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Concrete examples of bounded distributive lattices

1
1. The two-element chain

2= ({0,1};V,A,0,1). 0

2. All subsets of a set S:
(82(S); U,N, 2, S).

3. Finite or cofinite subsets of N:
(§2rc(N); U,N, 2, N).

4. Open subsets of a topological space X:
(O(X); U.N, 2, X).



More examples of bounded distributive lattices

5. ({T,F},; or,and, F, T).

6. (NU{0}; lcm, gcd, 1,0).

(Use the fact that, lcm(m, n) - gcd(m, n) = mn, for all
m,n € NU {0}, and that a lattice is distributive iff it satisfies
XVZ=yVz & XNZ=yNzZ = x=Y.)

7. Subgroups of a cyclic group G,
(Sub(G); v,Nn,{e},G), where HV K :=sgg(HU K).



Drawing distributive lattices

Any distributive lattice (L; v, A,0, 1) has a natural order

corresponding to set inclusion: a<b < avb=b.
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Drawing distributive lattices

Any distributive lattice (L; v, A,0, 1) has a natural order
corresponding to set inclusion:

as<b << avb=nb.

ﬁ)2

O 1

Vv lem V' max

A gcd A min
< division < usual

V' union
A intersection

< inclusion
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A sublattice L of 2*
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A sublattice L of 2*

Note: Every distributive lattice embeds into 2°, for some set S.
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Representing finite distributive lattices

Birkhoff’s representation for a finite distributive lattice L
Let L be a finite distributive lattice.

L is isomorphic to the collection O(P) of all down-sets of an
ordered set P = (P; <), under union, intersection, & and P.
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Representing finite distributive lattices

Birkhoff’s representation for a finite distributive lattice L

Let L be a finite distributive lattice.

L is isomorphic to the collection O(P) of all down-sets of an
ordered set P = (P; <), under union, intersection, & and P.

In fact, we can choose P to be the ordered set (7(L); <) of
join-irreducible elements of L.

Theorem [G. Birkhoff]
Let L be a finite distributive lattice and let P be a finite ordered

set. Then
» L is isomorphic to O(J (L)), and
» P is isomorphic to 7(O(P)).



More examples

Distributive
lattice

L= O(J(L))

Ordered set
P=gOP) © © ° I I I
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Duality for finite distributive lattices

The classes of

finite distributive lattices

are dually equivalent.

finite ordered sets
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Duality for finite distributive lattices

The classes of
finite distributive lattices

are dually equivalent.

surjections
embeddings
products

and

111

finite ordered sets

embeddings
surjections

disjoint unions
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Duals of finite bounded distributive lattices

LetL = (L; Vv, A,0,1) be a finite bounded distributive lattice.
We can define its dual D(L) to be either

» J(L) — the ordered set of join-irreducible elements of L

or

» D(L,2) — the ordered set of {0, 1}-homomorphisms from
L to the two-element bounded lattice 2 = ({0,1};V, A,0,1).

Here D denotes the category of bounded distributive lattices.
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Duals of finite ordered sets

Let P = (P; <) be a finite ordered set.
We can define its dual E(P) to be either
» O(P) —the lattice of down-sets (= order ideals) of P

or

» P(P, 2) —the lattice of order-preserving maps from P to
the two-element ordered set 2 = ({0,1}; <).

Here P denotes the category of ordered sets.

(Warning! The definitions of 2 and P will change once we
consider the infinite case.)
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Duals of morphisms

Let L and K be a finite distributive lattices and let P and Q be a
finite ordered sets.

» There is a bijection between the {0, 1}-homomorphisms
from L to K and the order-preserving maps from D(K)
to D(L). Given f: L — K, we define

o1 T(K) = J(L) by @(x) := min(F~" (1x),
¢: D(K,2) = D(L,2) by p(x) = xof.

We denote the map ¢ by D(f).
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Duals of morphisms

Let L and K be a finite distributive lattices and let P and Q be a
finite ordered sets.

» There is a bijection between the {0, 1}-homomorphisms
from L to K and the order-preserving maps from D(K)
to D(L). Given f: L — K, we define

p: T(K) = J(L) by p(x) := min(f~"(1x)),
¢: D(K,2) = D(L,2) by p(x) :=xof.
We denote the map ¢ by D(f).

» There is a bijection between the order-preserving maps
from P to Q and the {0, 1}-homomorphisms from E(Q)
to E(P). Given ¢: P — Q, we define

f-0(Q) = O(P) by f(A) :=¢ ‘(A),
f: (Q,2) = P(P,2) by f(a) :=aog.
We denote the map f by E().
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The duality at the finite level

» 2=({0,1};V,A,0,1) is the two-element lattice,

» 2 = ({0,1}; <) is the two-element ordered set with 0 < 1.
Define either

D(L):=J(L) and E(P):=0O(P)
or

/N
IN
R

D(L) :=D(L,2) < 2" and E(P):=?P(P,2)

~
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The duality at the finite level

» 2=({0,1};V,A,0,1) is the two-element lattice,
» 2 = ({0,1}; <) is the two-element ordered set with 0 < 1.
Define either
D(L):=J(L) and E(P):=0O(P)
or
27,

N

D(L) :=D(L,2) < 2" and E(P):=?P(P,2)
Theorem [G. Birkhoff, H. A. Priestley]
Every finite distributive lattice is encoded by an ordered set:
L~ ED(L) and P = DE(P),
for each finite distributive lattice L and finite ordered set P.

Indeed, the categories of finite bounded distributive lattices
and finite ordered sets are dually equivalent.
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Outline

Priestley duality for infinite distributive lattices
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Infinite distributive lattices
Example

The finite-cofinite lattice L = (§2r¢c(N); U, N, @, N) cannot be
obtained as the down-sets of an ordered set.
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Infinite distributive lattices

Example

The finite-cofinite lattice L = (§2r¢(N); U, N, &, N) cannot be
obtained as the down-sets of an ordered set.

Proof.
» Since L is complemented, the ordered set would have to
be an anti-chain.
» Since L is infinite, the ordered set would have to be infinite.
» So there would be at least 2" down-sets.
» But §2c(N) is countable. |

But it can be obtained as the clopen down-sets of a topological
ordered set.

@) @) O O O-0

1 2 3 4 5 o0
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More examples

Distributive lattice:

All finite subsets of N, as well as N itself,
(8% (N) U {N}; U, N, &, N).

Topological ordered set:
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More examples

Distributive lattice:

All finite subsets of N, as well as N itself,
(NU{0}; lcm, gcd, 1, 0).

Topological ordered set:
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The duality in general

» 2=({0,1};V,A,0,1) is the two-element bounded lattice.

In general, we need to endow the dual D(L) of a bounded
distributive lattice L with a topology. This is easy if we define
the dual of L to be D(L) := D(L, 2).

21/35



The duality in general

» 2=({0,1};V,A,0,1) is the two-element bounded lattice.

In general, we need to endow the dual D(L) of a bounded
distributive lattice L with a topology. This is easy if we define
the dual of L to be D(L) := D(L, 2).

We first endow ({0, 1}; <) with the discrete topology:

21/35



The duality in general

» 2=({0,1};V,A,0,1) is the two-element bounded lattice.

In general, we need to endow the dual D(L) of a bounded
distributive lattice L with a topology. This is easy if we define
the dual of L to be D(L) := D(L, 2).

We first endow ({0, 1}; <) with the discrete topology:

» 2 =({0,1}; <, 7) is the two-element ordered set
with 0 < 1 endowed with the discrete topology 7.

21/35



The duality in general

» 2=({0,1};V,A,0,1) is the two-element bounded lattice.

In general, we need to endow the dual D(L) of a bounded
distributive lattice L with a topology. This is easy if we define
the dual of L to be D(L) := D(L, 2).

We first endow ({0, 1}; <) with the discrete topology:

» 2 =({0,1}; <, 7) is the two-element ordered set
with 0 < 1 endowed with the discrete topology 7.

Then we define
> D(L) :=D(L,2) < 2~

21/35



The duality in general

» 2=({0,1};V,A,0,1) is the two-element bounded lattice.

In general, we need to endow the dual D(L) of a bounded
distributive lattice L with a topology. This is easy if we define
the dual of L to be D(L) := D(L, 2).

We first endow ({0, 1}; <) with the discrete topology:

» 2 =({0,1}; <, 7) is the two-element ordered set
with 0 < 1 endowed with the discrete topology 7.

Then we define
> D(L) :=D(L,2) < 2~
We put the pointwise order and the product topology on gL.

21/35



The duality in general

» 2=({0,1};V,A,0,1) is the two-element bounded lattice.

In general, we need to endow the dual D(L) of a bounded
distributive lattice L with a topology. This is easy if we define
the dual of L to be D(L) := D(L, 2).

We first endow ({0, 1}; <) with the discrete topology:

» 2 =({0,1}; <, 7) is the two-element ordered set
with 0 < 1 endowed with the discrete topology 7.

Then we define

» D(L) :=D(L,2) < 2*.
We put the pointwise order and the product topology on gL.
Then D(L) := D(L,2) inherits its order and topology from gL.

21/35



The duality in general

» 2=({0,1};V,A,0,1) is the two-element bounded lattice.

In general, we need to endow the dual D(L) of a bounded
distributive lattice L with a topology. This is easy if we define
the dual of L to be D(L) := D(L, 2).

We first endow ({0, 1}; <) with the discrete topology:

» 2 =({0,1}; <, 7) is the two-element ordered set
with 0 < 1 endowed with the discrete topology 7.

Then we define

» D(L) :=D(L,2) < 2*.
We put the pointwise order and the product topology on gL.
Then D(L) := D(L,2) inherits its order and topology from gL.

D(L,2) is a topologically closed subset of gL (easy exercise).

21/35



The duality in general

» 2=({0,1};V,A,0,1) is the two-element bounded lattice.

In general, we need to endow the dual D(L) of a bounded
distributive lattice L with a topology. This is easy if we define
the dual of L to be D(L) := D(L, 2).

We first endow ({0, 1}; <) with the discrete topology:

» 2 =({0,1}; <, 7) is the two-element ordered set
with 0 < 1 endowed with the discrete topology 7.

Then we define

» D(L) :=D(L,2) < 2*.
We put the pointwise order and the product topology on gL.
Then D(L) := D(L,2) inherits its order and topology from gL.
D(L,2) is a topologically closed subset of gL (easy exercise).
Hence D(L) is a compact ordered topological space.
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Priestley spaces

The ordered space D(L) := D(L,2) < 2" is more than a
compact ordered space. It is a Priestley space.
A topological structure X = (X; <, 7) is a Priestley space if
» (X;<,) is an ordered set,
» T is a compact topology on X, and

» for all x, y € X with x £ y, there is a clopen down-set A
of Xsuchthat x ¢ Aand y € A.

The category of Priestley spaces is denoted by P.
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Priestley spaces

The ordered space D(L) := D(L,2) < 2" is more than a
compact ordered space. It is a Priestley space.
A topological structure X = (X; <, 7) is a Priestley space if
» (X;<,) is an ordered set,
» T is a compact topology on X, and

» for all x, y € X with x £ y, there is a clopen down-set A
of Xsuchthat x ¢ Aand y € A.

The category of Priestley spaces is denoted by P.
The following result is very easy to prove.
Lemma
» D(L)=D(L,2) < 2 L is a Priestley space, for every
bounded distributive lattice.

» EXX)=P(X,2) < 2% is a bounded distributive lattice, for
every Priestley space X.
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The functors

We now have functors D: D — P and E: P — D given by

D(L) =D(L,2) < 2" and E(X)=P(X,2) < 2.
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The functors

We now have functors D: D — P and E: P — D given by
D(L) =D(L,2) < 2 and E(X)=P(X,2) < 2.

D and E are defined on morphisms via composition exactly as
they were in the finite case:

» given f: L — K, we define
D(f): D(K,2) — D(L,2) by D(f)(x) = xof;
» given ¢: X — Y, we define

E(v): P(Y,2) = P(X, 2) by E(p)(a) :=aocp.
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The natural transformations

LetL € D and let X € P. There are natural maps
eL: L— ED(L) and ex: X — DE(X)

to the double duals;

24/35



The natural transformations

LetL € D and let X € P. There are natural maps
eL: L— ED(L) and ex: X — DE(X)

to the double duals;

24/35



The natural transformations

LetL € D and let X € P. There are natural maps
eL: L— ED(L) and ex: X — DE(X)
to the double duals; namely,

» e.: L— P(D(L,2),2)givenby a— eL(a),
where e_(a): D(L,2) — 2 : x — x(a),

24/35



The natural transformations

LetL € D and let X € P. There are natural maps
eL: L— ED(L) and ex: X — DE(X)
to the double duals; namely,

» e.: L— P(D(L,2),2)givenby a— eL(a),
where e_(a): D(L,2) — 2 : x — x(a),

» ex: X = D(P(X, 2),2) given by x — ex(x),
where ex(x): P(X,2) =+ 2 : o — «afx).

24/35



The natural transformations

LetL € D and let X € P. There are natural maps
eL: L— ED(L) and ex: X — DE(X)
to the double duals; namely,

» e.: L— P(D(L,2),2)givenby a— eL(a),

where e_(a): D(L,2) — 2 : x — x(a),
» ex: X = D(P(X, 2),2) given by x — ex(x),

where ex(x): P(X,2) =+ 2 : o — «afx).

Priestley duality tells us that these maps are isomorphisms
(in D or P, as appropriate).
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Priestley duality

Theorem (Priestley duality)

» The functors D: D — P and E: P — D give a dual
category equivalence between D and P.

» In particular, e_: L — ED(L) and ex: X — DE(X) are
isomorphisms for allL € D and X € P.
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Some ordered spaces

The following figure comes from Chapter 11 of

Davey and Priestley: Introduction to Lattices and Order.
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A subtlety

» If X=(X;<,7) is a Priestley space, then < is a
topologically closed subset of X x X.
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Outline

The translation industry: restricted Priestley duals
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The translation industry: restricted Priestley duals

» Since P(X, 2) is isomorphic to the lattice /7 (X) of clopen
up-sets of X, it is common to define the dual E(X) of a
Priestley space X to be ¢/”(X).
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The translation industry: restricted Priestley duals

» Since P(X, 2) is isomorphic to the lattice /7 (X) of clopen
up-sets of X, it is common to define the dual E(X) of a
Priestley space X to be ¢/”(X).

» Hence when translating properties of distributive lattices
into properties of Priestley spaces, it is common to use
clopen up-sets (or their complements, i.e., clopen
down-sets).
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The translation industry: restricted Priestley duals

Examples: p-algebras

Let X and Y be a Priestley spaces and let p: X — Y be
continuous and order-preserving.
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The translation industry: restricted Priestley duals

Examples: p-algebras

Let X and Y be a Priestley spaces and let p: X — Y be
continuous and order-preserving.

» X is the dual of a distributive p-algebra, and called a
p-space, iff

» | U is clopen, for every clopen up-set U;
then U* = X\ U in U7 (X).
» If X and Y are p-spaces, then ¢: X — Y is the dual of a
p-algebra homomorphism iff
» o(max(x)) = max(e(x)), for all x € X.

(Here max(z) denotes the set of maximal elements in 12z.)
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The translation industry: restricted Priestley duals

Examples: Heyting algebras
Let X and Y be a Priestley spaces and let p: X — Y be
continuous and order-preserving.
» X s the dual of a Heyting algebra, and called a
Heyting-space (or Esakia space), iff
» U is open, for every open subset U,
then U — V = X\ L(U\V) in U7 (X).
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Examples: Heyting algebras

Let X and Y be a Priestley spaces and let p: X — Y be
continuous and order-preserving.

» X s the dual of a Heyting algebra, and called a
Heyting-space (or Esakia space), iff

» U is open, for every open subset U,
then U — V = X\ L(U\V) in U7 (X).
» If X and Y are Heyting-spaces, then ¢: X — Y is the dual
of a Heyting algebra homomorphism iff
> o(Tx) = te(x), for all x € X.
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The translation industry: restricted Priestley duals

Examples: Ockham algebras

» A= (A V,A,9,0,1) is an Ockham algebra if
A’ := (A;V, A, 0,1) is a bounded distributive lattice and
g satisfies De Morgan’s laws and is Boolean complement
on {0, 1}; in symbols,

g(avb) = g(a)Ag(b), g(anb) = g(a)vg(b), 9(0) =1, g(1) =0,

i.e., g is a lattice-dual endomorphism of A’.
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g satisfies De Morgan’s laws and is Boolean complement
on {0, 1}; in symbols,

g(avb) = g(a)rg(b), g(anb) = g(a)vg(b), g(0) =1, g(1) =0,

i.e., g is a lattice-dual endomorphism of A’.

» Thus X = (X; g, <, 7) will be the restricted Priestley dual of
an Ockham algebra, known as an Ockham space, if
X’ := (X;<,7) is a Priestley space and g: X — X is an
order-dual endomorphism of X.
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Examples: Ockham algebras

» A= (A;V,A,0,0,1) is an Ockham algebra if
A’ := (A;V, A, 0,1) is a bounded distributive lattice and
g satisfies De Morgan’s laws and is Boolean complement
on {0, 1}; in symbols,

g(avb) = g(a)rg(b), g(anb) = g(a)vg(b), g(0) =1, g(1) =0,

i.e., g is a lattice-dual endomorphism of A’.

» Thus X = (X; g, <, 7) will be the restricted Priestley dual of
an Ockham algebra, known as an Ockham space, if
X’ := (X;<,7) is a Priestley space and g: X — X is an
order-dual endomorphism of X.

» If X and Y are Ockham spaces, then ¢: X — Y is the dual
of an Ockham algebra homomorphism if it is continuous,

order-preserving and preserves the unary operation g.
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Useful facts about Priestley spaces

Prove each of the following claims. The order-theoretic dual of

each statement is also true.

Let X = (X; <,T) be a Priestley space.

(1) Theset Y :={xe X |(3yeY)x<y}isclosedinX
provided Y is closed in X. In particular, |y is closed in X,
forall y € X.

(2) Every up-directed subset of X has a least upper bound in X.
(8) The set Min(X) of minimal elements of X is non-empty.

(4) Let Y and Z be disjoint closed subsets of X such that Y is a
down-set and Z is an up-set. Then there is a clopen
down-set Uwith Y CUand UNZ = 2.

(5) Y is aclosed down-set in X if and only if Y is an
intersection of clopen down-sets.
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