M}).

Equivalently, \underbrace{M} yields a duality on \mathcal{A} if the dual adjunction $\langle D, E, e, \varepsilon \rangle$ is a dual category equivalence between \mathcal{A} and a full subcategory of \mathfrak{X} .

Full duality

If, in addition, $\varepsilon_{\mathbf{X}} \colon \mathbf{X} \to DE(\mathbf{X})$ is a surjection and therefore an isomorphism, for all \mathbf{X} in \mathfrak{X} , then \underline{M} yields a full duality on \mathcal{A} (or \underline{M} fully dualises \underline{M}).

Equivalently, \underline{M} yields a full duality on \mathcal{A} if the dual adjunction $\langle D, E, e, \varepsilon \rangle$ is a dual category equivalence between \mathcal{A} and \mathfrak{X} .

Let \underline{M} be any alter ego of an algebra \underline{M} , and let

 $D: \mathcal{A} \to \mathfrak{X}$ and $E: \mathfrak{X} \to \mathcal{A}$

be the induced hom-functors.

Let \underline{M} be any alter ego of an algebra \underline{M} , and let

 $D: \mathcal{A} \to \mathfrak{X}$ and $E: \mathfrak{X} \to \mathcal{A}$

be the induced hom-functors.

It is easy to see that:

D and E send surjections to embeddings,

Let \underline{M} be any alter ego of an algebra \underline{M} , and let

 $D: \mathcal{A} \to \mathfrak{X}$ and $E: \mathfrak{X} \to \mathcal{A}$

be the induced hom-functors.

It is easy to see that:

- D and E send surjections to embeddings,
- ► D sends embeddings in A to surjections in X if and only if <u>M</u> is injective in A, and

Let \underline{M} be any alter ego of an algebra \underline{M} , and let

 $D: \mathcal{A} \to \mathfrak{X}$ and $E: \mathfrak{X} \to \mathcal{A}$

be the induced hom-functors.

It is easy to see that:

- D and E send surjections to embeddings,
- ► D sends embeddings in A to surjections in X if and only if <u>M</u> is injective in A, and
- ► E sends embeddings in X to surjections in A if and only if M is injective in X.

Let \underline{M} be any alter ego of an algebra \underline{M} , and let

 $D: \mathcal{A} \to \mathfrak{X}$ and $E: \mathfrak{X} \to \mathcal{A}$

be the induced hom-functors.

It is easy to see that:

- D and E send surjections to embeddings,
- ► D sends embeddings in A to surjections in X if and only if <u>M</u> is injective in A, and
- ► E sends embeddings in X to surjections in A if and only if M is injective in X.

Strong duality

If \underline{M} fully dualises \underline{M} and \underline{M} is injective in \mathcal{X} (so that surjections in \mathcal{A} correspond to embeddings in \mathcal{X}), we say that \underline{M} yields a strong duality on \mathcal{A} (or that \underline{M} strongly dualises \underline{M}).

Further examples

 All three of our original examples — Stone duality, Priestley duality and Pontryagin duality — are examples of strong dualities.

Further examples

- All three of our original examples Stone duality, Priestley duality and Pontryagin duality — are examples of strong dualities.
- Every finite lattice-based algebra admits a strong duality. [Davey, Werner 1980 and Clark, Davey 1995]

Further examples

- All three of our original examples Stone duality, Priestley duality and Pontryagin duality — are examples of strong dualities.
- Every finite lattice-based algebra admits a strong duality. [Davey, Werner 1980 and Clark, Davey 1995]
- The unary algebra ^c ^o ^o ^o ^o admits a duality, but not a full duality. [Hyndman, Willard 2000]
Further examples

- All three of our original examples Stone duality, Priestley duality and Pontryagin duality — are examples of strong dualities.
- Every finite lattice-based algebra admits a strong duality. [Davey, Werner 1980 and Clark, Davey 1995]
- The unary algebra ^c ^o ^o ^o ^o admits a duality, but not a full duality. [Hyndman, Willard 2000]
- There is an example of a three-element algebra that admits a full duality that can not be upgraded to a strong duality. [Pitkethly 2009]

Further examples

- All three of our original examples Stone duality, Priestley duality and Pontryagin duality — are examples of strong dualities.
- Every finite lattice-based algebra admits a strong duality. [Davey, Werner 1980 and Clark, Davey 1995]
- The unary algebra ^c ^o ^o ^o ^o admits a duality, but not a full duality. [Hyndman, Willard 2000]
- There is an example of a three-element algebra that admits a full duality that can not be upgraded to a strong duality. [Pitkethly 2009]
- ► The two-element implication algebra I := ({0,1}; →) does not admit a natural duality. [Davey, Werner 1980]

Examples of natural dualities

Natural dualities: the basics

Duality theorems

Duals of free algebras (IC) and the Second Duality Theorem Priestley duality via the Second Duality Theorem Further applications of the Second Duality Theorem

- Let $\underline{\mathbf{M}} = \langle \mathbf{M}; \mathbf{F} \rangle$ be a finite algebra,
- let $\mathbf{M} = \langle M; G, H, R, T \rangle$ be an alter ego of \mathbf{M} , and
- define $\mathcal{A} := \mathsf{ISP}(\underline{\mathsf{M}})$ and $\mathfrak{X} := \mathsf{IS}_{\mathsf{C}}\mathsf{P}^+(\underline{\mathsf{M}})$.

- Let $\underline{\mathbf{M}} = \langle \mathbf{M}; \mathbf{F} \rangle$ be a finite algebra,
- let $\mathbf{M} = \langle M; G, H, R, T \rangle$ be an alter ego of \mathbf{M} , and
- define $\mathcal{A} := ISP(\underline{M})$ and $\mathfrak{X} := IS_cP^+(\underline{M})$.

Recall that to prove that $\underbrace{\textbf{M}}$ yields a duality on $\mathcal{A},$ it remains to show that

For all A ∈ A, the evaluation maps e_A, for a ∈ A, are the only X-morphisms from A(A, M) to M.

- Let $\underline{\mathbf{M}} = \langle \mathbf{M}; \mathbf{F} \rangle$ be a finite algebra,
- let $\mathbf{M} = \langle M; G, H, R, T \rangle$ be an alter ego of \mathbf{M} , and
- define $\mathcal{A} := ISP(\underline{M})$ and $\mathfrak{X} := IS_cP^+(\underline{M})$.

Recall that to prove that $\underbrace{\textbf{M}}$ yields a duality on $\mathcal{A},$ it remains to show that

For all A ∈ A, the evaluation maps e_A, for a ∈ A, are the only X-morphisms from A(A, M) to M.

Lemma (2.1.2)

Let $\underline{M} = \langle M; G, H, R, T \rangle$, define $\underline{M}' = \langle M; R', T \rangle$ where

 $R' := R \cup \{ \operatorname{graph}(h) \mid h \in G \cup H \}$

Then \underline{M} yields a duality on \mathcal{A} if and only if \underline{M}' does.

- Let $\underline{\mathbf{M}} = \langle \mathbf{M}; \mathbf{F} \rangle$ be a finite algebra,
- let $\mathbf{M} = \langle M; G, H, R, T \rangle$ be an alter ego of \mathbf{M} , and
- define $\mathcal{A} := ISP(\underline{M})$ and $\mathfrak{X} := IS_cP^+(\underline{M})$.

Recall that to prove that $\underbrace{\textbf{M}}$ yields a duality on $\mathcal{A},$ it remains to show that

For all A ∈ A, the evaluation maps e_A, for a ∈ A, are the only X-morphisms from A(A, M) to M.

Lemma (2.1.2)

Let $\underline{M} = \langle M; G, H, R, T \rangle$, define $\underline{M}' = \langle M; R', T \rangle$ where

 $R' := R \cup \{ \operatorname{graph}(h) \mid h \in G \cup H \}$

Then \underline{M} yields a duality on \mathcal{A} if and only if \underline{M}' does.

Thus, as far as obtaining a duality is concerned, we can restrict our attention to purely relational alter egos.

▶ Given a non-empty set S, the set

 $\mathbf{F}_{\underline{\mathbf{M}}}(S) = \{t \colon M^S \to M \mid t \text{ is an } S \text{-ary term function on } \underline{\mathbf{M}}\}$

is the free *S*-generated algebra in \mathcal{A} (the projections $\pi_s \colon M^S \to M$, for $s \in S$, are the free generators).

▶ Given a non-empty set *S*, the set

 $\mathbf{F}_{\underline{\mathbf{M}}}(S) = \{t \colon M^S \to M \mid t \text{ is an } S \text{-ary term function on } \underline{\mathbf{M}}\}$

is the free *S*-generated algebra in \mathcal{A} (the projections $\pi_s \colon M^S \to M$, for $s \in S$, are the free generators).

Lemma (2.2.1)

Let *S* be a non-empty set. The then dual of $\mathbf{F}_{\underline{M}}(S)$, namely $D(\mathbf{F}_{\underline{M}}(S)) = \mathcal{A}(\mathbf{F}_{\underline{M}}(S), \underline{M})$, is isomorphic in \mathfrak{X} to \mathbf{M}^{S} .

▶ Given a non-empty set *S*, the set

 $\mathbf{F}_{\underline{\mathbf{M}}}(S) = \{t \colon M^S \to M \mid t \text{ is an } S \text{-ary term function on } \underline{\mathbf{M}}\}$

is the free *S*-generated algebra in \mathcal{A} (the projections $\pi_s \colon M^S \to M$, for $s \in S$, are the free generators).

Lemma (2.2.1)

Let *S* be a non-empty set. The then dual of $\mathbf{F}_{\underline{\mathbf{M}}}(S)$, namely $D(\mathbf{F}_{\underline{\mathbf{M}}}(S)) = \mathcal{A}(\mathbf{F}_{\underline{\mathbf{M}}}(S), \underline{\mathbf{M}})$, is isomorphic in \mathfrak{X} to \mathbf{M}^{S} .

▶ It is easy to see that every *S*-ary term function *t* on <u>M</u> is an \mathcal{X} -morphism, i.e., $t: \mathbb{M}^S \to \mathbb{M}$.

▶ Given a non-empty set *S*, the set

 $\mathbf{F}_{\underline{\mathbf{M}}}(S) = \{t \colon M^S \to M \mid t \text{ is an } S \text{-ary term function on } \underline{\mathbf{M}}\}$

is the free *S*-generated algebra in \mathcal{A} (the projections $\pi_s \colon M^S \to M$, for $s \in S$, are the free generators).

Lemma (2.2.1)

Let *S* be a non-empty set. The then dual of $\mathbf{F}_{\underline{\mathbf{M}}}(S)$, namely $D(\mathbf{F}_{\underline{\mathbf{M}}}(S)) = \mathcal{A}(\mathbf{F}_{\underline{\mathbf{M}}}(S), \underline{\mathbf{M}})$, is isomorphic in \mathfrak{X} to \mathbf{M}^{S} .

- ▶ It is easy to see that every *S*-ary term function *t* on <u>M</u> is an \mathcal{X} -morphism, i.e., $t: \mathbb{M}^S \to \mathbb{M}$.
- If M yields a duality on A, then

 $\mathbf{F}_{\underline{\mathbf{M}}}(\mathcal{S})\cong \textit{ED}(\mathbf{F}_{\underline{\mathbf{M}}}(\mathcal{S}))\cong \textit{E}(\underline{\mathbf{M}}^{\mathcal{S}})\cong\mathfrak{X}(\underline{\mathbf{M}}^{\mathcal{S}},\underline{\mathbf{M}}).$

▶ Given a non-empty set *S*, the set

 $\mathbf{F}_{\underline{\mathbf{M}}}(S) = \{t \colon M^S \to M \mid t \text{ is an } S \text{-ary term function on } \underline{\mathbf{M}}\}$

is the free *S*-generated algebra in \mathcal{A} (the projections $\pi_s \colon M^S \to M$, for $s \in S$, are the free generators).

Lemma (2.2.1)

Let *S* be a non-empty set. The then dual of $\mathbf{F}_{\underline{\mathbf{M}}}(S)$, namely $D(\mathbf{F}_{\underline{\mathbf{M}}}(S)) = \mathcal{A}(\mathbf{F}_{\underline{\mathbf{M}}}(S), \underline{\mathbf{M}})$, is isomorphic in \mathfrak{X} to \mathbf{M}^{S} .

- ▶ It is easy to see that every *S*-ary term function *t* on <u>M</u> is an \mathcal{X} -morphism, i.e., $t: \mathbb{M}^S \to \mathbb{M}$.
- If M yields a duality on A, then

 $\mathbf{F}_{\underline{\mathbf{M}}}(\mathcal{S})\cong \textit{ED}(\mathbf{F}_{\underline{\mathbf{M}}}(\mathcal{S}))\cong \textit{E}(\underline{\mathbf{M}}^{\mathcal{S}})\cong\mathfrak{X}(\underline{\mathbf{M}}^{\mathcal{S}},\underline{\mathbf{M}}).$

In fact, we have $\mathbf{F}_{\underline{\mathbf{M}}}(S) = \mathfrak{X}(\underline{\mathbf{M}}^{S}, \underline{\mathbf{M}}).$

▶ Given a non-empty set *S*, the set

 $\mathbf{F}_{\underline{\mathbf{M}}}(S) = \{t \colon M^S \to M \mid t \text{ is an } S \text{-ary term function on } \underline{\mathbf{M}}\}$

is the free *S*-generated algebra in \mathcal{A} (the projections $\pi_s \colon M^S \to M$, for $s \in S$, are the free generators).

Lemma (2.2.1)

Let *S* be a non-empty set. The then dual of $\mathbf{F}_{\underline{\mathbf{M}}}(S)$, namely $D(\mathbf{F}_{\underline{\mathbf{M}}}(S)) = \mathcal{A}(\mathbf{F}_{\underline{\mathbf{M}}}(S), \underline{\mathbf{M}})$, is isomorphic in \mathfrak{X} to \mathbf{M}^{S} .

- ▶ It is easy to see that every *S*-ary term function *t* on <u>M</u> is an \mathcal{X} -morphism, i.e., $t: \mathbb{M}^S \to \mathbb{M}$.
- If M yields a duality on A, then

 $\mathbf{F}_{\underline{\mathbf{M}}}(\mathcal{S})\cong \textit{ED}(\mathbf{F}_{\underline{\mathbf{M}}}(\mathcal{S}))\cong \textit{E}(\underline{\mathbf{M}}^{\mathcal{S}})\cong\mathfrak{X}(\underline{\mathbf{M}}^{\mathcal{S}},\underline{\mathbf{M}}).$

In fact, we have $\mathbf{F}_{\underline{\mathbf{M}}}(S) = \mathfrak{X}(\underline{\mathbf{M}}^{S}, \underline{\mathbf{M}}).$

Let \mathcal{A}_{fin} and $\mathfrak{X}_{\text{fin}}$ consist of the finite members of \mathcal{A} and $\mathfrak{X}.$

Lemma (2.2.5)

The following are equivalent:

- (i) (IC) for each n ∈ N and each substructure X of Mⁿ, every morphism α: X → M extends to a term function t: Mⁿ → M of the algebra M,
- (ii) (INJ)⁺_{fin} $\underset{\text{CLO}}{\text{M}}$ is injective in $\mathfrak{X}_{\text{fin}}$, and (CLO) for each $n \in \mathbb{N}$, every morphism $t \colon \underset{\text{M}}{\text{M}}^n \to \underset{\text{M}}{\text{M}}$ is an n-ary term function on $\underset{\text{M}}{\text{M}}$,
- (iii) \underbrace{M} yields a duality on \mathcal{A}_{fin} and is injective in \mathfrak{X}_{fin} .

Let \mathcal{A}_{fin} and $\mathfrak{X}_{\text{fin}}$ consist of the finite members of \mathcal{A} and $\mathfrak{X}.$

Lemma (2.2.5)

The following are equivalent:

- (i) (IC) for each n ∈ N and each substructure X of Mⁿ, every morphism α: X → M extends to a term function t: Mⁿ → M of the algebra M,
- (ii) $(INJ)_{fin}^+ \underset{r}{M}$ is injective in \mathfrak{X}_{fin} , and (CLO) for each $n \in \mathbb{N}$, every morphism $t \colon \underset{r}{M}^n \to \underset{r}{M}$ is an n-ary term function on \underline{M} ,
- (iii) \underbrace{M} yields a duality on \mathcal{A}_{fin} and is injective in \mathfrak{X}_{fin} .

We would like to obtain a duality for \mathcal{A} in two steps:

First show that \underline{M} yields a duality on \mathcal{A}_{fin} , then

Let \mathcal{A}_{fin} and $\boldsymbol{\mathfrak{X}}_{\text{fin}}$ consist of the finite members of \mathcal{A} and $\boldsymbol{\mathfrak{X}}.$

Lemma (2.2.5)

The following are equivalent:

- (i) (IC) for each n ∈ N and each substructure X of Mⁿ, every morphism α: X → M extends to a term function t: Mⁿ → M of the algebra M,
- (ii) $(INJ)_{fin}^+ \underset{r}{M}$ is injective in \mathfrak{X}_{fin} , and (CLO) for each $n \in \mathbb{N}$, every morphism $t \colon \underset{r}{M}^n \to \underset{r}{M}$ is an n-ary term function on \underline{M} ,
- (iii) \underbrace{M} yields a duality on \mathcal{A}_{fin} and is injective in \mathfrak{X}_{fin} .

We would like to obtain a duality for \mathcal{A} in two steps:

- First show that \underline{M} yields a duality on \mathcal{A}_{fin} , then
- apply some general theory to show that the duality lifts automatically to a duality on the whole of A.

Let \mathcal{A}_{fin} and $\boldsymbol{\mathfrak{X}}_{\text{fin}}$ consist of the finite members of \mathcal{A} and $\boldsymbol{\mathfrak{X}}.$

Lemma (2.2.5)

The following are equivalent:

- (i) (IC) for each n ∈ N and each substructure X of Mⁿ, every morphism α: X → M extends to a term function t: Mⁿ → M of the algebra M,
- (ii) (INJ)⁺_{fin} $\underset{\text{(CLO)}}{\mathbb{M}}$ is injective in $\mathfrak{X}_{\text{fin}}$, and (CLO) for each $n \in \mathbb{N}$, every morphism $t \colon \underset{\text{M}}{\mathbb{M}}^n \to \underset{\text{morphism}}{\mathbb{M}}$ is an n-ary term function on $\underset{\text{M}}{\mathbb{M}}$,
- (iii) \underbrace{M} yields a duality on \mathcal{A}_{fin} and is injective in \mathfrak{X}_{fin} .

We would like to obtain a duality for \mathcal{A} in two steps:

- First show that \underline{M} yields a duality on \mathcal{A}_{fin} , then
- apply some general theory to show that the duality lifts automatically to a duality on the whole of A.

This is achievable provided \underline{M} enjoys some degree of finiteness.

If $\underline{M} = \langle M; G, R, T \rangle$, that is, the type of \underline{M} includes no partial operations, then we call \underline{M} a total structure.

Theorem (2.2.7 Second Duality Theorem)

Assume that \underline{M} is a total structure with R finite. If (IC) holds, then \underline{M} yields a duality on \mathcal{A} and is injective in \mathcal{X} .

If $\underline{M} = \langle M; G, R, T \rangle$, that is, the type of \underline{M} includes no partial operations, then we call \underline{M} a total structure.

Theorem (2.2.7 Second Duality Theorem)

Assume that \underline{M} is a total structure with R finite. If (IC) holds, then \underline{M} yields a duality on \mathcal{A} and is injective in \mathcal{X} .

This result is rather surprising.

It gives us simple finitary conditions which yield both a dual adjunction between the categories A and X and a topological representation of every algebra in A, If $\underline{M} = \langle M; G, R, T \rangle$, that is, the type of \underline{M} includes no partial operations, then we call \underline{M} a total structure.

Theorem (2.2.7 Second Duality Theorem)

Assume that \underline{M} is a total structure with R finite. If (IC) holds, then \underline{M} yields a duality on \mathcal{A} and is injective in \mathcal{X} .

This result is rather surprising.

- It gives us simple finitary conditions which yield both a dual adjunction between the categories A and X and a topological representation of every algebra in A,
- but it requires us to do no category theory and no topology!

Recall that

- $\underline{D} = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle$ is the two-element bounded lattice,
- ▶ $\mathbf{D} = \langle \{0, 1\}; \leq, T \rangle$ is the two-element chain endowed with the discrete topology.

Theorem (Half of Priestley duality)

 $\stackrel{\mathsf{D}}{\underset{\mathsf{distributive}}{\mathsf{D}}}$ is a duality on the class $\mathfrak{D} := \mathsf{ISP}(\underline{\mathsf{D}})$ of bounded distributive lattices, i.e., $e_{\mathsf{A}} : \mathsf{A} \to \mathsf{ED}(\mathsf{A})$ is an isomorphism, for all $\mathsf{A} \in \mathfrak{D}$.

Proof.

We will prove that (IC) holds. Let **X** be a substructure of $\underline{\mathbf{D}}^n$ and let $\varphi : \mathbf{X} \to \underline{\mathbf{D}}$ be a morphism, i.e., φ is order-preserving.

[We need to find a term function $t: \{0, 1\}^n \to \{0, 1\}$ on **D** such that $t(x) = \varphi(x)$, for all $x \in X$.]

The proof continued

[**X** is a substructure of \mathbf{D}^n and $\varphi : \mathbf{X} \to \mathbf{D}$ is order-preserving.

We need to find a term function $t: \{0,1\}^n \to \{0,1\}$ on **D** such that $t(x) = \varphi(x)$, for all $x \in X$.]

The proof continued

[**X** is a substructure of \mathbf{D}^n and $\varphi : \mathbf{X} \to \mathbf{D}$ is order-preserving.

We need to find a term function $t: \{0,1\}^n \to \{0,1\}$ on **D** such that $t(x) = \varphi(x)$, for all $x \in X$.]

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

The proof continued

[X is a substructure of \underline{D}^n and $\varphi : \mathbf{X} \to \underline{D}$ is order-preserving.

We need to find a term function $t: \{0,1\}^n \to \{0,1\}$ on **D** such that $t(x) = \varphi(x)$, for all $x \in X$.]

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

Otherwise, define $t(v_1, \ldots, v_n)$ by

$$t(\mathbf{v}_1,\ldots,\mathbf{v}_n):=\bigvee_{\mathbf{a}\in\varphi^{-1}(1)}\left(\bigwedge_{a_i=1}\mathbf{v}_i\right).$$

The proof continued

[**X** is a substructure of \underline{D}^n and $\varphi : \mathbf{X} \to \underline{D}$ is order-preserving.

We need to find a term function $t: \{0,1\}^n \to \{0,1\}$ on **D** such that $t(x) = \varphi(x)$, for all $x \in X$.]

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

Otherwise, define $t(v_1, \ldots, v_n)$ by

$$t(\mathbf{v}_1,\ldots,\mathbf{v}_n):=\bigvee_{\mathbf{a}\in\varphi^{-1}(1)}\left(\bigwedge_{\mathbf{a}_i=1}\mathbf{v}_i\right).$$

Let $x \in X$. If $\varphi(x) = 1$, then t(x) = 1, by construction.

The proof continued

[X is a substructure of \underline{D}^n and $\varphi : \mathbf{X} \to \underline{D}$ is order-preserving.

We need to find a term function $t: \{0,1\}^n \to \{0,1\}$ on **D** such that $t(x) = \varphi(x)$, for all $x \in X$.]

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

Otherwise, define $t(v_1, \ldots, v_n)$ by

$$t(\mathbf{v}_1,\ldots,\mathbf{v}_n):=\bigvee_{\mathbf{a}\in\varphi^{-1}(1)}\left(\bigwedge_{\mathbf{a}_i=1}\mathbf{v}_i\right).$$

Let $x \in X$. If $\varphi(x) = 1$, then t(x) = 1, by construction. If t(x) = 1, then there exists $a \in \varphi^{-1}(1)$ with $a_i = 1 \Rightarrow x_i = 1$. Hence $\varphi(a) = 1$ and $a \leq x$. As φ is order-preserving, we have $\varphi(x) = 1$.

The proof continued

[**X** is a substructure of \underline{D}^n and $\varphi : \mathbf{X} \to \underline{D}$ is order-preserving.

We need to find a term function $t: \{0,1\}^n \to \{0,1\}$ on **D** such that $t(x) = \varphi(x)$, for all $x \in X$.]

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

Otherwise, define $t(v_1, \ldots, v_n)$ by

$$t(\mathbf{v}_1,\ldots,\mathbf{v}_n):=\bigvee_{\mathbf{a}\in\varphi^{-1}(1)}\left(\bigwedge_{a_i=1}\mathbf{v}_i\right).$$

Let $x \in X$. If $\varphi(x) = 1$, then t(x) = 1, by construction. If t(x) = 1, then there exists $a \in \varphi^{-1}(1)$ with $a_i = 1 \Rightarrow x_i = 1$. Hence $\varphi(a) = 1$ and $a \leq x$. As φ is order-preserving, we have $\varphi(x) = 1$.

The proof continued

[X is a substructure of \underline{D}^n and $\varphi : \mathbf{X} \to \underline{D}$ is order-preserving.

We need to find a term function $t: \{0,1\}^n \to \{0,1\}$ on **D** such that $t(x) = \varphi(x)$, for all $x \in X$.]

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

Otherwise, define $t(v_1, \ldots, v_n)$ by

$$t(\mathbf{v}_1,\ldots,\mathbf{v}_n):=\bigvee_{\mathbf{a}\in\varphi^{-1}(1)}\left(\bigwedge_{a_i=1}\mathbf{v}_i\right).$$

Let $x \in X$. If $\varphi(x) = 1$, then t(x) = 1, by construction. If t(x) = 1, then there exists $a \in \varphi^{-1}(1)$ with $a_i = 1 \Rightarrow x_i = 1$. Hence $\varphi(a) = 1$ and $a \leq x$. As φ is order-preserving, we have $\varphi(x) = 1$. Hence $t(x) = \varphi(x)$, for all $x \in X$.

The proof continued

[X is a substructure of \underline{D}^n and $\varphi : \mathbf{X} \to \underline{D}$ is order-preserving.

We need to find a term function $t: \{0,1\}^n \to \{0,1\}$ on **D** such that $t(x) = \varphi(x)$, for all $x \in X$.]

If $\varphi^{-1}(1) = \emptyset$, then define $t(v_1, \ldots, v_n) = 0$, and if $\varphi^{-1}(1) = X$, then define $t(v_1, \ldots, v_n) = 1$.

Otherwise, define $t(v_1, \ldots, v_n)$ by

$$t(\mathbf{v}_1,\ldots,\mathbf{v}_n):=\bigvee_{\mathbf{a}\in\varphi^{-1}(1)}\left(\bigwedge_{a_i=1}\mathbf{v}_i\right).$$

Let $x \in X$. If $\varphi(x) = 1$, then t(x) = 1, by construction. If t(x) = 1, then there exists $a \in \varphi^{-1}(1)$ with $a_i = 1 \Rightarrow x_i = 1$. Hence $\varphi(a) = 1$ and $a \leq x$. As φ is order-preserving, we have $\varphi(x) = 1$. Hence $t(x) = \varphi(x)$, for all $x \in X$.

Further applications of the Second Duality Theorem

Some exercises for you. In each case, prove that (IC) holds.

- (1) [Stone] Let $\underline{\mathbf{B}} = \langle \{0, 1\}; \lor, \land, ', 0, 1 \rangle$; then $\mathcal{B} = ISP(\underline{\mathbf{B}})$ is the class of Boolean algebras. Show that $\underline{\mathbf{B}} = \langle \{0, 1\}; \mathcal{T} \rangle$ yields a duality on \mathcal{B} .
- (2) [Priestley] Let $\underline{L} = \langle \{0, 1\}; \lor, \land \rangle$; then $\mathcal{L} = ISP(\underline{L})$ is the class of distributive lattices. Show that $\underline{L} = \langle \{0, 1\}; 0, 1, \leqslant, \Im \rangle$ yields a duality on \mathcal{L} .
- (3) [Hofmann–Mislove–Stralka] Let $\underline{S} = \langle \{0, 1\}; \land \rangle$; then $\mathcal{S} = ISP(\underline{S})$ is the class of meet semilattices. Show that $\underline{S} = \langle \{0, 1\}; \land, 0, 1, T \rangle$ yields a duality on \mathcal{S} .
- (4) [Pontryagin] Let Z_m = ⟨Z_m; +, ⁻, 0⟩; then A_m = ISP(Z_m) is the class of abelian groups of exponent *m*. Show that Z = ⟨Z_m; +, ⁻, 0, ℑ⟩ yields a duality on A_m.