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In 1991, I gave a series of five lectures on the theory of natural dualities at
the Summer School on Algebras and Orders in Montréal, Canada. The theory
was then eleven years old, although it had its early genesis back in 1974 in
my PhD thesis (see [15]), and the series of lectures was a good chance to take
stock. For the next eight years, the notes which resulted from those lectures,
Duality Theory on Ten Dollars a Day [16], became the standard guide to the
theory of natural dualities. In December 1991, David Clark came to La Trobe
university for three months and we commenced the work which seven years later
culminated in the publication of our text Natural Dualities for the Working

Algebraist [7]. Below you will find a slightly modified copy of the introduction
from Duality Theory on Ten Dollars a Day followed by extracts from a number
of chapters of Natural Dualities for the Working Algebraist1 reproduced here with
the kind permission of Cambridge University Press. I have used the subsection
numbers found in the text.

Update 0

En route, I will mention some developments that have occurred in the 17
years since the text was published. Comments on the problems repeated
here will be given in footnotes. Other comments will appear in update boxes
like this one.

2010 Mathematics Subject Classification. Primary: 08C20; Secondary: 06D50.
Key words and phrases. natural duality, full duality, strong duality, piggyback duality, distribu-

tive lattice, Priestley duality.
Notes prepared for the School of TACL2015, University of Salerno, Italy, June 15–19, 2015.

Based on notes written for the First Southern African Summer School and Workshop on Logic,

Universal Algebra and Theoretical Computer Science, December 1–10, 1999.
1 c© Cambridge University Press

1



2 B. A. DAVEY

0. DUALITY THEORY ON TEN DOLLARS A DAY

Many young travellers in the realm of general algebra find that the signposts
along the road to duality theory point in directions which they would not, of their
own accord, choose to travel: to the limits of category theory, to topology’s tortu-
ous terrain, to the myriad byways of unfamiliar examples. For them, and perhaps
for a few of the not-so-young, we offer this traveller’s guide. Here they will find
a low cost yet comprehensive tour of the field, avoiding category theory and
keeping excursions into topology to a minimum. Our tour is aimed at beginning
graduate students who have already completed a first course in topology (up to
compactness) and a first course in general algebra (up to Birkhoff’s theorems on
free algebras, varieties and subdirect representations). Those who would prefer
a more comprehensive guide book, including the category-theoretic requisites
as well as examples of dualities in action, are referred to the monograph Clark
and Davey [7] from which the later sections of these notes are extracted.

To ensure that we are in shape for the longer journey into general algebra, we
begin with three day trips into more familiar territory: abelian groups, Boolean
algebras and distributive lattices. The reader, and especially the first-time trav-
eller, is warned that the commentary during the guided tour of abelian groups
will contain a lot of important chit-chat which will not be repeated during the
other two trips.

Abelian Groups. Denote the class of abelian groups by A. The circle group

is the subgroup T := { z ∈ C : |z|= 1 } of the group of nonzero complex numbers
under multiplication. For each abelian group A we denote the set of all homo-
morphisms x : A→ T by A(A,T). As will soon become apparent, such homsets

play a crucial role in duality theory. There is a natural map

eA : A→ TA(A,T), given by eA(a)(x) := x(a)

for all a ∈ A and all x ∈A(A,T). We say that the map eA is given by evaluation

since, for each a ∈ A, the map eA(a): A(A,T)→ T is given by the rule “evaluate
at a”. It is easily seen that e is a homomorphism. Indeed, since each x ∈A(A,T)
is a homomorphism and since the operation on a power of T is pointwise, we
have

eA(a · b)(x) = x(a · b) = x(a) · x(b) = eA(a)(x) · eA(b)(x) = (eA(a) · eA(b))(x)

for each x ∈ A(A,T) and hence eA(a · b) = eA(a) · eA(b) for all a, b ∈ A. It is a
fundamental fact about abelian groups that, if A ∈ A and a, b ∈ A with a 6= b,
then there exists a homomorphism x : A→ T with x(a) 6= x(b). In other words,
if a 6= b in A, then there exists x ∈ A(A,T) such that eA(a)(x) 6= eA(b)(x) and
thus eA(a) 6= eA(b). Hence e is an embedding. Consequently, every abelian group
is isomorphic to a subgroup of a power of T. Using the usual class operators, I



NATURAL DUALITIES: THE LONELY PLANET GUIDE 3

(all isomorphic copies of), S (all subgroups of) and P (all products of), we have
A= ISP(T).

Thus we have represented each abelian group A as a group of functions: the
group A is isomorphic to the group

{ eA(a): A(A,T)→ T | a ∈ A}¶ TA(A,T)

of evaluations maps. This representation would be greatly strengthened if we
had some intrinsic description of the evaluation maps. We wish to find some
property (expressed in terms of the sets A(A,T) and T with no reference to
the elements of A) which will distinguish the evaluation maps within the set of
all maps ϕ : A(A,T) → T . This search is at the heart of the theory of natural
dualities.

First note that T inherits a topology T from C. In fact, 〈T ; ·,−1 , 1,T〉 is a
compact topological group. We impose the product topology on the power T A:
sets of the form

Ua,V := {u: A→ T | u(a) ∈ V },

where a ∈ A and V is open in T , form a subbase for the product topology on T A.
By Tychonoff’s Theorem (a product of compact spaces is compact), T A is com-
pact.

It is an easy exercise to see that the set A(A,T) of homomorphisms is a closed
subspace of T A. Let u: A→ T and assume that u is not a homomorphism. Thus
there exist a, b ∈ A such that u(a · b) 6= u(a) · u(b). Since the topology on
T is Hausdorff, there exist open sets V and W in T such that u(a · b) ∈ V ,
u(a) · u(b) ∈W and V ∩W = ∅. Since multiplication on T is continuous, there
exist open sets Wa and Wb in T such that u(a) ∈Wa, u(b) ∈Wb and Wa ·Wb ⊆W .
Thus

U := Uab,V ∩ Ua,Wa
∩ Ub,Wb

is an open set in T A which contains u. Moreover, if v ∈ U , then v(a · b) ∈ V and
v(a) · v(b) ∈Wa ·Wb ⊆W , whence v(a · b) 6= v(a) · v(b) as V ∩W = ∅. Thus U
is disjoint from A(A,T) and hence A(A,T) is closed in T A.

Since A(A,T) is a closed subspace of the compact space T A, it follows imme-
diately that A(A,T) is also compact. It is a triviality that the evaluation maps
are continuous with respect to this topology: if V is open in T and a ∈ A, then

e(a)−1(V ) = { x ∈A(A,T) | e(a)(x) ∈ V }

= { x ∈A(A,T) | x(a) ∈ V }

=A(A,T)∩ Ua,V

which is open in A(A,T). Nevertheless, the evaluation maps are not the only
continuous maps from A(A,T) to T .
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In order to distinguish the evaluation maps we must impose further structure
on T and on A(A,T). Note that A(A,T) is closed under the pointwise multipli-
cation: if x , y ∈A(A,T), then x · y ∈A(A,T) since, for all a, b ∈ A,

(x · y)(a · b) = x(a · b) · y(a · b)

= (x(a) · x(b)) · (y(a) · y(b))

= (x(a) · y(a)) · (x(b) · y(b))

= (x · y)(a) · (x · y)(b)

which says that x · y is a homomorphism. The crucial identity in this calculation
is

(s · t) · (u · v) = (s · u) · (t · v)

which says precisely that multiplication on T, regarded as a map from T2 to T, is
a homomorphism. The set A(A,T) contains the identity element of TA, namely
the constant map onto {1}, because {1} is a one-element subgroup of T. Finally,
A(A,T) is closed under forming inverses: if x : A→ T is a homomorphism, then
x−1 : A→ T (defined pointwise) is also a homomorphism since, for all a, b ∈ A,

x−1(a · b) = x(a · b)−1 = (x(a) · x(b))−1 = x(a)−1 · x(b)−1 = x−1(a) · x−1(b).

Again, the crucial identity, namely (s · t)−1 = s−1 · t−1, which holds since T is
abelian, says precisely that −1 : T → T is a homomorphism. Thus A(A,T) is a
subgroup of TA, and so we may add this natural pointwise group structure to the
topology on A(A,T). Once more it is trivial that the evaluation maps preserve
the additional structure. The evaluation e(a): A(A,T)→ T is a homomorphism
for each a ∈ A since

eA(a)(x · y) = (x · y)(a) = x(a) · y(a) = eA(a)(x) · eA(a)(y)

for all x , y ∈A(A,T).
To summarise, A(A,T) is a closed subgroup of TA (and hence is a compact

topological group) and, for each a ∈ A, the evaluation map eA(a): A(A,T)→ T
is a continuous homomorphism. It is a surprising and highly nontrivial result
that the evaluation maps are the only continuous homomorphisms from A(A,T)
to T. This is part of the Pontryagin duality for locally compact abelian groups
[67, 68]. Hence, in the case of abelian groups, we have found a natural intrinsic
structure on A(A,T) and T—both are (compact) topological abelian groups—
which distinguishes the evaluation maps. Thus every abelian group is isomorphic
to the group of all continuous homomorphisms from some compact topological
abelian group into the circle group T. The compact topological abelian group
A(A,T) is called the dual of A. We shall denote it by D(A).

At this point it is important to draw the distinction between a representation

theory for a class A of algebras and a duality theory for A. What we have de-
scribed so far is a representation theory for the class A of abelian groups. To lift
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this up to a duality theory for A we must show that the representation respects
homomorphisms (while turning them on their heads). If A,B ∈A and u: A→ B
is a homomorphism, then the dual of u is the natural map D(u): D(B)→ D(A)
defined by “compose on the right with u”, that is,

D(u)(x) := x ◦ u ∈ D(A) =A(A,T) for all x ∈ D(B) =A(B,T).

The map D(u) is continuous since, if V is open in T and a ∈ A, then

D(u)−1(Ua,V ∩A(A,T)) = Uu(a),V ∩A(B,T).

Moreover, D(u) is a homomorphism since, for all x , y ∈A(B,T) and all a ∈ A,

D(u)(x · y)(a) = ((x · y) ◦ u)(a) = (x · y)(u(a)) = x(u(a)) · y(u(a))

= (x ◦ u)(a) · (y ◦ u)(a) = ((x ◦ u) · (y ◦ u))(a)

= (D(u)(x) · D(u)(y))(a)

whence D(u)(x · y) = D(u)(x) · D(u)(y).

The picture we have painted so far during this brief excursion into Pontryagin du-
ality has been intentionally one-sided. We commenced the trip with the cultural
mind set of an algebraist for which we make no apology. Nevertheless, since the
total picture is highly symmetrical, the other side warrants fuller description.

The duals D(A) for A ∈A need a home. Since, by construction, each D(A) =
A(A,T) is a closed subgroup of a power of T (regarded as a topological group),
a natural choice for their home is the class IScP+(T) of all isomorphic copies of
closed subgroups of non-trivial powers of T. (A map will be an isomorphism
in this context if it is simultaneously a group isomorphism and a topological
homeomorphism.) Another natural choice would be the class X of all compact
topological abelian groups. In fact, X = IScP+(T) as we shall see once some
further notation is established.

For each X ∈X, the homset X(X,T), consisting of the continuous homomorph-
isms from X to T, is a subgroup of TX . The proof is identical to the proof given
above that A(A,T) is a subgroup of TA except that we must now observe that

(a) if α,β : X→ T are continuous then α·β : X→ T is continuous (since ·: T2→
T is continuous),

(b) if α: X→ T is continuous then α−1 : X→ T is continuous (since −1 : T→ T
is continuous), and

(c) the constant map from A onto {1} ⊆ T is continuous.

Thus X(X,T) ∈A. We refer to X(X,T) as the dual of X and denote it by E(X).
Just as the map D : A→ X respects homomorphisms, it is very easily seen that
the map E : X→A respects continuous homomorphisms (modulo turning them
on their heads). If X,Y ∈X and ϕ : X→ Y is a continuous homomorphism, then
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the dual of ϕ is the natural map E(ϕ): E(Y)→ E(X) defined by “compose on the
right with ϕ”, that is,

E(ϕ)(α) := α ◦ϕ ∈ E(X) =X(X,T) for all α ∈ E(Y) =X(Y,T).

We now have two natural maps given by evaluation: for all A ∈A and X ∈X,

eA : A→ ED(A) =X(D(A),T) =X(A(A,T),T)

defined by eA(a)(x) := x(a) for all a ∈ A and x ∈A(A,T), and

εX : X→ DE(X) =A(E(X),T) =A(X(X,T),T)

defined by εX(x)(α) := α(x) for all x ∈ X and α ∈X(X,T). While it is clear that
IScP+(T) ⊆ X, the reverse inclusion is far from clear. The vital (and difficult)
fact is that if X is a compact topological abelian group then there are enough
continuous homomorphisms from X into T to separate the points of X , that is,
if x 6= y in X , then there exists a continuous homomorphism α: X → T such
that α(x) 6= α(y). From this it is easily seen that the map εX : X→ DE(X) is an
isomorphism of X onto a closed subgroup of a power of T. Thus IScP+(T) is the
class of all compact topological abelian groups.

As was discussed earlier, the map eA : A → ED(A) is an isomorphism for all
A ∈A. This is what we mean when we say that we have a duality between

A and X. In many applications this is all that is needed: each A ∈ A has a
representation as E(X) for some X ∈ X, but X need not be unique up to iso-
morphism. If, in addition, the map εX : X → DE(X) is an isomorphism for all
X ∈X, then we say that the duality between A and X is full. The Pontrya-
gin duality between the class A of abelian groups and the class X of compact
topological abelian groups is a full duality and hence every abelian group A can
be represented as the group of continuous homomorphisms from a unique-up-
to-isomorphism compact topological abelian group into the circle group.

The circle group has a split personality. It lives in A as the abelian group
T = 〈T ; ·,−1 , 1〉 and in X as the compact topological group T∼ = 〈T ; ·,−1 , 1,T〉.
As we shall see, this schizophrenic behaviour is completely typical within duality
theory. In general, our choice of notation will make it clear which class an object
belongs to: A, B, C for groups in A and X, Y, Z for topological groups in X. But,
to make it clear which role the circle group is playing, we shall henceforth use
the T versus T∼ notation.

Boolean Algebras. The dual of a Boolean algebra A = 〈A;∨,∧,′ , 0, 1〉 is usu-
ally defined to be the set U (A) of ultrafilters of A endowed with the topology
generated by the sets of the form

Ua := { F ∈ U (A) | a ∈ F }
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for a ∈ A. Note thatUa is clopen (that is, both closed and open) in this topology
since

X\Ua = { F ∈ U (A) | a /∈ F }= { F ∈ U (A) | a′ ∈ F }=Ua′

which is a basic open set. Stone’s duality for Boolean algebras [74] (or see
[36]) asserts, in part, that the map e : a 7→ Ua is an isomorphism of A onto the
Boolean algebra of clopen subsets of U (A). Our task now is to see that this can
be expressed naturally in terms of homsets in a manner strictly analogous to what
we observed during our day trip into the Pontryagin duality for abelian groups.
The role of the circle group T will now be played by the two-element Boolean
algebra 2= 〈{0, 1};∨,∧,′ , 0, 1〉while the topological group T∼will be replaced by
a much simpler object, namely 2∼= 〈{0, 1};T〉, where T is the discrete topology.

Let B denote the class of all Boolean algebras. For any subset F of A we define
a map χF : A→ {0,1}, the characteristic function of F , by

χ
F (a) :=

(

1 if a ∈ F ,

0 if a /∈ F .

It is easily seen that F is a prime filter of the Boolean algebra A if and only if χF

is a lattice homomorphism onto 2. But a filter of a Boolean algebra A is prime
if and only if it is an ultrafilter, and a lattice homomorphism from A onto 2 is
automatically a Boolean algebra homomorphism. Thus ϕ : F 7→ χF is a bijection
between the set U (A) of ultrafilters of A and the set B(A,2) of all Boolean
algebra homomorphisms x : A → 2. A simple modification of the proof for the
circle group shows that the natural map

eA : A→ 2B(A,2), given by eA(a)(x) := x(a)

for all a ∈ A and all x ∈ B(A,2), is a homomorphism. The Boolean Ultrafilter
Theorem says precisely that if a 6= b in A, then there exists an ultrafilter F of A
which contains exactly one of a and b. Thus, taking x = χF , we have

eA(a)(x) = x(a) = χF (a) 6= χF (b) = x(b) = eA(b)(x)

and consequently eA is an embedding. Hence B= ISP(2).
By mimicing the proof for the circle group, it is easily seen that B(A,2) is a

closed subspace of the product space 2∼
A. (All that is needed is that the topology

on 2∼ is Hausdorff and that the Boolean algebra operations on 2 are continuous
with respect to the topology on 2∼: both are trivially true since the topology on
2∼ is discrete.) Recall that if a ∈ A and V ⊆ 2= {0,1}, then

Ua,V := {u: A→ T | u(a) ∈ V }.

Since

ϕ(Ua) = Ua,{1} ∩B(A,2) and ϕ(Ua′) = Ua,{0} ∩B(A,2),
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for all a ∈ A, the map ϕ : U (A) → B(A,2) is a homeomorphism. Thus we
may define the dual, D(A), to be the compact topological space B(A,2) with its
topology inherited as a subspace of the power 2∼

A.
As a home for the dual spaces D(A) for A ∈B we take the class Z := IScP+(2∼)

of all isomorphic (that is, homeomorphic) copies of closed subspaces of non-
trivial powers of the two-element discrete space 2∼. For each X ∈ Z, the homset
Z(X, 2∼) of all continuous maps from X into 2∼ is a subalgebra of 2X and hence
Z(X, 2∼) ∈B. Thus we define the dual of X to be E(X) := Z(X, 2∼), a subalgebra
of 2X . Note that a subset U of X is clopen if and only if its characteristic function
χ

U is continuous and hence E(X) is isomorphic to the Boolean algebra of clopen
subsets of X.

We leave it to the reader to define the dual D(u): D(B) → D(A) of a homo-
morphism u: A → B and the dual E(ϕ): E(Y) → E(X) of a continuous map
ϕ : X→ Y. (Just replace A by B and T by either 2 or 2∼ in the definition given
in the abelian group case.)

As in the abelian group case, we have two natural maps given by evaluation:
for all A ∈B and all X ∈ Z,

eA : A→ ED(A) = Z(D(A), 2∼) = Z(B(A,2), 2∼),

defined by eA(a)(x) := x(a) for all a ∈ A and x ∈B(A,2), and

εX : X→ DE(X) =B(E(X),2) =B(Z(X, 2∼),2),

defined by εX(x)(α) := α(x) for all x ∈ X and α ∈ Z(X, 2∼). The fact that A is
isomorphic to the Boolean algebra of clopen subsets of U (A) translates into the
statement that the map eA : A→ ED(A) is an isomorphism. In this case, all that
is needed to distinguish the evaluation maps is the topology on B(A,2) and on
2∼: a map u: B(A, 2)→ 2∼ is an evaluation map e(a) for some a ∈ A if and only if
it is continuous. Thus we have a duality between B and Z. In fact the duality
is full, that is, εX : X→ DE(X) is also an isomorphism for each X ∈ Z.

It is natural to ask for an axiomatisation of the class X. While not all appli-
cations of a duality require an axiomatisation of the dual structures, the utility
of the duality is greatly increased if we have such an axiomatisation. It is a very
easy exercise to see that X ∈ IScP+(2∼) if and only if X is a compact Hausdorff
space which is totally disconnected (that is, has a basis of clopen sets). Such
spaces are referred to as Stone spaces or Boolean spaces.

That completes our second day trip. Much of what we have seen so far has
an air of general algebra about it. We can already take a step back and survey
the scene at a higher level. We need a class of algebras of the form A= ISP(M)
for some algebra M = 〈M ; F〉. The algebra M should have a compact topology
T with respect to which each operation f ∈ F is continuous. We will define X

to be IScP+(M∼) and define the dual of A ∈ A to be D(A) := A(A,M) regarded
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as a substructure of M∼
A where M∼ = 〈M ; ???,T〉. Unfortunately, with only two

examples under our belts, it is not yet clear what structure will be appropriate
on M∼. We need an example where the general framework is the same but where
the alter ego, M∼, of the algebra M has a character quite different from the strongly
algebraic nature of T∼ = 〈T ; ·,−1, 1,T〉 and the purely topological nature of 2∼ =
〈{0,1};T〉. Hence we commence our third and final day trip.

Distributive Lattices. Just as the dual of a Boolean algebra is usually defined
in terms of ultrafilters, the dual of a distributive lattice A = 〈A;∨,∧〉 is usually
defined in terms of prime filters. We may define the dual of A to be the setF (A)
of prime filters of A, where we allow both ∅ and A as prime filters. As in the
Boolean case, we endow F (A) with a topology T: take the sets

Fa := { F ∈ F (A) | a ∈ F },

where a ∈ A, and their complements as a subbase for T. We also order F (A)
by set inclusion. Thus the dual of A is the bounded, ordered topological space
〈F (A);∅, A,⊆,T〉. According to Priestley’s duality for the class D of distributive
lattices [69, 70] (or see [36]), eA : a 7→ Fa is an isomorphism of A onto the lattice
of clopen increasing subsets of F (A). As in the Boolean case, this translates
easily into a statement about homsets and evaluation maps.

We are now in fairly familiar territory. Let D = 〈{0,1};∨,∧〉 be the two-
element distributive lattice. Once again, a very simple calculation shows that
the natural map

eA : A→ DD(A,D), given by eA(a)(x) := x(a)

for all a ∈ A and all x ∈ D(A,D), is a homomorphism. The Distributive Prime
Ideal Theorem guarantees that if a 6= b in A, then there exists a prime fil-
ter F which contains exactly one of a and b. Thus the characteristic function
χ

F : A→ {0,1} separates a and b. The argument given for Boolean algebras ap-
plies without change, whence eA is an embedding. Consequently, D= ISP(D).

Let D∼= 〈{0, 1}; 0, 1,¶,T〉 be the two-element chain with the bounds as nullary
operations and endowed with the discrete topology. Since D(A,D) is a closed
subspace of 2∼

A, it inherits both a compact topology, an order and its bounds
from the power 2∼

A. It is a very easy exercise to show that ϕ : F 7→ χ
F is a

homeomorphism and an order-isomorphism between F (A) and D(A,D). Thus
we define the dual of A to be the bounded, ordered Boolean space D(A,D). The
algebraic half of Priestley duality can now be reformulated in terms of homsets
as: for every distributive lattice A, the evaluation maps eA(a) for a ∈ A are the
only continuous, {0,1}-order-preserving maps from D(A,D) into 2∼.

The natural home for the duals D(A) for A ∈D is the class P01 := IScP+(D∼)
of all isomorphic (that is, simultaneously homeomorphic and order-isomorphic)
copies of closed substructures of non-trivial powers of D∼ = 〈{0, 1}; 0, 1,¶,T〉.
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For each X ∈P01, the homsetP01(X, D∼) of all continuous, {0, 1}-order-preserving
maps from X into D∼ is a sublattice of DX and thus P01(X, D∼) ∈D. Although the
proof is easy, it is essential for our further travels that we gauge the general-
algebraic import of this observation.

Let α,β ∈ P01(X, D∼). Then α ∨ β : X→ D∼ and α ∧ β : X→ D∼ are continuous
since ∨: 22 → 2 and ∧: 22 → 2 are continuous. The maps α ∨ β and α ∧ β
preserve 0 and 1 since {0} and {1} are sublattices of D. Finally, α∨β and α∧β
are order-preserving since, for all x , y ∈ X ,

x ¶ y =⇒ α(x)¶ α(y) & β(x)¶ β(y) as α,β ∈P01(X, D∼)

=⇒ α(x)∨ β(x)¶ α(y)∨ β(y) & α(x)∧ β(x)¶ α(y)∧ β(y)

=⇒ (α∨ β)(x)¶ (α∨ β)(y) & (α∧ β)(x)¶ (α∧ β)(y).

This calculation depends upon the fact that D satisfies

u¶ v & s ¶ t =⇒ u∨ s ¶ v ∨ t & u∧ s ¶ v ∧ t

or, equivalently, (recalling that ¶ is a subset of 22),

(u, v) ∈¶ & (s, t) ∈¶ =⇒ (u, v)∨ (s, t) ∈¶ & (u, v)∧ (s, t) ∈¶.

This says precisely that¶ is a sublattice of D2. Hence, we have used the fact that
{0} and {1} are sublattices of D and that ¶ is a sublattice of D2.

We define the dual of X to be E(X) :=P01(X, D∼), a sublattice of DX . A subset U
of X is clopen and increasing if and only if its characteristic function χU : X → D∼
is both continuous and order-preserving. Thus E(X) is isomorphic to the lattice
of all clopen increasing non-empty, proper, subsets of X.

The maps D : D → P01 and E : P01 → D can be defined on morphisms via
composition exactly as in the Boolean case. Of course, we once again have the
two natural maps given by evaluation: for all A ∈D and all X ∈P01,

eA : A→ ED(A) =P01(D(A), D∼) =P01(D(A,D), D∼),

defined by eA(a)(x) := x(a) for all a ∈ A and x ∈D(A,D), and

εX : X→ DE(X) =D(E(X),D) =D(P01(X, D∼),D),

defined by εX(x)(α) := α(x) for all x ∈ X and α ∈ P01(X, D∼). Priestley duality
tells us that we have a full duality between D and P01, that is, eA : A→ ED(A)
and εX : X→ DE(X) are isomorphisms for all A ∈D and X ∈X.

An ordered topological space X is called totally order-disconnected if, for
all x , y ∈ X with x � y , there exists a clopen increasing subset U of X such
that x ∈ U but y /∈ U . This is precisely the notion needed to axiomatise P01:
a bounded, ordered topological space X is in P01 = IScP+(D∼) if and only if X
is compact and totally order-disconnected. Such ordered topological spaces are
often called bounded TODC spaces or bounded Priestley spaces.
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Applications of Priestley’s duality for D abound—see, for example, the survey
articles Davey and Duffus [18] and Priestley [71].

Having completed our three day-trips, we are now ready to commence our
guided tour of general duality theory. But before we do, we should address a
fundamental question: “Why bother?” There are many reasons for developing a
duality (of the type described in this guide) for your favourite classA of algebras.
Here are a few: see [7] for more details.

• Once we have a duality for A we have a uniform way of representing each
algebra A ∈A as an algebra of continuous functions.

• If we have a full duality and have axiomatised the class X := IScP+(M∼), we
can find examples of particular algebras in A by constructing objects in X,
which often turns out to be easier.

• Algebraic questions in A can be answered by translating them into (often
simpler) questions in X. For example,
(1) free algebras in A are easily described via their duals in X,
(2) while a coproduct A ∗ B is often difficult to describe in A, the dual,

D(A ∗B), is simply the cartesian product D(A)× D(B),
(3) congruence lattices in A may be studied by looking at lattices of closed

substructures in X,
(4) injective algebras in A may be characterised by first studying projec-

tive structures in X,
(5) algebraically closed and existentially closed algebras may be described

via their duals.
• Some dualities have the particularly powerful property of being “logarith-

mic” in that they turn products into sums. For example, for both Boolean
algebras and bounded distributive lattices we have D(A×B)∼= D(A)∪̇D(B).

CHAPTER 1: DUAL EQUIVALENCES AND WHERE TO FIND THEM

Structured topological spaces A natural duality is a special kind of dual rep-
resentation that can exist between a finitely generated quasi-variety A and a
category X of structured Boolean spaces. In this section we describe the kinds
of structured Boolean spaces that arise in this way. The quasi-variety of distribu-
tive lattices, for example, is dual to a category of Boolean spaces which carry two
nullary total operations (constants) and one binary relation. Other dualities will
require spaces with different kinds of structure. To lay the groundwork for these
dualities we consider the most general kind of structure that we might want to
impose. We begin with three sets of symbols:

(i) a set G of finitary total operation symbols,
(ii) a set H of finitary partial operation symbols,

(iii) a set R of finitary relation symbols.
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Each symbol carries an arity, which is a natural number defined by a fixed arity
function on these sets of symbols. Operations may be nullary, but partial oper-
ations and relations must have positive arities. By a structured topological

space of type 〈G, H, R〉 we mean a structure

X= 〈X ; GX, HX, RX,TX〉

where

(i) GX consists of an n-ary total operation gX : X n → X for each n-ary total
operation symbol g ∈ G,

(ii) HX consists of an n-ary partial operation hX : dom(hX)→ X for each n-ary
partial operation symbol h ∈ H, where dom(hX) ⊆ X n,

(iii) RX consists of an n-ary relation rX ⊆ X n on X for each n-ary relation symbol
r ∈ R,

(iv) 〈X ,TX 〉 is a topological space.

If G includes no nullary operations, then we will allow X to be empty. The empty

structure, ∅∼, consists of the empty set with each operation, partial operation
and relation being empty. In the actual cases that we will consider, the sets G,
H and R will usually be either small or empty and the arities n will usually be
small. Remember that the ultimate utility of natural dualities will hinge on our
ability to construct a dual category X which is in a practical sense simpler than
the corresponding original category A, and this will normally mean that its type
must be small.

Many of the familiar algebraic notions and results discussed in the previous
section have more than one natural extension to structures with relations and
partial operations. It is therefore important that we formulate explicitly the ex-
tensions of these notions that will be used in this book. Let

X= 〈X ; GX, HX, RX,TX〉

be a structured topological space. If hX ∈ GX∪HX is n-ary, then the graph of hX

is the (n+1)-ary relation

graph(hX) = {(x1, x2, . . . , xn, y) ∈ X n+1 | hX(x1, x2, . . . , xn) = y }

on X . If g ∈ GX is nullary, then graph(g) = {g}.
If g is a k-ary partial operation and h1, . . . , hk are n-ary partial operations on X ,

then the composition g(h1, . . . , hk) is the n-ary partial operation whose domain
consists of those x ∈ X n for which the expression g(h1(x), . . . , hk(x)) is defined.
Of course, g(h1(x), . . . , hk(x)) could be the empty map, η: ∅ → M , even
when g and h1, . . . , hn have non-empty domains. We shall allow both k = 0 and
n = 0 in this definition, but some care is required. When n = 0, even though g
might be partial, this construct produces either η or a (total) nullary operation:
if c1, . . . , ck are nullary with (c1, . . . , ck) ∈ dom(g), then we obtain the nullary
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operation g(c1, . . . , ck). When k = 0, the operation g is nullary and we declare
that g composed with the empty set of n-ary total maps produces the constant
total n-ary map with value g.

A set of partial operations on X is called an enriched partial clone on X
if it includes the coordinate projections πi : X n → X for each n ¾ 1 and is
closed under composition. The enriched partial clone generated by a set
P of partial operations on X is the smallest enriched partial clone on X con-
taining P and is denoted by [P]. Note that, to guarantee closure under com-
position, [P] may contain the empty map η. The enriched partial clone of

X = 〈X ; GX, HX, RX,TX〉 is defined to be [GX ∪ HX]. Unlike clones on algebras,
these clones are enriched to allow the possibility that they might include nullary
operations as well.

Now consider another structured topological space

Y= 〈Y ; GY, HY, RY,TY〉.

A continuous map ϕ : X → Y is a morphism, written ϕ : X→ Y, if it preserves
each member of R and the graph of each member of G∪H. Written out in detail,
ϕ is a morphism if

(i) for each n-ary g ∈ G and each (x1, x2, . . . , xn) ∈ Xn, we have

ϕ(gX(x1, x2, . . . , xn)) = gY(ϕ(x1),ϕ(x2), . . . ,ϕ(xn)),

(ii) for each n-ary h ∈ H and each (x1, x2, . . . , xn) ∈ dom(hX) we have

(ϕ(x1),ϕ(x2), . . . ,ϕ(xn)) ∈ dom(hY) and

ϕ(hX(x1, x2, . . . , xn)) = hY(ϕ(x1),ϕ(x2), . . . ,ϕ(xn)),

(iii) for each n-ary r ∈ R and each (x1, x2, . . . , xn) ∈ rX we have

(ϕ(x1),ϕ(x2), . . . ,ϕ(xn)) ∈ rY, and

(iv) ϕ is continuous.

The class of all structured topological spaces of a given type 〈G, H, R〉 with these
morphisms forms the broad category in which we will work. In the case that
G contains no nullary operations and the empty structure is allowed, for each
structure X of the type, there is a unique (empty) morphism from ∅∼ to X and
there are no morphisms in the other direction when X is non-empty.

The structure Y = 〈Y ; GY, HY, RY,TY〉 is called a substructure of the struc-
tured topological space X = 〈X ; GX, HX, RX,TX〉, written Y ¶ X, provided that
Y ⊆ X and

(i) for each n-ary g ∈ G the operations gY and gX agree on Y n,
(ii) for each n-ary h ∈ H, we have dom(hY) = dom(hX) ∩ Y n, and hY agrees

with hX on this set,
(iii) for each n-ary r ∈ R, we have rY = rX ∩ Y n, and
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(iv) TY is the relative topology obtained from TX.

Notice that the empty structure,∅∼, is a substructure of X exactly when G includes
no nullary operation symbols. Consequently the substructures of X are always
closed under intersection and therefore form a complete lattice.

Products of structured topological spaces of the same type are defined over
non-empty index sets in the usual manner, using pointwise total operations and
relations and the product topology, and partial operations are defined pointwise
whenever they are defined at each point. Concrete products defined in this way
are products in the category of structured topological spaces in the category-
theoretic sense (Exercise 1.12).

A morphism ϕ : X→ Y is an embedding of X into Y if the image ϕ(X) forms a
substructure of Y and ϕ is an isomorphism from X onto ϕ(X). While this defini-
tion requires verification of many details, a number of them follow automatically
in the context where we will use it.

From this point onward we will relax our use of the superscripts on GX, HX and RX

and their members, using them only when there may be a danger of ambiguity.
Let M∼ := 〈M ; G, H, R,T〉 be a structured topological space where M is finite

and the topology T is discrete. For a class Y of structured topological spaces
of the same type, we define I(Y), Sc(Y), P+(Y), respectively, to be the class of
isomorphic copies, topologically closed substructures and direct products (over
non-empty index sets) of members of Y. Beginning with M∼ we generate the class

X := IScP+(M∼)

consisting of all isomorphic copies of closed substructures of direct powers of
copies of M∼. Because M∼ is finite and discrete its topology is Boolean. As a result
the topology on each other member of X is also Boolean (Lemma B.5). Thus X
forms a category of structured Boolean spaces.

The dual of a finitely generated quasi-variety A = ISP(M) under a natural
duality will always be a category of the form X = IScP+(M∼) where M∼ is a finite
discrete structure. The next section and the next two chapters will focus on the
problem of determining M∼ when we are given M.

Predualities We are now ready to begin assembling the pieces. In this sec-
tion we will present a uniform method whereby, starting with an arbitrary finite
algebra M, we can always construct many different finite structures M∼ so that
A = ISP(M) is dually adjoint to X = IScP+(M∼). From this vast array of dual
adjunctions we can hope to find many nice dual equivalences. As we proceed
we will rely on the model of distributive lattices and bounded Priestley spaces to
guide us in defining the structure M∼, the contravariant functors D and E, and the
special morphisms eA and εX in a general setting. At the end of this section two
questions will remain: for which choices of M∼ is 〈D, E, e,ε〉 a dual representation



NATURAL DUALITIES: THE LONELY PLANET GUIDE 15

and for which choices is it a dual equivalence? Answering these questions will
be the goals of Chapters 2 and 3, respectively.

We begin with a fixed finite algebra M generating a quasi-variety A= ISP(M).
The example of distributive lattices and bounded Priestley spaces suggests that
M∼ be a structure sharing the same underlying set M as M. Loosely speaking,
we think of M as a schizophrenic object which has an algebraic personality
M and a topological personality M∼. In its two personalities it generates two
superficially different categories A and X, but under the right conditions these
two categories prove to be mirror images of one another.

How do we define the contravariant functors D and E in this setting? We try
to ‘define’

D(A) :=A(A,M) ⊆ MA

in general. Viewing M as a discrete space, we notice that A(A,M) is always a
closed subspace of the direct power MA and is therefore a Boolean space (Exer-
cise 1.19). It then remains to impose a structure on M∼ that assures us that the
homset A(A,M) is always a substructure of M∼

A.
Before doing this, we consider the definition of E. We ‘define’

E(X) :=X(X,M∼) ⊆ M X

in general. Once again, we need to impose conditions on M∼ which ensure that
the homset X(X,M∼) is a subalgebra of the direct power MX .

Given a type of algebras there is, up to isomorphism, a unique one-element
algebra of that type. If we consider a type of structures with partial operations or
relations, we notice that there are many non-isomorphic one-element structures,
each determined by taking different partial operations and relations to be non-
empty. We will refer to a one-element structure in which all partial operations
and relations are non-empty as the complete one-element structure of that
type.

The first and second conditions of the following theorem are the two condi-
tions that we are seeking. These are together equivalent to the third condition,
which is stated from the point of view of the structure on M, and the fourth con-
dition, which is stated from the point of view of the structure on M∼. Notice that
in the fourth condition, if n > 0, then the graph of an n-ary (partial) operation
h is a subalgebra of Mn+1 if and only if h is a homomorphism from a subalge-
bra of Mn into M (Exercise 1.20). Condition (iv) gives us a simple method of
constructing many choices of M∼ for any given algebra M.

1.5.2 Preduality Theorem. Let M be a finite algebra and let M∼ be a discrete
topological structure such that each relation and the domain of each partial op-
eration of M∼ are non-empty and M∼ has the same underlying set M as M. Then
conditions (ii), (iii) and (iv) below are equivalent and imply condition (i):
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(i) A(A,M) is a closed substructure of M∼
A, for each A ∈A;

(ii) X(X,M∼) is a subalgebra of MX , for each X ∈X;
(iii) each non-nullary operation of M is a morphism from a power of M∼ into M∼,

and each distinguished element of M forms a complete one-element sub-
structure of M∼;

(iv) each relation, the graph of each non-nullary operation and the graph of
each partial operation of M∼ are subalgebras of powers of M, and each
distinguished element of M∼ is a one-element subalgebra of M.

An n-ary relation on M is called algebraic over M if it forms a subalgebra of Mn.
An n-ary operation g on M is called algebraic over M if it is a homomorphism
from Mn to M. In particular, a nullary operation is algebraic over M if the element
it distinguishes forms a one-element subalgebra of M. An n-ary partial operation
h on M is called algebraic over M if it is a homomorphism from a subalgebra
of Mn to M. By Exercise 1.20, this is equivalent to saying that the graphs of g and
h form subalgebras of Mn+1. In this language, condition (iv) of the Preduality
Theorem 1.5.2 says precisely that each of the operations, partial operations and
relations of M∼ is algebraic over M. When this occurs, we say that M∼ is algebraic

over M and that M∼ yields a preduality on A.
Under a preduality the schizophrenia exhibited by the pair M–M∼ proves to

be contagious. We have sets which bear the identity of objects in one category
but behave as relations in the other, or as morphisms in one category but as
operations in the other. We will normally adopt notation appropriate to the
identity under which the entity in question arises, while retaining the flexibility
to shift to the other point of view whenever necessary. Many startling punches
in duality theory result from such well-timed shifts.

Once M∼ is algebraic over M, conditions (i) and (ii) of the Preduality Theo-
rem 1.5.2 allow us to define D : A→X and E : X→A by

D(A) =A(A,M)¶M∼
A and E(X) =X(X,M∼)¶MX .

Moreover, it turns out that there are simple and natural candidates for the re-
maining components of a dual adjunction in this setting. To complete the def-
initions of the contravariant functors D and E, consider A,B ∈ A and a homo-
morphism u: A→ B. We define

D(u): D(B)→ D(A) by D(u)(x) = x ◦ u.

Similarly, for X,Y ∈X and ϕ : X→ Y, we define

E(ϕ): E(Y)→ E(X) by E(ϕ)(α) = α ◦ϕ.

For each A ∈A and each X ∈X we define the evaluation maps

eA : A→ ED(A) by eA(a)(x) = x(a)
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Figure 1.2 a dual adjunction

1.5.3 Dual Adjunction Theorem If M∼ is algebraic over M, then ⟨D, E, e, ε⟩ is a dual
adjunction between A and X such that the evaluation maps eA and εX are embeddings.

We assume without further mention that all operations, partial operations and relations on
M∼ are algebraic over M.

Chapter 2: Natural Dualities

Having set the scene in the previous chapter, we can now begin to address the most
immediate issues. As algebraists, our first aim is to obtain a representation of each algebra
in A = ISPM as an algebra of continuous, structure-preserving maps.

Given a discrete topological structure M∼ = ⟨M ; G, H, R, T ⟩ which is algebraic over M,
we have a dual adjunction ⟨D, E, e, ε⟩ between A and X := IScP+ M∼ as described in the
last section of the previous chapter. In particular, by the Dual Adjunction Theorem 1.5.3,
the homomorphism eA : A → ED(A) is an embedding for all A ∈ A. We shall say that M∼
yields a (natural) duality on an algebra A in A if eA is an isomorphism, that is, if the only
continuous structure-preserving maps from D(A) to M∼ are the evaluations. If C ⊆ A and
M∼ yields a duality on every algebra A in C, then we say that M∼ yields a (natural) duality
on C. Thus M∼ yields a natural duality on A precisely when the preduality determined by
M∼ is a dual representation. Instead of saying that M∼ yields a duality, we shall sometimes
say that G ∪ H ∪ R yields a duality. Putting the emphasis back on the algebra M, we say
that M admits a (natural) duality, or that M is dualisable, if there exists some structure
M∼ which yields a duality on A, in which case we often say simply that M∼ (or G ∪ H ∪ R)
dualises M.

Brute force We shall see in the next chapter that the operations in G and the partial
operations in H play a vital role when we wish to upgrade a natural duality (= dual
representation) to a full duality (= dual equivalence). Nevertheless, our first lemma implies

and

εX : X→ DE(X) by εX(x)(α) = α(x).

We say that 〈D, E, e,ε〉 is a dual adjunction between A and X, that D and E
are dually adjoint, that E is a dual adjoint to D, and that D is a dual adjoint

to E if the following conditions hold:

(i) for u: A → B in A and ϕ : X → Y in X, the two squares in Figure 1.2
commute, that is, eB ◦ u= ED(u) ◦ eA and εY ◦ϕ = DE(ϕ) ◦ εX,

(ii) for A ∈A and X ∈X there is a bijection betweenA(A, E(X)) andX(X, D(A))
associating u and ϕ as given in the commuting triangles of Figure 1.2, that
is, u= E(D(u) ◦ εX) ◦ eA and ϕ = D(E(ϕ) ◦ eA) ◦ εX.

Those already experienced with categories will notice that idA : A → A and
ED : A → A are covariant functors and that the left square of Figure 1.2 says
precisely that e : idA→ ED is a natural transformation. A similar observation
can be made about the right square.

The next theorem shows that in this context a large part of the construction
we seek is present as soon as M∼ is algebraic over M.

1.5.3 Dual Adjunction Theorem. If M∼ is algebraic over M, then 〈D, E, e,ε〉 is a
dual adjunction between A and X such that the evaluation maps eA and εX are
embeddings.

We assume without further mention that all operations, partial operations and
relations on M∼ are algebraic over M.
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Update 1

The restriction to finite algebras in the choice of M can be and has been re-
laxed.
Infinite rather than finite. In the original 1980 Davey–Werner paper [40],
infinite algebras M with a compatible compact topology were allowed. This
brings Pontryagin duality for abelian groups under the natural-duality um-
brella. As this forces us into the realm of topological algebra and there is a
paucity of natural examples, this direction has been little pursued. Never-
theless, there are several papers that do allow for an infinite M and yield a
range of examples: see [41, 42, 35, 29, 23].
Structures rather than algebras. The lack of symmetry that results from
restricting M to be an algebra while allowing M∼ to be a structure can be
removed by allowing both M and M∼ to be structures. Much, but not all of
the theory goes over to this setting: see [47, 17] for the theory, [33] for an
approach via a natural Galois connection on partial operations, and [54, 55,
56, 57] for examples.
Empty structures. While we include the empty structure in the category X,
we have followed the usual algebraic convention of excluding the empty al-
gebra from the category A, but this is not necessary. Indeed, the decision to
include or exclude both empty and one-element structures in the category A

is one of personal preference, and all variants can be accommodated. For a
discussion of the four different settings that arise we refer to the appendix
of [33].

CHAPTER 2: NATURAL DUALITIES

Having set the scene in the previous chapter, we can now begin to addess the
most immediate issues. As algebraists, our first aim is to obtain a representation
of each algebra in A= ISP(M) as an algebra of continuous, structure-preserving
maps.

Given a discrete topological structure M∼ = 〈M ; G, H, R,T〉 which is algebraic
over M, we have a dual adjunction 〈D, E, e,ε〉 between A and X := IScP+(M∼) as
described in the last section of the previous chapter. In particular, by the Dual
Adjunction Theorem 1.5.3, the homomorphism eA : A→ ED(A) is an embedding
for all A ∈A. We shall say that M∼ yields a (natural) duality on an algebra A
in A if eA is an isomorphism, that is, if the only continuous structure-preserving
maps from D(A) to M∼ are the evaluations. If C ⊆ A and M∼ yields a duality on
every algebra A in C, then we say that M∼ yields a (natural) duality on C.
Thus M∼ yields a natural duality on A precisely when the preduality determined
by M∼ is a dual representation. Instead of saying that M∼ yields a duality, we shall
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sometimes say that G∪H∪R yields a duality. Putting the emphasis back on the
algebra M, we say that M admits a (natural) duality, or that M is dualisable,
if there exists some structure M∼ which yields a duality on A, in which case we
often say simply that M∼ (or G ∪H ∪ R) dualises M.

Brute force We shall see in the next chapter that the operations in G and
the partial operations in H play a vital role when we wish to upgrade a natural
duality (= dual representation) to a full duality (= dual equivalence). Never-
theless, our first lemma implies that if we are trying to prove only that M∼ yields
a duality on A, we may delete an operation from G or a partial operation from
H provided we add its graph to the set R of relations. Let dom(h) ⊆ M n and
h: dom(h)→ M . By Exercise 1.20, graph(h) is a subalgebra of Mn+1 if and only
if dom(h) is a subalgebra of Mn and h: dom(h)→M is a homomorphism, that is,
h is algebraic over M if and only if graph(h) is algebraic over M. Thus it makes
sense to delete h from G or H and to add graph(h) to R.

2.1.2 Lemma. Let M∼ = 〈M ; G, H, R,T〉, define R′ := R∪ {graph(h) | h ∈ G ∪ H}
and let M∼

′ = 〈M ; R′,T〉. Then M∼ yields a duality on A ∈A if and only if M∼
′ yields

a duality on A.

If M∼ = 〈M ; R,T〉 yields a duality on A, for some set R of algebraic relations, then,
since the evaluation maps eA(a): D(A) → M preserve every algebraic relation
on M, for any set R′ of algebraic relations which contains R, the structure M∼

′ =
〈M ; R′,T〉 will also yield a duality on A. In particular, M∼ = 〈M ;B,T〉 will yield a
duality on A where

B=
⋃

{S(Mn) | n¾ 1 }

is the set of all finitary algebraic relations on M. We refer to this as the brute

force construction. Thus the issue of the existence of a duality may, on one
level, be summed up as in the lemma below.

2.1.3 Lemma. Let A ∈A. The following are equivalent:

(i) there is some structure M∼ = 〈M ; G, H, R,T〉 which yields a duality on A;
(ii) there is some purely relational structure M∼ = 〈M ; R,T〉 which yields a

duality on A;
(iii) brute force yields a duality on A (that is, M∼ = 〈M ;B,T〉 yields a duality

on A);
(iv) the evaluation maps eA(a): A(A,M)→ M , where a ∈ A, are the only con-

tinuous maps from A(A,M) to M which preserve every finitary algebraic
relation on M.

The brute force construction is an important theoretical tool, but in practice
we try to make the structure on M∼ as simple as possible. Part of the beauty of
Priestley’s duality for distributive lattices is that it is given by a single, particularly
simple relation and two constants. It is highly unlikely that anyone would use
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the brute force duality for the class D of distributive lattices. Nevertheless, brute
force does yield a duality on D.

Duality theorems. We return now to the situation where M∼ = 〈M ; G, H, R,T〉
and we seek readily verifiable and preferably finitary conditions which will guar-
antee that M∼ yields a duality on A. The idea behind the First Duality Theorem is
quite simple: since every algebra in A is a homomorphic image of a free algebra
in A (Theorem A.2), in order to prove that M∼ yields a duality on A it suffices to

• show that M∼ yields a duality on all the free algebras in A,
and then
• show that the class of all algebras on which M∼ yields a duality is closed under

homomorphic images.

Obtaining necessary and sufficient finitary conditions for M∼ to yield a duality on
all free algebras in A is quite straightforward. We refer the reader to Appendix
A for a review of free algebras.

2.2.1 Lemma. Let S be a non-empty set, let FM(S) be the free algebra of S-ary
term functions over M and let

ρS : D(FM(S)) =A(FM(S),M)→M∼
S

be the map which restricts each homomorphism x : FM(S)→M to the generators,
that is, ρS(x)(s) = x(πs). Then ρS is an isomorphism in X.

The structure M∼ is injective in the category X if, for every morphism α: X→M∼
and embedding ϕ : X → Y in X, there is a morphism β : Y → M∼ such that
β ◦ϕ = α. The injectivity of M∼ will play a central role both here and in Chap-
ter 3. Injectivity of M in A will also be important in Chapter 3 but will not be
considered here.

2.2.2 First Duality Theorem. The following are equivalent:

(i) M∼ yields a duality on A;
(ii) for all A ∈ A, every morphism α: D(A) → M∼ extends to an A-ary term

function t : MA→ M ;
(iii) the following two conditions hold—

(INJ) M∼ is injective with respect to those embeddings in X which are of the
form D(u): D(A)→ D(B)where u: B→ A is a surjective homomorph-
ism, that is, for each morphism α: D(A)→M∼ there exists a morphism
β : D(B)→M∼ such that β ◦ D(u) = α,

(CLO) for each n ∈ N, every morphism t : M∼
n→M∼ is an n-ary term function

on M.

We begin by proving that (CLO) does indeed capture the fact that M∼ yields a
duality on the free algebras in A.
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2.2.3 Proposition.

(i) For a fixed set S, the structure M∼ yields a duality on the free algebra FM(S)
if and only if the following condition holds:

(CLO)S every morphism t : M∼
S →M∼ is an S-ary term function on M.

(ii) The following are equivalent:
(a) (CLO) holds;
(b) (CLO)S holds for every non-empty set S;
(c) M∼ yields a duality on the finitely generated free algebras in A;
(d) M∼ yields a duality on all free algebras in A.

As an immediate consequence of Lemma 2.2.1 and Proposition 2.2.3 we obtain
the following corollary, which says that powers of M∼ are dual to free algebras in
A under very weak circumstances.

2.2.4 Corollary. If S is a non-empty set and M∼ is algebraic over M, then

(i) D(FM(S))∼=M∼
S and

(ii) E(M∼
S) = FM(S) if (CLO) holds.

By the Preduality Theorem 1.5.2, every term function of M is a morphism in X.
The condition (CLO) adds the converse: duality requires that the (finitary) term
functions on M must be exactly the morphisms from finite powers of M∼ into M∼.
Thus (CLO) says precisely that G∪H ∪R determines the clone of term functions
on M. It is important to note that (CLO) is not sufficient to guarantee duality.
There is a two-element set R of relations which determines the clone of the three-
element Kleene algebra but does not yield a duality. Nevertheless, the addition of
one further relation to R does yield a duality. (See (CLO) versus (IC) in 4.3.12.)

The condition (INJ) guarantees that if M∼ yields a duality on B ∈ A then M∼
yields a duality on every homomorphic image of B in A (Exercise 2.2). Thus
the conditions (CLO) and (INJ) lead us along a natural algebraic path: we first
show that M∼ yields a duality on the free algebras by proving (CLO) and then,
since every algebra is a homomorphic image of a free algebra, show that the
duality extends to arbitrary algebras by proving (INJ).

In order to prove (INJ), we will begin by verifying a more accessible special
case of the injectivity of M∼ in X. The condition (CLO) together with the assertion
that M∼ is injective in Xfin are equivalent to the following simple interpolation

condition:

(IC) for each n ∈ N and each substructure X of M∼
n, every morphism α: X→M∼

extends to a term function t : M n→ M of the algebra M.

They are also equivalent to a statement about duality.
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2.2.5 Lemma. The following are equivalent:

(i) (IC) holds;
(ii) (CLO) holds and M∼ is injective in Xfin;

(iii) M∼ yields a duality on Afin and is injective in Xfin.

We would like to obtain a duality for A in two steps: first show that M∼ yields a
duality on Afin, for example by verifying that (IC) holds, and then apply some
general theory to show that the duality lifts automatically to a duality on the
whole of A. Our next two theorems shows that this is achievable provided M∼
enjoys some degree of finiteness.

If M∼ = 〈M ; G, R,T〉, that is, every operation of M∼ is total rather than partial,
then we call M∼ a total structure.

2.2.7 Second Duality Theorem. Assume that M∼ is a total structure with R finite.
If (IC) holds, then M∼ yields a duality on A and is injective in X.

This result is rather surprising. It gives us simple finitary conditions which yield
both a dual adjunction between the categories A and X and a topological rep-
resentation of each algebra in A, but it requires us to do no category theory and
no topology! While (IC) is sufficient, under certain circumstances, to show that
M∼ yields a duality on A, it is not necessary (see Exercise 4.11 and Lemma 7.8.6).

The final theorem in this section gives a reduction to the finite case without
establishing (IC) and therefore yields no information on the injectivity of M∼ in X.
This important result was proved by R. Willard (private communication)2 and
independently by L. Zádori [81]. Our proof is a modified version of Willard’s
proof. Zádori’s proof is given in Chapter 10 (see 10.6.4). If M∼ = 〈M ; G, H, R,T〉
and G, H and R are finite, then we say that M∼ is of finite type.

2.2.11 Duality Compactness Theorem. If M∼ yields a duality on Afin and is of
finite type, then M∼ yields a duality on A.

Combined with Lemma 2.2.5, the Duality Compactness Theorem produces a
variant of the Second Duality Theorem.

2.2.12 Corollary. Assume that M∼ is of finite type. If (IC) holds, then M∼ yields a
duality on A and is injective in Xfin.
In every known example of a natural duality we have been able to use a structure
M∼ of finite type. Hence, we close this section by posing a fundamental question.

2.2.13 Finite Type Problem. 3 Is there a finite algebra M for which some choice
of M∼ (and therefore M∼ = 〈M ;B,T〉) yields a duality on A but no choice of M∼ of
finite type yields a duality on A?

2Willard proved this important result in the early 1990s, but published his proof in 1999 [80].
3This problem is solved in [64], where it is proved that the answer is no for unary algebras,

and in [65], where it is shown that the answer is yes for non-unary algebras.
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Taming brute force with near-unanimity. In the light of the Second Duality
Theorem, the natural question now is, ‘How can we force (IC) to hold?’ The
answer is, ‘Use brute force!’

2.3.1 Brute Force Duality Theorem. Brute force yields a duality on Afin. In-
deed, if M∼ = 〈M ;B,T〉, then (IC) holds and therefore M∼ yields a duality on Afin

and M∼ is injective in Xfin.

Even though brute force always yields a duality on the finite algebras in A, it
does not always yield a duality on A. We shall see in Chapter 10 that not even
brute force will yield a duality on the variety of implication algebras A := ISP(I),
where I := 〈{0,1};→, 1〉 and→ is the usual Boolean implication. If we are will-
ing to use a proper class of possibly infinitary relations, we can obtain a duality
for A without the use of any topology. Let B∞ denote the class consisting of all
subalgebras of Mκ where κ ranges over all non-zero cardinals. Then a simple
modification of the proof of 2.3.1 shows that M∼∞ := 〈M ;B∞〉 yields a duality
on A. This is the ultimate brute force construction. (See also Exercise 2.5,
where we check that the omission of topology from M∼∞ is not a typo!)

While brute force may not always yield a duality on A, 2.2.6, 2.2.8 and 2.2.14
combine to show that brute force always yields a duality on the free algebras
in A. This gives a standard result of clone theory as an immediate corollary.

2.3.2 Corollary. If M is a finite algebra, then the set B of all finitary algebraic
relations on M determines the clone of M, that is, for all n ∈ N, a map t : M n→ M
is a term function of M if and only if it preserves all finitary algebraic relations
on M.

The Second Duality Theorem and the Brute Force Duality Theorem are in a tug-
of-war. The former says that (IC) will give us duality if we use only finitely
many (partial) operations and relations. The latter tells us that we get (IC)
if we are willing to put in all possible relations. In order to bridge the gap,
we need a condition which will ensure that preservation of certain finite sets of
relations guarantees preservation of all algebraic relations. Such a condition was
discovered by K. Baker and A. Pixley [3], quite independently of duality theory.
They call a (k+1)-ary term n(x1, . . . , xk+1), with k at least 2, a near-unanimity

term on M if M satisfies the identities

n(x , . . . , x , y)≈ n(x , . . . , x , y, x)≈ · · · ≈ n(y, x , . . . , x)≈ x .

A ternary near-unanimity term on M is called a majority term. For example,
on any algebra with an underlying lattice structure, the median,

m(x , y, z) := (x ∧ y)∨ (y ∧ z)∨ (z ∧ x)

is a majority term since it satisfies the identities

m(x , x , y)≈ m(x , y, x)≈ m(y, x , x)≈ x .
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The significance of a near-unanimity term from our perspective is that its pres-
ence gives us the full benefit of brute force at a very small price.

2.3.3 NU Lemma. (K. Baker and A. Pixley [3]) Let k ¾ 2 and assume that M has
a (k+1)-ary near-unanimity term. Let X be a subset of M m and let α: X → M be
a map that preserves every k-ary relation in B. Then α preserves every relation
in B.

The theorem below is extremely useful. We shall see in Chapter 3 that it always
can be extended to a full duality and in Chapter 10 that it has a very strong
converse.

2.3.4 NU Duality Theorem. Let k ¾ 2 and assume that M has a (k+1)-ary near-
unanimity term. Then M∼ = 〈M ;S(Mk),T〉 satisfies (IC), yields a duality on A

and is injective in X.

2.3.5 Distributive Lattices Revisited. We saw in Chapter 1 that the structure
D∼ := 〈{0, 1}; 0, 1,¶,T〉 yields a full duality on the class D = ISP(D) of distribu-
tive lattices. The fact that D∼ yields a duality is a very simple consequence of the
theory we have developed so far. Since D is a lattice, it has a majority term and
thus the NU Duality Theorem applies with k = 2. By inspection, we can see that
the only binary algebraic relations on D are

{(0, 0)}, {(0, 1)}, {(1, 0)}, {(1, 1)}, {0} × D,

{1} × D, D× {0}, D× {1}, ∆D, ¶, ¾, D2.

Let X ⊆ Dn and let α: X → D be a map. Then α must preserve the trivial
relations ∆D and D2. Moreover, it is easily seen that if α preserves the constants
0 and 1 then it will preserve the first eight relations in the list, and, of course,
if α preserves ¶ then it preserves the converse relation ¾. Consequently, if α
preserves 0, 1, and ¶, then it preserves every subalgebra of D2. Since S(D2)
yields a duality on D, we see at once that the structure D∼= 〈D; 0, 1,¶,T〉 yields
a duality on D. This establishes the algebraic half of Priestley’s duality.

Refining a duality via entailment. Let M∼ = 〈M ; G, H, R,T〉 and let s be a fixed
finitary algebraic relation or (partial) operation on M. Given A ∈A, we say that
G∪H ∪R, or simply M∼, entails s on D(A) if every continuous map α from D(A)
to M which preserves the relations and (partial) operations in G ∪ H ∪ R also
preserves s. The set G ∪ H ∪ R is said to entail s, in symbols, G ∪ H ∪ R ` s,
if G ∪ H ∪ R entails s on D(A) for all A ∈ A. Let M∼ = 〈M ; G, H, R,T〉 and M∼

′ =
〈M ; G′, H ′, R′,T〉. If G∪H∪R ` s for all s ∈ G′∪H ′∪R′, then we say that G∪H∪R
entails G′∪H ′∪R′, or M∼ entails M∼

′, and write (G∪H∪R) ` (G′∪H ′∪R′). The
following lemma is a simple but frequently used consequence of the definition.
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2.4.2 M∼-Shift Duality Lemma. If M∼ entails M∼
′ and M∼

′ yields a duality on some
subclass C of A, then M∼ also yields a duality on C.

This lemma allows us to combine the Brute Force Duality Theorem and the Du-
ality Compactness Theorem 2.2.11.

2.4.3 Duality and Entailment Theorem. Let M∼ = 〈M ; G, H, R,T〉.

(i) If M∼ yields a duality on A, then G ∪ H ∪ R entails every finitary algebraic
relation and every finitary algebraic (partial) operation on M.

(ii) If M∼ is of finite type, then the following are equivalent:
(a) M∼ yields a duality on A;
(b) G ∪H ∪ R entails every finitary algebraic relation on M;
(c) G ∪H ∪ R entails every finitary algebraic partial operation on M.

In practice, when we prove that G∪H∪R entails s it is usual to apply the follow-
ing observation (which is a trivial consequence of the fact that D(A) is a closed
substructure of M∼

A) and establish a slightly stronger but simpler condition.

2.4.4 Lemma. Let M∼ = 〈M ; G, H, R,T〉. Then G ∪H ∪ R entails s provided that,
for each non-empty set S and each closed substructure X of M∼

S, every morphism
α from X to M∼ preserves s.

If we have some finite family Ω of relations which yields a duality on A, typically
Ω = S(M2), we would like to delete relations one at a time from Ω until we
obtain a minimal subset R such that R ` s for all s ∈ Ω\R. In this way, we obtain
minimal subsets of Ω which yield a duality on A. Such dualities will be referred
to as optimal dualities and will be studied in detail in Chapter 8.

2.4.5 Constructs for Entailment. By an admissible construct of type 〈G, H, R〉
we mean a rule which associates each structure M∼ = 〈M ; G, H, R,T〉 with an al-
gebraic operation, partial operation or relation s that is entailed by M∼. A set C
of admissible constructs will be called complete if s can be constructed from
a finite subset of G ∪ H ∪ R, by applying a finite number of the constructs in
C , whenever G ∪ H ∪ R ` s. For the moment we will give an extensive list of
constructs that is sufficient to establish the examples of Chapter 4. While this
list of constructs is not complete in general, it can be made complete by the ad-
dition of three further constructs (see the Completeness of Entailment Theorem
9.2.6). Many of the examples M considered in Chapter 4 have the property that
every non-trivial subalgebra of M is subdirectly irreducible and M generates a
congruence distributive variety—for such algebras the constructs listed below
are complete (see Theorem 9.3.4).

(1) Trivial relations If θ is an equivalence relation on {1, . . . , n} then any set
of relations entails the relation ∆θ := {(c1, . . . , cn) ∈ M n | i θ j ⇒ ci = c j }.
This is an example of a nullary construct and includes as special cases the



26 B. A. DAVEY

relation M2 and the relation ∆M := {(c, c) | c ∈ M }, which may be viewed
as the equality relation on M or as the graph of the endomorphism idM.

(2) Subscript manipulation For any map ε : {1, . . . , m} → {1, . . . , n}, the n-
ary relation rε := {(c1, . . . , cn) ∈ M n | (cε(1), . . . , cε(m)) ∈ r } is entailed by the
m-ary relation r (provided that rε is non-empty). In most applications we
shall be concerned only with relations which are at most binary. Apart from
the two identity maps, id{1} and id{1,2}, there are six choices for ε when we
restrict to m, n ∈ {1, 2}: if r is unary, we can construct the binary relations
r × M and M × r; if r is binary we can construct the unary relation r1 :=
π1(r∩∆) and the binary relations r1×M , M×r1, and, finally, the converse

r˘:= {(c2, c1) | (c1, c2) ∈ r } of r.
(3) Trivial expansion This is the special case of subscript manipulation in

which ε is one-to-one and order-preserving. For example, when ε : {1,2} →
{1, 2,3} is given by ε(1) = 1, ε(2) = 3, we obtain the ternary relation rε =
{(c1, c2, c3) | (c1, c3) ∈ r }.

(4) Permutation This is the special case of subscript manipulation in which
m = n and ε is a permutation. The converse, r ,̆ of a binary relation r is
obtained when m= n= 2 and ε is the 2-cycle (1 2).

(5) Repetition removal If r is an n-ary relation and, for fixed i and j, we
have ci = c j for all (c1, . . . , cn) ∈ r, then r ′j := {(c1, . . . , c j−1, c j+1, . . . , cn) ∈
M n−1 | (c1, . . . , cn) ∈ r } is entailed by r. This is also a special case of subscript
manipulation.

(6) Intersection If r and s are n-ary relations, then r ∩ s is entailed by {r, s}
(provided r ∩ s is non-empty).

(7) Product Let r be n-ary and s be m-ary. For c = (c1, . . . , cn) and d =
(d1, . . . , dm), let (c,d) denote the corresponding (n + m)-tuple. Then {r, s}
entails the relation r × s := {(c,d) ∈ M n+m | c ∈ r and d ∈ s }.

(8) Coordinate projections Any set of relations entails the ith coordinate
projection πi : M n→ M .

(9) Restriction of domain If h: r → M is an n-ary partial operation and
s ⊆ r, then {h, s} entails h�s : s→ M .

(10) Graph It follows immediately from Lemma 2.1.1 that a (partial) opera-
tion, h, entails its graph, graph(h), and conversely, if r is the graph of an
n-ary partial operation, graph−1(r), then r entails graph−1(r). In particular,
a nullary operation c entails the unary relation {c} and conversely.

(11) Composition If g is a k-ary partial operation and h1, . . . , hk are n-ary
partial operations, then {g, h1, . . . , hk} entails the composite g(h1, . . . , hk).
Recall that if g is a nullary operation, then the composition of g with the
empty set of n-ary operations is the n-ary constant operation corresponding
to g. Thus M∼ = 〈M ; G, H, R,T〉 entails every member of its enriched partial
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clone [G ∪ H]. Note that this is exactly the set of partial operations which
are interpretations in M∼ of the terms of type 〈G, H, R〉.

(12) Domain If h is a partial operation, then h entails dom(h).
(13) Equaliser If h1 and h2 are n-ary partial operations, then {h1, h2} entails

the relation eq(h1, h2) := { c ∈ dom(h1)∩dom(h2) | h1(c) = h2(c)} (provided
the latter is non-empty). A useful special case is the fixpointset, fix(e) :=
{ c ∈ N | e(c) = c } = eq(e, idM), of a partial endomorphism e : N → M,
where N is a subalgebra of M.

(14) Joint kernel If h1 and h2 are respectively n-ary and m-ary partial oper-
ations, then the set {h1, h2} entails the (n + m)-ary relation ker(h1, h2) :=
{(c,d) ∈ dom(h1) × dom(h2) | h1(c) = h2(d)} (provided this set is non-
empty).

(15) Action by a partial endomorphism If r is an n-ary relation and e is a
partial endomorphism of M, then the set {e, r} entails

e · r := {(c1, . . . , cn) ∈ M n | c1 ∈ dom(e) & (e(c1), c2, . . . , cn) ∈ r}
(provided this set is non-empty). If r is a unary relation, then this is simply
e−1(r) := { c ∈ dom(e) | e(c) ∈ r }. We then have {e, r} ` e−1(r).

In Exercise 2.6 we ask the reader to check the soundness of these constructs.

2.4.6 Soundness Theorem. Each of the constructs from (1) to (15) is admissi-
ble.
One construct which is notable by its absence is the relational product of an
n-ary relation r and an m-ary relation s:

r · s := {(c1, . . . , cn+m−2) ∈ M n+m−2 |

(∃c ∈ M)(c1, . . . , cn−1, c) ∈ r and (c, cn, . . . , cn+m−2) ∈ s }.

In general, relational product is not an admissible construct (see 9.1.3).

Update 2

Several of the main results of this chapter extend to the case where M is
allowed to be an arbitrary finite structure. In particular, the Duality Com-
pactness Theorem 2.2.11 is extended using the theory of sketches in [47],
while the First Duality Theorem 2.2.2, Lemma 2.2.5, and the Second Duality
Theorem 2.2.7 are extended in [17]. Some results extend only under the
assumption that the type of M includes no partial operations; for example,
the important NU Duality Theorem 2.3.4 [17].
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CHAPTER 3: STRONG DUALITIES

We say that M∼ yields a full duality on A if it yields a duality on A and, for each
X ∈X := IScP+(M∼),

εX : X→ DE(X)

is surjective and therefore is an isomorphism. Thus M∼ yields a full duality on A

exactly when it yields a duality on A which is a dual equivalence.
Our goal in this chapter will be to develop a number of methods for modifying

a choice of M∼ which is already known to yield a duality onA, to obtain one which
yields a full duality on A. This will always be done by adding operations as well
as partial operations to its structure. In particular, we will see just why partial
operations are in general necessary to do this.

Full duality and the dual category. In the context of full duality a special role
is played by the (possibly empty) set K of elements of M which determine one-
element subalgebras of M. If M∼ is algebraic over M, then the Preduality Theorem
1.5.2(iv) assures us that K will determine a substructure K of M∼. Under a full
duality we can say much more about K. Let 1 denote the one-element algebra
M∅ in A and recall that [G∪H] denotes the enriched partial clone generated by
G ∪H, that is, the enriched partial clone of M∼.

3.1.2 Lemma. Assume that M∼ yields a full duality on A.

(i) K and 1 are dual to one another: E(K)∼= 1 and D(1)∼= K.
(ii) K is the substructure of M∼ generated by its distinguished elements. Indeed,

the following are equivalent:
(a) c determines a one-element subalgebra of M, that is, c ∈ K;
(b) c is the value of a constant unary function in [G ∪H];
(c) c is the value of a constant unary total function in [G ∪H];
(d) c is the value of a nullary term in [G ∪H];
(e) c is in the substructure of M∼ generated by its distinguished elements.

(iii) For every X ∈X there is a unique embedding of K into X.
(iv) K is an initial object (free object on the empty set) in X while 1 is a final

object in A.
(v) ∅∼ ∈ X if and only if K = ∅∼ if and only if M∼ has no nullary operations if

and only if 1 /∈ ISM.

In view of (ii) above, in order to achieve full duality, we are obliged to include
as distinguished elements of M∼ enough members of K to generate all of K in M∼.
For X ∈X we will denote by KX the image of K under the unique embedding of
(iii) above.

Assume that we begin with a choice of M∼ that yields a duality on A. Then
D and E give us a dual equivalence between A and the subcategory I(D(A)) of
X = IScP+(M∼). Now suppose that we augment G ∪ H with additional algebraic
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(partial) operations. The new structure M∼
′ will then entail M∼, and therefore will

also yield a duality on A. Again D and E give us a dual equivalence between A

and the subcategory I(D(A)) of X′ = IScP+(M∼)
′. But now X′ will be a smaller

extension of I(D(A)) since we have eliminated the substructures of powers of
M∼ that are not closed under the new (partial) operations. By adding enough
operational structure to M∼ we would like to squeeze the category X down until
it coincides with the category I(D(A)), thus giving us a full duality.

It turns out that this strategy can be further extended, as the members of D(A)
are closed under more than just the finitary algebraic (partial) operations. Let I
be an arbitrary set, B a subalgebra of MI and h: B→M a homomorphism, that is,
h is an algebraic I -ary partial operation on M. Just as we do in the finitary
case, we may extend the map h pointwise to an I -ary partial operation h on any
power MS of M . For each s ∈ S, let πs : MS → M denote the sth projection

given by πs(y) = y(s) for each y ∈ MS. Then the domain of the extension h is

dom(h) = { x ∈ (MS)I | πs ◦ x ∈ B for all s ∈ S } ⊆ (MS)I

and h : dom(h)→MS is defined by (h(x ))(s) = h(πs ◦ x ) for x ∈ dom(h). As is
customary, we say that a subset X of MS is closed under h provided h(x ) ∈ X
whenever x ∈ dom(h) and x (i) ∈ X for each i ∈ I . We shall say that X is hom-

closed (in MS) if, for each set I , the set X is closed under every algebraic I -ary
partial operation h on M. In particular, taking I = ∅, if X is hom-closed, then
it contains the constant map a : S → M onto {a} whenever {a} forms a one-
element subalgebra of M. Note that ∅ is hom-closed in MS if and only if ∅∼ is
in X.

We will see in Corollary 3.1.5 that the members of D(A) can be characterised
up to isomorphism as the hom-closed subsets of powers of M . This will be more
easily accomplished by first giving an alternative and equally important descrip-
tion of ID(A) in terms of the A-free algebras. For an arbitrary non-empty set
S, the subalgebra of MMS

(A-freely) generated by the projections {πs | s ∈ S }
is called the free algebra of S-ary term functions over M and is denoted
by FM(S). We say that y ∈ MS is in the term closure of a set X ⊆ MS if any
two S-ary term functions that agree on X also agree at y . (See Appendix A
for a review of free term algebras and closure operations.) Thus a subset X of
MS is term-closed (in MS) if for all y ∈ MS\X there exist S-ary term functions
σ,τ: MS → M on M that agree on X but not at y . Alternatively, X is term-closed
in MS provided it is an intersection of equaliser sets

eq(σ,τ) = { x ∈ MS | σ(x) = τ(x)}

of pairs (σ,τ) of S-ary term functions from FM(S). Note that ∅ is term-closed in
MS if and only if the conditions of Lemma 3.1.2(v) hold.
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Despite their disparate origins, these two notions of closure prove to be equiv-
alent.

3.1.3 Closure Theorem. If S 6= ∅ and X ⊆ MS, then X is term-closed in MS if
and only if X is hom-closed in MS.

The fact that condition (i) of the Preduality Theorem 1.5.2 extends to hom-
closure is more easily verified by looking at term closure.

3.1.4 Lemma. D(A) = A(A,M) is term-closed (= hom-closed) in MA for all
A ∈A.

3.1.5 Corollary. Let X be in X. Then X ∈ I(D(A)) if and only if X is isomorphic
to a term-closed (= hom-closed) subset of M∼

S for some non-empty set S.

We can now prove a variant of the First Duality Theorem 2.2.2 which is more
exactly suited to our needs. Here we have replaced (INJ) with a different col-
lection (INJ)′ of instances of injectivity of M∼ in X expressed fully in terms of the
category X.

3.1.6 Third Duality Theorem. The following are equivalent:

(i) M∼ yields a duality on A;
(ii) if X is a term-closed substructure of M∼

S for some S 6= ∅, then E(X) =
FM(S)�X , that is, every morphism α: X→M∼ extends to an S-ary term func-
tion τ: M∼

S →M∼;
(iii) the following two conditions hold—

(INJ)′ M∼ is injective with respect to term-closed sets X ⊆ M∼
S (with S 6= ∅)

and their inclusion maps, that is, each morphism α: X→ M∼ extends
to a morphism β : M∼

S →M∼,
((CLO) for each n ∈ N, every morphism τ: M∼

n→M∼ is an n-ary term function
on M.

Moreover, the same is true if A is replaced by Afin in (i) and S is restricted to
finite sets in (ii) and (iii).

In practice we will normally begin with a duality which we seek to upgrade to a
full duality. Our characterisation of the dual category tells us just what will be
required to do this.

3.1.7 Full Duality Theorem. If M∼ yields a duality on A, then the following are
equivalent:

(i) M∼ yields a full duality on A;
(ii) X= ID(A);

(iii) every closed substructure of a power of M∼ is isomorphic to a term-closed
(= hom-closed) substructure of a power of M∼.
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Moreover, the same is true if A and X are replaced by Afin and Xfin in (i) and
(ii), and (iii) is restricted to finite powers of M∼.

Strong duality and the role of injectivity. We can at last reveal the exact goal
of this chapter. Assume that M∼ yields a duality on A. To establish that M∼ yields a
full duality on A, the Full Duality Theorem 3.1.7 says that we must find, for each
non-empty set S and each closed substructure X of M∼

S, a non-empty set T and
term-closed (=hom-closed) substructure Y of M∼

T such that X is isomorphic to Y.
But where, given X, are we to find the structure Y? This seemingly daunting task
is actually carried out in every known example of full duality by establishing that
the natural candidate Y = X will suffice, that is, that every closed substructure
of a power of M∼ is term-closed (or, equivalently, that it is hom-closed). When
M∼ yields a duality on A and every closed substructure of a power of M∼ is term-
closed, we say that M∼ yields a strong duality on A.

As we have said, every known full duality can be shown to be full by showing
that it is in fact strong. In every known full duality, (INJ) has been established by
proving that M∼ is in fact injective in X. It turns out that these two enhancements
of full duality are equivalent. A more category-theoretic proof of the following
result is presented in Exercises 3.13 and 3.14.

3.2.4 First Strong Duality Theorem. M∼ yields a strong duality on A if and only
if M∼ yields a full duality on A and is injective in X. The corresponding result
holds at the finite level, that is, M∼ yields a strong duality on Afin if and only if M∼
yields a full duality on Afin and is injective in Xfin.

The First Duality Theorem 2.2.2 and the Third Duality Theorem 3.1.6 say that
many instances of the injectivity of M∼ in X must hold once we have a duality.
If duality is to be established by means of the Second Duality Theorem 2.2.7,
then M∼ must be injective in X. Nevertheless, it is not known whether or not
the injectivity of M∼ in X is actually required for M∼ to yield a full duality, and this
remains one of the oldest and most tantalising open questions in the foundations
of duality theory.

3.2.7 Full vs Strong Problem. 4 Does there exist a finite algebra M and a choice
of M∼ such that M∼ yields a duality on A= ISP(M) which is full but not strong, or
equivalently, such that M∼ yields a full duality on A with M∼ non-injective in X?

In every known full duality, M∼ is injective in X. The corresponding statement
about M is false: the four-element Heyting algebra chain has an internal iso-
morphism which does not extend to an endomorphism (Theorem 4.2.3(iii)).

4This problem was answered in the affirmative in [13]. A characterisation of finite algebras

for which full implies strong remains elusive, though much is known; see [25, 19, 20, 33] , for

example.
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Recall that M∼ is a total structure if H = ∅, that is, if every operation of M∼ is
total rather than partial.

3.2.9 Second Strong Duality Theorem. If M∼ is a total structure which yields a
duality on A, then the following are equivalent:

(i) M∼ yields a strong duality on A;
(ii) M∼ yields a strong duality on Afin;

(iii) M∼ satisfies the Finite Term Closure condition—
(FTC) If X is a substructure of M∼

n for some n ∈ N and y ∈ M n\X , then there
exist term functions σ,τ: M∼

n→M∼ on M (that is, morphisms) which
agree on X but not at y .

While Lemmas 3.2.6 and 3.2.8 highlight the symmetry between M in A and M∼
in X which has characterised our development of duality theory, this symmetry
begins to break down in the presence of partial operations in M∼. For example,
partial operations preclude a full converse to our next lemma.

3.2.10 Injectivity Lemma. Assume that M∼ yields a full duality on A. If M is
injective in A, then M∼ is injective in X. The converse is true provided that for
every morphism ϕ : X→ Y in X, the image of X under ϕ is a substructure of Y.
In particular this is the case when M∼ is a total structure.

We can now give purely finite conditions for the existence of a strong duality
when M∼ is a total structure and R is finite by combining the Second Duality
Theorem 2.2.7 and the Second Strong Duality Theorem 3.2.9.

3.2.11 Third Strong Duality Theorem. Assume that the structure M∼ = 〈M ; G, R,T〉
is total and that R is finite. Then the following are equivalent:

(i) M∼ yields a strong duality on A;
(ii) M∼ yields a strong duality on Afin;

(iii) (IC) and (FTC) hold.

Producing strong dualities. In this section we will gather together the theory
that we have developed so far and use it to prove two theorems: the Two-for-
One Strong Duality Theorem and the NU Strong Duality Theorem, together with
several useful corollaries of each. Until very recently these two results could be
used to produce all known full dualities, all of which are in fact strong dualities.
The Two-for-One Strong Duality Theorem is derived from our description of the
dual category ID(A) as the isomorphs of term-closed sets, while the NU Strong
Duality Theorem derives from our characterisation of ID(A) as the isomorphs
of hom-closed sets. It is here that each of these two divergent approaches comes
to fruition.

If M∼ = 〈M ; G,T〉, that is, the sets H of partial operations and R of relations
are empty, then we say that M∼ is a total algebra. We say that an algebra A
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has named constants if the value of every constant unary term function on
A is the value of a nullary term. The following is an immediate consequence of
Lemma 3.1.2.

3.3.1 Lemma. If a total algebra M∼ = 〈M ; G,T〉 yields a full duality on A, then
the algebra M′ = 〈M ; G〉 has named constants.

3.3.2 Two-for-One Strong Duality Theorem. Assume that both M = 〈M ; F〉
and M′ = 〈M ; G〉 have named constants. Consider the total algebras M∼ =
〈M ; G,T〉 and M∼

′ = 〈M ; F,T〉 and define A′ = ISP(M)′ and X′ = IScP+(M∼
′).

Then the following are equivalent:

(i) M∼ yields a strong duality on A;
(ii) M∼ and M∼

′ yield strong dualities on A and A′ respectively;
(iii) (IC) and (FTC) hold with respect to M∼;
(iv) (IC) and (FTC) hold with respect to M∼

′;
(v) (FTC) holds with respect to both M∼ and M∼

′;
(vi) (IC) holds with respect to both M∼ and M∼

′;
(vii) the algebras M and M′ satisfy the following symmetric conditions–

(a) every homomorphism from a subalgebra of Mn into M extends to an
n-ary term function on M′, and

(b) every homomorphism from a subalgebra of (M′)n into M′ extends to
an n-ary term function on M.

Underlying our quest for strong dualities is a fundamental question: can every
duality be upgraded to a strong duality? We state this question more precisely
below.

3.3.4 Strong Upgrade Problem. 5 Assume that M∼ yields a duality on A. Can
we extend the structure M∼ by adding (finitely many) partial or total operations
and so obtain a structure M∼

′ which yields a strong duality (or a full duality)
on A?

Consider, for example, a finite algebra M which is a lattice under some pair of
binary term functions. The NU Duality Theorem 2.3.4 gives us a duality on
A = ISP(M) by taking for R (a set that entails all of) the binary algebraic rela-
tions on M. Can finite G and H be chosen to make this into a full duality? A
strong duality? We will show that every duality which arises from the NU Dual-
ity Theorem 2.3.4 can be upgraded to a strong duality by adding finitely many
(partial) operations to M∼. The key is to observe that, in a congruence distributive
variety, Bjarni Jónsson has already done all but a finite amount of the work for
us, and that a handful of partial operations will do the rest!

5This problem was solved in the negative in [49], where a finite dualisable but not fully

dualisable algebra is presented. An example of a finite algebra that is fully dualisable but not

strongly dualisable is given in [63].
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Every congruence on a finite algebra Q is a meet of meet-irreducible congru-
ences on Q (Lemma A.9). Let irr(Q) be the least n such that the zero congruence
0Q on Q is a meet of n meet-irreducible congruences. Then Q is subdirectly irre-
ducible if and only if irr(Q) = 1. We define the irreducibility index of a finite
algebra M by

Irr(M) =max{ irr(Q) | Q is a subalgebra of M }.

In order to state our central strong duality theorem we define Pn and Bn, for n=
1, 2,3, . . . , to be the sets of all n-ary (partial) operations and relations, respec-
tively, which are algebraic over M. By analogy with B, we defined P :=

⋃

n∈NPn.
Recall that K denotes the set of one-element subalgebras of M.

3.3.8 NU Strong Duality Theorem. Let k ¾ 2 and assume that M has a (k+1)-
ary near-unanimity term. Define H =

⋃

{Pn | 1 ¶ n ¶ Irr(M)}. Then the
structure M∼ = 〈M ; K , H,Bk,T〉 yields a strong duality on A.

Most known strong dualities are obtained as applications of this theorem. It is
a powerful result, as it gives us an exact recipe for constructing from a near-
unanimity term for M a structure M∼ that will yield a strong duality on A. Recall
that a ternary near-unanimity term is called a majority term.

3.3.9 NU Strong Duality Corollary. Assume that M has a majority term and
that all of the non-trivial subalgebras of M are subdirectly irreducible. Then
M∼ = 〈M ; K ,P1,B2,T〉 yields a strong duality on A.

The NU Strong Duality Theorem remains a highly untapped resource, as almost
all interesting applications of it to date follow from the NU Strong Duality Corol-
lary where we have the strongest special case: k = 2 and Irr(M) = 1. Even the
NU Strong Duality Corollary can lead to complex dual categories, for M2 may
have many subalgebras. In Chapter 4 we will see a range of examples in which
the methods of Chapter 2 can be used to reduce these binary relations to a small
and convenient number. We return to this problem in Chapters 8 and 9 where a
full theory for achieving such reductions will be developed.

Update 3

A characterisation of when a duality can be upgraded to a strong duality is
given in [14]—see Exercise 9.8. A useful sufficient condition for a strong
upgrade, namely having enough algebraic operations, is given in [59].
Having enough algebraic operations is a special case of having finite rank, a
sufficient condition introduced in [59]. In the appendix to [66], the concept
of rank is sharpened to the concept of height and is used to give a necessary
and sufficient condition for a strong upgrade.
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Extensions of the results of this chapter to the case where M is a finite
structure are given in [47, 17]. In [47] it is proved that if the type of M∼ con-
tains no partial operations, then a full duality at the finite level lifts to a full
duality between A and X. This is expanded on in [17] and a corresponding
lifting theorem is proved for strong duality. The Two-for-One Strong Dual-
ity Theorem has been extended to the setting in which M is allowed to be
a finite structure. Its extends as stated to the case in which both M and M∼
are total structures [47, Thm. 2.5]. Various generalisations have been ob-
tained that allow one of M and M∼ to include partial operation in its type [17,
Sec. 6], [22, Thm. 2.4]—these results now come under the general heading
of topology swapping.

When M is a structure, a complication arises in connection with the notion
of strong duality: while the equivalence of hom-closed and term-closed still
holds, the equivalence with the injectivity of M∼ in X, given in the First Strong
Duality Theorem 3.2.4, fails. See [33] for a detailed discussion of full and
strong duality in this setting.

CHAPTER 4: EXAMPLES OF STRONG DUALITIES

NU strong dualities. In this section we will exhibit a few of the many non-
arithmetical applications of the NU Strong Duality Corollary 3.3.9. In all of these
examples we have the median operation

m(x , y, z) = (x ∧ y)∨ (x ∧ z)∨ (y ∧ z)

generated by operations ∨ and ∧ which are either lattice operations or close
enough to lattice operations to ensure that m is a majority term.

4.3.1 Distributive Lattices. The variety D of distributive lattices is normally
defined as the models L= 〈L;∨,∧〉 of the equations (DL) of Chapter 1, Section 2.
In Lemma 1.2.2 we found that D= ISP(D) where

D= 〈{0,1};∨,∧〉.

Applying the NU Strong Duality Corollary we obtain a strong duality by taking
G = {0,1}, H =∅ and R= S(D×D). In the example of 2.2.5 we saw that

D∼= 〈{0, 1}; 0, 1,¶,T〉

entails all binary algebraic relations on D. Using the M∼-Shift Strong Duality
Lemma 3.2.3(iii)(a) and recalling Lemma 1.2.8, we obtain a strengthened ver-
sion of the Priestley Dual Equivalence Theorem 1.2.5.
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4.3.2 Theorem. (Priestley [69, 70]) D∼ yields a strong duality between the va-
riety D of distributive lattices and the category IScP+(D∼) of bounded Priestley
spaces.

4.3.9 Kleene Algebras. For a different approach to three-valued logic, an alge-
bra K= 〈K;∨,∧,¬, 0, 1〉 is called a Kleene algebra if it is a bounded distributive
lattice satisfying the axioms

¬¬x ≈ x , ¬0≈ 1, ¬(x ∧ y)≈ ¬x ∨¬y, x ∧¬x ¶ y ∨¬y.

The models of these axioms form a variety K = ISP(K) generated by the three-
element chain

K= 〈{0, a, 1};∨,∧,¬, 0, 1〉

where
0< a < 1, ¬0= 1, ¬1= 0 and ¬a = a

(see Balbes and Dwinger [4]). In addition to the Boolean truth values of 0 (false)
and 1 (true), we include the value a for don’t know. The fact that ¬a = a reflects
the observation that, if we don’t know if a statement is true, then we also don’t
know if its negation is true.

Because K and its only subalgebra K0 = 〈{0, 1};∨,∧,¬, 0, 1〉 are both simple
and have no non-identity endomorphisms, we obtain a strong duality by taking
G = H =∅ and R= S(K×K). Among the relations of R we single out the order
´, illustrated in Figure 4.3, together with the unary relation K0 and the reflexive,
symmetric relation

∼= {(0, 0), (a, a), (1,1), (0, a), (1, a), (a, 0), (a, 1)}

relating all pairs except 0 and 1. Let

K∼= 〈{0, a, 1};´,∼, K0,T〉.
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observation that, if we don’t know if a statement is true, then we also don’t know if its
negation is true.

Because K and its only subalgebra K0 = ⟨{0, 1}; ∨, ∧, ¬, 0, 1⟩ are both simple and
have no non-identity endomorphisms, we obtain a strong duality by taking G = H = ∅
and R = S(K × K). Among the relations of R we single out the order !, illustrated in
Figure 4.3, together with the unary relation K0 and the reflexive, symmetric relation

∼ = {(0, 0), (a, a), (1, 1), (0, a), (1, a), (a, 0), (a, 1)}

relating all pairs except 0 and 1. Let

K∼ = ⟨{0, a, 1}; !, ∼, K0, T ⟩.

!! !
10

a

! ❅
❅"

"

Figure 4.3 the order ! on K∼

4.3.10 Theorem (Davey and Werner [DW83])

(i) K∼ yields a strong duality on the variety K of Kleene algebras.

(ii) X = ⟨X ; !, ∼, X0, T ⟩ belongs to the dual category IScP+ K∼ if and only if ⟨X ; !⟩ is a
Priestley space, ∼ is a closed binary relation, X0 is a closed subspace and the following
universal axioms are satisfied:

(a) x ∼ x,

(b) x ∼ y and x ∈ X0 =⇒ x ! y ,

(c) x ∼ y and y ! z =⇒ z ∼ x.

4.3.12 (CLO) versus (IC) From the example of Kleene algebras we obtain a simple
illustration of the fact that a choice of relations for M∼ which determine the clone of M
may not be enough to give us the duality condition (IC). Consider the structure

K∼
′ = ⟨{0, a, 1}; !, K0, T ⟩.

If ϕ is a total operation on K which preserves ! and K0 , it will also preserve " as
well as the relational product ∼ = " · !. Since K∼ satisfies (CLO), ϕ must be a term
function. Thus K∼

′ also satisfies (CLO). But K∼
′ does not satisfy (IC), as we see by taking

X = {(0, a), (a, 0)} and γ : (0, a) )→ 0; (a, 0) )→ 1. Then γ : X → K∼
′ preserves ! and K0

(vacuously), but it does not preserve ∼ and therefore does not extend to a term function.
In particular, K∼

′ determines the clone of K but does not yield a duality on the quasi-variety
it generates.

Kleene algebras have played an important role in the development of natural duality theory.
They occur as seminal examples several times later in this text: see Section 5 of Chapter 7
and Section 4 of Chapter 8.

4.3.10 Theorem. (Davey and Werner [40])

(i) K∼ yields a strong duality on the variety K of Kleene algebras.
(ii) X = 〈X ;´,∼, X0,T〉 belongs to the dual category IScP+(K∼) if and only if
〈X ;´〉 is a Priestley space, ∼ is a closed binary relation, X0 is a closed
subspace and the following universal axioms are satisfied:
(a) x ∼ x ,
(b) x ∼ y and x ∈ X0 =⇒ x ´ y ,
(c) x ∼ y and y ´ z =⇒ z ∼ x .
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4.3.12 (CLO) versus (IC). From the example of Kleene algebras we obtain a
simple illustration of the fact that a choice of relations for M∼ which determine
the clone of M may not be enough to give us the duality condition (IC). Consider
the structure

K∼
′ = 〈{0, a, 1};´, K0,T〉.

If ϕ is a total operation on K which preserves ´ and K0, it will also preserve ¼
as well as the relational product ∼=¼ ·´. Since K∼ satisfies (CLO), ϕ must be a
term function. Thus K∼

′ also satisfies (CLO). But K∼
′ does not satisfy (IC), as we

see by taking X = {(0, a), (a, 0)} and γ: (0, a) 7→ 0; (a, 0) 7→ 1. Then γ: X→ K∼
′

preserves ´ and K0 (vacuously), but it does not preserve ∼ and therefore does
not extend to a term function. In particular, K∼

′ determines the clone of K but
does not yield a duality on the quasi-variety it generates.
Kleene algebras have played an important role in the development of natural
duality theory. They occur as seminal examples several times later in this text:
see Section 5 of Chapter 7 and Section 4 of Chapter 8.

Update 4

The usefulness of a duality is enriched if we have an axiomatisation of the
dual category. For many of the examples given in Chapter 4, such an axioma-
tisation is given. Denote the topology-free reduct of M∼ by M∼

[. In the best
of all worlds, the standard axiomatisation of ISP+(M∼

[) via universal Horn
sentences also axiomatises IScP+(M∼). When this holds, the discretely topol-
ogised structure M∼ and the class IScP+(M∼) are said to be standard. This
is true, for example, when M∼

[ is a cyclic group or a two-element semilat-
tice, but fails when M∼

[ is a two-element ordered set. The theory of stan-
dardness began in [9] and has grown into an area of independent inter-
est [8, 10, 28, 76, 77, 78, 75]. Standardness has turned out to have some sur-
prising connections; for example, with constraint satisfaction problems [53],
with residual bounds of topological algebras [52], with the general theory of
Bohr compactifications [24], and with full dualities [34].

Examples of strong dualities in the case that M is a total structure can be
found in [17, 54].

CHAPTER 5: SAMPLE APPLICATIONS

CHAPTER 6: WHAT MAKES A DUALITY USEFUL?

CHAPTER 7: PIGGYBACK DUALITIES

Piggybacking is a technique which, loosely speaking, says that if M is dualisable,
then an efficient way to find a structure M∼ which yields a duality on A= ISP(M)
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is to ride piggyback on a known duality for an algebra D which is closely related
to M by using the relationship between M and D to extract M∼ from the struc-
ture D∼ which dualises D. For example, M might have an underlying bounded
distributive lattice structure in which case we would choose D to be the two-
element bounded distributive lattice and we would try to obtain M∼ from our
knowledge of Priestley duality on the bounded distributive lattice underlying M.

Multisorted dualities. In the next section we shall develop a piggyback the-
orem for algebras with an underlying bounded distributive lattice. Since many
of the applications of this result in the literature are to varieties rather than to
quasi-varieties, we now give a brief overview of the modifications to our general
theory which are required to extend it from the quasi-variety generated by M to
the variety generated by M.

Let M be a finite set of finite algebras of type F and let A := ISP(M) be the
quasi-variety generated by M. For M1,M2 ∈ M, we allow the possibility that
M1 and M2 are isomorphic but, for notational convenience, we assume that the
underlying sets M1 and M2 are disjoint. Although the finiteness assumptions
on M can be relaxed (see Davey and Priestley [35] on which this and the next
section are based), we shall not do so here as the stipulation that M is a finite set
of finite algebras ensures that the results of the previous chapters can be lifted
up to this more general setting.

The structure M∼ must now be replaced with a multisorted structure

M∼ = 〈
·⋃{M | M ∈M }; G

M∼ , H
M∼ , R

M∼ ,T
M∼ 〉,

where

(i) G
M∼ consists of a homomorphism g

M∼ : M1×· · ·×Mn→Mn+1 (where Mi ∈M

for all i), for each n-ary operation symbol g ∈ G,
(ii) H

M∼ consists of a homomorphism h
M∼ : D → Mn+1 (where D is a proper

subalgebra of M1 × · · · ×Mn and Mi ∈M for all i), for each n-ary partial
operation symbol h ∈ H,

(iii) R
M∼ consists of an n-ary relation r

M∼ that forms a subalgebra of M1×· · ·×Mn

(where Mi ∈M for all i), for each n-ary relation symbol r ∈ R, and
(iv) T

M∼ is the discrete topology on ·
⋃

{M | M ∈M }.

By analogy with the case where M consists of a single algebra, we refer to
the elements of G

M∼ as (multisorted) operations, to the elements of H
M∼ as

(multisorted) partial operations and to the elements of R
M∼ as (multisorted)

relations on M and we summarise (i)–(iii) by saying that the structure on M∼
is algebraic over M.

Assume that 〈X ;T〉 is a topological space written as a disjoint union indexed
by M:

X = ·
⋃

{XM | M ∈M }.
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If, for every operation g
M∼ : M1×· · ·×Mn→Mn+1 in G

M∼ , there is a corresponding
map gX : XM1

× · · · × XMn
→ XMn+1

, and similarly for the partial operations in H
M∼

and relations in R
M∼ , then we refer to X = 〈X ; GX, HX, RX,T〉 as an M-sorted

structure of the same type as M∼ and XM is called the M -sort of X. If X and
Y are M-sorted structures of the same type as M∼ , then a map ϕ : X → Y is a
morphism provided it is continuous and preserves the sorts (that is, ϕ maps
XM into YM) and the (partial) operations and relations in the obvious sense.
The concepts of substructure, isomorphism, embedding and product also
have natural multisorted definitions. In particular, if S is a non-empty set, then
the power M∼

S is the M-sorted structure whose underlying set is

MS := ·
⋃

{MS | M ∈M }

with the obvious topology, and (partial) operations and relations extended point-
wise in the natural manner.

As expected, we define X to be the category of all M-sorted structures of the
same type as M∼ which are isomorphic to a closed substructure of some power
M∼

S of M∼ with S 6=∅, in symbols, X= IScP+(M∼ ). It is straightforward to check
that, for every A ∈A,

D(A) := ·
⋃

{A(A,M) | M ∈M }

is a closed substructure of M∼
A, and for every X ∈X, the homset X(X,M∼ ) forms

a subalgebra of
∏

{MXM | M ∈ M }. Hence, we obtain contravariant functors
D : A→X and E : X→A which form a dual adjunction 〈D, E, e,ε〉 between A

and X. For all A ∈A and all X ∈X, the morphisms

eA : A→ ED(A) and εX : X→ DE(X),

which are given by evaluation, are embeddings. As in the single-sorted case, the
dual of the algebra in A freely generated by a non-empty set S is isomorphic in
X to M∼

S.
Almost all of the results proved elsewhere in this text extend naturally and

easily to the multisorted setting. An exception is the Two-For-One Strong Du-
ality Theorem and results which depend upon it. Fortunately, the NU Duality
Theorem and the NU Strong Duality Theorem do extend. It follows at once that
any finitely generated variety of algebras which have an underlying lattice struc-
ture has a strong multisorted duality. In the next section we shall show that if the
algebras have an underlying distributive lattice then the NU Duality Theorems
may be bypassed and we can obtain a duality by riding piggyback on Priestley’s
duality for the underlying distributive lattices.

Piggyback dualities for distributive-lattice-based algebras. Most of the al-
gebras which arise in algebraic logic are bounded distributive lattices with ad-
ditional operations corresponding to implication or various types of negation.
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In this section we shall present a theorem which applies to a finitely generated
variety of algebras of this sort. In fact, the original theorem as proved in Davey
and Priestley [35] applies to algebras based in any quasi-variety which itself has
a multisorted duality. Since almost all applications in the literature have been
to produce (multisorted) dualities for algebras based in bounded distributive
lattices, it is this version which we present here.

To avoid excessive use of subscripts and superscripts, in this chapter we shall
denote the two-element bounded distributive lattice by D := 〈{0, 1};∨,∧, 0, 1〉
and the two-element Priestley space by D∼ := 〈{0, 1};¶,T〉. Priestley’s duality
tells us that D∼ yields a strong duality between D := ISP()D, which now de-
notes the variety of bounded distributive lattices, and P := IScP+(D∼), the cat-
egory of Priestley spaces (see Exercise 4.5). Denote the hom-functors which
yield this duality by H : D → P and K : P → D and, for each A ∈ D and
Y ∈ P, denote the corresponding evaluation maps by kA : A → KH(A) and
κY : Y → HK(Y). We shall say that the class M has a term-reduct in D if
there are binary terms ∨ and ∧ and constant unary terms z and u of type F such
that M[ := 〈M ;∨M,∧M, 0M, 1M〉 is a bounded distributive lattice for each alge-
bra M ∈M, where 0M and 1M are the values in M of the constant unary term
functions zM and uM, respectively.

4.2.1 Piggyback Duality Theorem. Assume that M is a finite set of finite alge-
bras which has a term-reduct in D and let A := ISP(M). For each M ∈M, let
ΩM be a subset of D(M[,D). Let M∼ = 〈

·⋃{M | M ∈M }; G, R,T〉, where

(i) R is the set of all A-subalgebras of M1 ×M2 which are maximal in

(ω1,ω2)
−1(¶) := { (a, b) ∈ M1 ×M2 |ω1(a)¶ω2(b)},

where ω1 ∈ ΩM1
, ω2 ∈ ΩM2

and M1, M2 ∈M,
(ii) G ⊆
⋃

{A(M1,M2), | M1, M2 ∈M } satisfies the separation condition
(S) for all M1 ∈M and all a 6= b in M1, we have ω(a) 6= ω(b), for some

ω ∈ ΩM1
, or ω(g(a)) 6= ω(g(b)), where ω ∈ ΩM2

for some M2 ∈M

and g ∈A(M1,M2) is a composite of a finite number of maps from G,
(iii) T is the discrete topology.

Then M∼ yields a duality on A.

The maps ω ∈ ΩM are referred to as the carriers of the piggyback duality, as
they allow us to transport the structure from D∼ up to the multisorted structure
M∼ , while the relations in R are referred to as the piggyback relations on M.

Even in the single-sorted case, there is often more than one choice for the sets
ΩM and G which guarantee that the separation condition (S) holds. In practice,
we often try to minimise the size of the sets ΩM at the expense of increasing the
size of the set G as this reduces the size of R. At the other end of the spectrum,
ΩM =D(M[,D) for each M ∈M and G =∅.
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7.2.3 Notation. To simplify our notation, from now on we shall discontinue the
use of the A[ notation and will not distinguish notationally between the algebra A
and its term-reduct in D. In any given situation it will be clear from the context
which persona, A or A[, is involved.

Restricted Priestley dualities. Whenever we have a class A of algebras which
have a term-reduct in the class D of bounded distributive lattices, we can regard
A as a subcategory of the category D of bounded distributive lattices. Provided
we can describe (up to isomorphism) the objects in the category P of Priestley
spaces which are of the form H(A) for A ∈ A and can describe the morphisms
in P which are of the form H(u) for some u ∈ A(A,B), then we may form the
category Y consisting of all (isomorphic copies of) such objects and morphisms.
Restricting the Priestley functors H and K to A and Y yields a dual equivalence
between A and Y. This is known as the restricted Priestley duality for A.

In practice, it is often convenient to identify H(A) with the set of prime filters
of A and to identify K(Y) with the set of clopen increasing subsets of Y. The fol-
lowing result gathers together some particularly useful properties of the Priestley
duality for D. Denote the order-theoretic duals of an ordered set P= 〈P;¶〉 and
a bounded distributive lattice L = 〈L;∨,∧, 0, 1〉 by P∂ and L∂ respectively, that
is, P∂ = 〈P;¾〉 and L∂ = 〈L;∧,∨, 1, 0〉.

7.4.1 Properties of Priestley Duality. Let A and B be bounded distributive lat-
tices, let X, Xi and Y be Priestley spaces, let u be a bounded-distributive-lattice
homomorphism and let ϕ and ϕi be Priestley space morphisms.

(i) H(A⊕ 1)∼= 1⊕H(A) and K(1⊕X)∼= K(X)⊕ 1.
(ii) H(A∂ )∼= H(A)∂ and K(X∂ )∼= K(X)∂ .

(iii) Con(A) ∼= C`(H(A))∂ and Con(K(X)) ∼= C`(X)∂ , where C`(X) denotes the
lattice of closed subsets of X.

(iv) (a) H(A×B)∼= H(A) ∪̇H(B), and (b) K(X ∪̇ Y)∼= K(X)× K(Y).
(v) (a) A homomorphism u: A→ B is surjective (an embedding) if and only

if the map H(u): H(B)→ H(A) is an embedding (surjective).
(b) A morphism ϕ : X→ Y is surjective (an embedding) if and only if the

map K(ϕ): H(Y)→ H(X) is an embedding (surjective).
(vi) If the images of the morphisms ϕi : Xi → Y, for i ∈ I , are jointly dense in Y,

that is, if
⋃

i∈I ϕi(X i) is dense in Y, then the natural mapui∈I K(ϕi): K(Y)→
∏

i∈I K(Xi) is an embedding. In particular, if the morphisms ϕi : Xi →,Y,
for i ∈ I , are jointly surjective, then ui∈I K(ϕi) is an embedding.

7.4.2 Ockham Algebras. An algebra A = 〈A;∨,∧, f , 0, 1〉 is an Ockham al-

gebra if 〈A;∨,∧, 0, 1〉 is a bounded distributive lattice and f corresponds to a
negation operation which satisfies the de Morgan laws, that is,

f (0) = 1, f (1) = 0, f (a ∨ b) = f (a)∧ f (b) and f (a ∧ b) = f (a)∨ f (b),



42 B. A. DAVEY

for all a, b ∈ A. The variety of Ockham algebras is denoted by O. The varieties
of Stone algebras (see 4.3.6), of de Morgan algebras (see 4.3.15) and of Kleene
algebras (see 4.3.9) are subvarieties of O. There is an extensive literature on
the variety of Ockham algebras and its subvarieties: see Blyth and Varlet [6] and
the references given there. The restricted Priestley duality for Ockham algebras
is particularly easy to describe.

7.4.3 Restricted Priestley Duality for O. The operation f on an Ockham al-
gebra A is nothing more than a dual endomorphism of the distributive lattice
term-reduct of A, that is, f ∈D(A,A∂ ). Hence, by (ii) of the proposition above,
the operation f corresponds to a morphism g ∈ P(H(A), H(A)∂ ). Thus the ob-
jects of the restricted category YO, known as Ockham spaces, are of the form
〈Y ; g,¶,T〉, where 〈Y ;¶,T〉 is a Priestley space and g : Y → Y is a continu-
ous, order-reversing map. Let c(d) = d ′ be the usual Boolean complement on
{0, 1}, then, for A ∈ O, the map g is defined on the set H(A) = D(A,D) by
g(y) := c ◦ y ◦ f and, for Y ∈ YO, the map f is defined on K(Y) = P(Y, D∼) by
f (α) := c ◦ α ◦ g. The morphisms of YO are continuous order-preserving maps
which preserve g.
Extensive use has been made of the restricted Priestley duality for O, for exam-
ple, in Urquhart [79], where it was first written down, in Blyth and Varlet [6]
and in Davey and Priestley [35].

In order to highlight the differences between natural dualities and restricted
Priestley dualities, we shall compare them on the variety K of Kleene algebras.
Recall from 4.3.9 that K= ISP(K) is the subvariety of O generated by the three-
element Kleene algebra K. To find the restricted Priestley duality for K, it re-
mains to characterise Ockham spaces Y such that K(Y) is a Kleene algebra. An
alternative proof of the following result is given in Exercise 7.1.

Restricted Priestley Duality for K. Let Y = 〈Y ; g,¶,T〉 be an Ockham space.
Then Y satisfies

(K) (∀y ∈ Y ) g(g(y)) = y and (∀y ∈ Y ) y ¶ g(y) or y ¾ g(y).

if and only if Y is the Priestley dual of a Kleene algebra, that is, K(Y) is a Kleene
algebra.

The restricted Priestley dual category for K is therefore the full subcategory YK

of YO consisting of the Ockham spaces which satisfy (K). It is an easy matter to
construct (finite or infinite) Ockham spaces in YK.

7.4.6 Pros and Cons. We now have available to us both the natural duality
(via 4.3.10) and the restricted Priestley duality (via 7.4.5). Which should we
use and when? The restricted Priestley duality is a powerful tool in the study of
individual Kleene algebras, particularly if we are concerned with the underlying
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distributive lattice. But for the study of more global properties of the class K,
the natural duality has many strengths over the restricted Priestley duality. Let
X be the natural dual category as described in 4.3.10.

(1) Products in the natural dual X are simply the usual Cartesian products with
structure defined pointwise from the factors. Although products exist in YK

(since coproducts exist in K), they need not be Cartesian: the Cartesian
product of two spaces satisfying (K) need not satisfy (K) !

(2) Free objects exist in X (see Exercise 3.5) while this fails in YK (see Exer-
cise 7.2).

(3) The dual in X of the free Kleene algebra FK(S) is simply K∼
S. It is not at all

clear how to find the dual in YK of FK(S) !

7.4.7 Working Together. Of course, we could ask for the best of both worlds.
Since the categories X and YK are both dually equivalent to K, they are equiv-
alent to one another. If we could give an explicit description of the functors
between X and YK which yield this equivalence, we would have a translation

process between X and YK permitting us to use the two dualities in tandem.
We could then, for example, find (the Priestley dual of) the underlying distribu-
tive lattice of FK(S) by applying the translation process to the object K∼

S in X.
This translation process has been worked out in a number of cases: for example,
in the next section we shall give the description, from Davey and Priestley [35],
of the translation between the restricted Priestley duality and a multisorted nat-
ural duality for the variety of Ockham algebras generated by a finite subdirectly
irreducible algebra M, and the translation process in the case where M is an
n-valued Łukasiewicz algebra is described in Priestley [72].

It is often the case that the restricted Priestley duality for the quasi-variety
generated by M or, more generally, by M is known and we want to apply the
Piggyback Duality Theorem 7.2.1 to obtain a natural duality. Once we have
chosen sets G and ΩM , for M ∈M, which satisfy the separation condition (S) of
the Piggyback Duality Theorem, two questions need to be addessed.

(i) How can we conveniently describe the piggyback relations on M?
(ii) How do we find a ‘small’ subset R′ of R such that G ∪ R′ entails R (and

therefore M∼
′ = 〈 ·
⋃

{M | M ∈ M }; G, R′,T〉 yields a duality on the quasi-
variety generated by M)?

In some cases we can use algebraic techniques as we did in the case of Heyting al-
gebras in Lemma 7.3.1. Alternatively, we can attempt to answer these questions
by riding piggyback on the known restricted Priestley duality. This technique was
first used to answer question (i) in Davey and Priestley ([35] and [37]), and to
answer question (ii) in Davey and Priestley [38]. We illustrate the technique in
Sections 5 and 6 below.
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A very useful D–P ‘dictionary’, which describes the restricted Priestley dual for
a number of classes, is given at the end of Priestley [71]. A list of 239 references
which ‘are related to, develop, and/or apply Priestley or natural dualities’ is given
by Adams and Dziobiak at the end of the Studia Logica Special Issue on Priestley
Duality [2].

Piggyback dualities for Kleene algebras. (The remainder of Section 6 of Chap-
ter 7 develops a two-sorted natural duality of each variety of Ockham algebras
generated by a finite subdirectly irreducible algebra. When applied to Kleene
algebras this is easily seen to be equivalent to the single-sorted natural duality
given in Chapter 4. The advantage of the two-sorted duality is that it makes it
very easy to describe the translation process between the natural duality and the
restricted Priestley duality. We refer to pages 207–216 of the text for details.)

Update 5

A careful analysis of the Piggyback Duality Theorem, in the most general
setting where M is a possibly infinite structure, has been carried out in [23].
It is used to give a very short proof of the strong duality for Ockham algebras
based on an infinite compact topological Ockham algebra whose underlying
topological space is {0, 1}N with the product topology, which was originally
proved in [44, 45]. It is also applied to establish strong dualities in the case
that M is a compact topological semilattice-based algebra.

The Completely Dualisable Quasivariety Problem, stated in this chap-
ter, was solved in [11].

CHAPTER 8: OPTIMAL DUALITIES AND ENTAILMENT

Recall that M∼ yields an optimal duality on A if M∼ yields a duality but as soon
as any relation or (partial) operation is eliminated from the structure on M∼ the
resulting structure M∼

∗ no longer yields a duality. In this chapter we will exhibit
a systematic method for reducing any dualising structure of finite type to one
which yields an optimal duality on A.

According to the Duality and Entailment Theorem 2.4.3, a dualising set G ∪
H ∪R yields an optimal duality if and only if no member of G∪H ∪R is entailed
by the rest of G ∪ H ∪ R. Our quest for optimal dualities begins with a simple
question.

Is there a finite algorithm to determine, for an algebraic relation s
and finite sets G, H and R, whether or not G ∪H ∪ R entails s?

Notice that the definition of entailment does not provide such an algorithm since
it asks that G ∪ H ∪ R entail s on D(A) for every A ∈ A. We will obtain a finite
algorithm to determine entailment by establishing the startling fact that it is
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always sufficient to consider only the single finite algebra A = s ! Capitalising
on this observation, we will obtain a method to compute from a given finite
dualising set all of its subsets which yield an optimal duality. This method will
be fully illustrated in the cases of semi-primal algebras and Kleene algebras. This
chapter is based on Davey and Priestley [39].

Test algebras—schizophrenia strikes again! In this section we show that the
question of deciding whether or not a finite set G ∪ H ∪ R entails a relation s is
answerable by a finite algorithm.

The secret is a simple but lovely application of schizophrenia. Since the n-ary
relation s is algebraic we may consider its pointwise extension sD(s) to the dual
D(s) of the algebra s¶Mn. We shall see that G∪H∪R ` s if and only if G∪H∪R
entails s on D(s). For this reason, we refer to the algebra s corresponding to an
algebraic relation s ∈B as a test algebra. Since D(s) and M are finite, there is
only a finite number of maps from D(s) to M and consequently whether or not
G ∪H ∪ R entails s is finitely determined provided G ∪H ∪ R is finite.

8.1.3 Test Algebra Lemma. Let G ∪ H ⊆ P, let R ⊆ B and let s ∈ B. Then the
following are equivalent:

(i) G ∪H ∪ R entails s on each hom-closed subset of every power of M ;
(ii) G ∪H ∪ R entails s;

(iii) G ∪H ∪ R entails s on D(s).

Notice that if G, H and R are all finite, then the verification of (iii) above is
a finite process which provides the promised algorithm to test entailment. We
close this section with a simple but important consequence of the Test Algebra
Lemma along with an illustration of its usefulness.

8.1.4 Corollary. In order to prove that G ∪ H ∪ R entails s it suffices to prove
that G ∪H ∪ R yields a duality on some isomorphic copy of the test algebra s.

8.2.3 Failsets. Let Ω ⊆B, let s ∈ Ω and let γ: D(s)→ M be any map. Define

U = Fails(γ) := { r ∈ Ω | γ fails to preserve r }.

If U 6= ∅ we call U a weak failset of s (within Ω), and if s ∈ U we call U a
failset of s (within Ω). We refer to U as a failset if it is a failset of some s ∈ Ω.
For a fixed s ∈ Ω, let

Fs := {Fails(γ) | γ: D(s)→ M fails to preserve s }

be the family of all failsets of s and let F :=
⋃

{Fs | s ∈ Ω } be the family of all
failsets.

If γ is an evaluation map, say γ= es(c) for some c ∈ s, then the set U = Fails(γ)
is empty. Conversely, ifΩ yields a duality on s and U =∅, then γ is an evaluation
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map. In general, the size of U gives a measure of how far γ is from being an
evaluation map.

Even when Ω is infinite, Fs contains an abundance of minimal elements. In
fact these minimal failsets provide the key to understanding optimal dualities.
To see how this works, we order bothFs andF by set inclusion. If U is a minimal
element of Fs we call U a locally minimal failset of s and if U is minimal in
F then we refer to U as a globally minimal failset. Clearly every globally
minimal failset is a locally minimal failset, but not conversely. Since the size of
Fails(γ) is a measure of how far γ is from being an evaluation, we should expect
minimal failsets to play an important role in our theory as each one comes from
a map γwhich is as close as possible to an evaluation map without actually being
one.

Another notion will help us make this connection. Let S be a family of non-
empty sets and let T be a subset of their union. Then T is called a transversal

of S if T intersects each U ∈ S but no proper subset of T does. If S is finite,
or the sets in S are pairwise disjoint, then a transversal of S certainly exists.
We now show how these ideas relate to optimal dualities.

8.3.1 Optimal Duality by Failsets Theorem. Suppose that Ω yields a duality
on A and R ⊆ Ω.

(i) R yields a duality on A if and only if it intersects every failset.
(ii) R yields an optimal duality on A if and only if it is a transversal of the

family of failsets.

Moreover, if every failset contains a globally minimal failset—as is the case if Ω
is finite—then

(iii) R yields an optimal duality on A if and only if it is a transversal of the
globally minimal failsets.

We now turn our attention to globally minimal failsets, the transversals of which
give us optimal dualities provided that Ω is a finite dualising set. They corre-
spond to the coatoms of the lattice Λ of entailment closed subsets of Ω.

8.3.8 Globally Minimal Failset Theorem. Let ∅ 6= U ⊆ Ω. Then the following
are equivalent:

(i) Ω\U is a coatom in the lattice Λ;
(ii) U is a globally minimal failset;

(iii) U is a locally minimal failset of r for all r ∈ U;
(iv) U is a (weak) failset and (Ω\U)∪ {s} ` r, for all r, s ∈ U .

Assume thatΩ yields a duality on A. We say that a subset U ofΩ is unavoidable

(within Ω) if whenever a subset R of Ω yields a duality on A, then R ∩ U 6= ∅.
Notice that U is unavoidable if and only if Ω\U does not yield a duality on A.
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The unavoidable subsets form an ordered set (under set inclusion) with Ω as its
top. A subset U of Ω will be called a minimal unavoidable set (within Ω) if
it is a minimal element of this ordered set.

8.3.10 Optimal Duality Theorem. Assume that Ω ⊆ B is finite and yields a
duality on A and let R ⊆ Ω. Then the following are equivalent:

(i) R yields an optimal duality on A;
(ii) R is a transversal of the globally minimal failsets within Ω;

(iii) R is a transversal of the complements of coatoms in the lattice Λ of entail-
ment closed subsets of Ω;

(iv) R is a transversal of the minimal unavoidable sets within Ω.

In almost all cases described in Chapter 4 we found that the dualising relations
were either unary or binary. When Ω ⊆ S(M)∪S(M2) yields a duality on A there
is a natural concept of absolutely unavoidable relation. If s ∈ S(M) we define s̆
to be s. We say that s ∈ Ω ⊆ S(M)∪ S(M2) is absolutely unavoidable (within
Ω) if {s, s̆ } is a (necessarily minimal) unavoidable set.

Kleene algebras once again. In 4.3.9 and 4.3.10 in Chapter 4 we introduced
the class, K, of Kleene algebras and applied the NU Strong Duality Corollary 3.3.9
to obtain a strong duality for this class. The schizophrenic object is

K= 〈{0, a, 1};∨,∧,¬, 0, 1〉 and K∼= 〈{0, a, 1};´,∼, K0,T〉

where

0< a < 1, ¬0= 1, ¬1= 0 and ¬a = a,

and ´ is the order with 0 ≺ a and 1 ≺ a while ∼ = K2\{(0,1), (1, 0)} and
K0 = {0, 1}. We shall now see that not only is this duality optimal, but in a very
natural sense it is the unique duality using algebraic relations of minimal arity.
Both´ and∼ turn out to be absolutely unavoidable in Ω= S(K)∪S(K2)while K0

is contained in a unique globally minimal failset U and is the only unary relation
in U .

8.4.1 The Duality Again. We begin by proving again that K∼ yields a duality
on K. This time round we shall try to emphasise the choices which are available
along the way. By the NU Duality Theorem 2.3.4 the set Ω := S(K)∪S(K2) yields
a duality on K. As in the proof of 4.3.10, it is easy to show by hand that K2 has
11 subalgebras:

∆K , ∆K0
, ´, ¼ := ˘́, ∼, K × K , K × K0, K0 × K ,

K0 × K0, ´∩ (K0 × K) and ¼∩ (K × K0).

The lattice of subalgebras of K2 is as shown in Figure 8.1: the only unlabelled
relations are ´ ∩ (K0 × K) and ¼ ∩ (K × K0). The meet-irreducible elements of
S(K2) are K ×K0, K0×K , ´, ¼, and ∼. Any set which entails these relations will
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entails K0 . Thus, we could replace K0 with any other member of UK0 , but this would
have the disadvantage of replacing a unary relation with a binary one. The only other
change which comes to mind would be the trivial one of replacing ! with its converse ".
This certainly feels like an optimal duality. To see that it is we need to find the minimal
unavoidable sets, or equivalently, the global minimal failsets within Ω := S(K) ∪ S(K2).
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8.4.2 The Globally Minimal Failsets First, consider the relation ∼ : see Figure 8.2.
Let x : ∼ → K be a homomorphism. Because the fixpoint (a, a) of the Kleene negation
must map to a, it is very easy to show that x is a projection. Thus D(∼) = {ρ1, ρ2}.
Define γ : D(∼) → K by γ(ρ1) = 0 and γ(ρ2) = 1. Since (0, 1) /∈ ∼, and, by Lemma 8.1.1,
(ρ1, ρ2) ∈ ∼D(∼) , we conclude that ∼ ∈ Fail∼(γ), that is, Fail∼(γ) is a failset of ∼. We

shall now show that Fail∼(γ) = {∼}. Note that K
D(∼)
0 = ∅ since, for i = 1, 2, we have

ρi((a, a)) = a /∈ K0 . Thus γ preserves K0 and consequently Fail∼(γ) consists of binary
relations. Let r ∈ Fail∼(γ). Then we can find x, y ∈ D(∼) such that (x, y) ∈ rD(∼) and
(γ(x), γ(y)) /∈ r. As (0, 0), (1, 1) ∈ r, we must have x ̸= y . Consequently, as r is closed

entail their intersections, and hence entail all subalgebras of K2. Consequently
R := {´,∼, K0} entails all subalgebras of K2 and so yields a duality on K.

How can we modify R without destroying the duality? It is easily seen that
each member of the set

UK0 := {K0,∆K0
, K2

0 , K0 × K , K × K0,´∩ (K0 × K),¼∩ (K × K0)}

entails K0. Thus, we could replace K0 with any other member of UK0 , but this
would have the disadvantage of replacing a unary relation with a binary one.
The only other change which comes to mind would be the trivial one of replacing
´ with its converse ¼. This certainly feels like an optimal duality. To see that
it is we need to find the minimal unavoidable sets, or equivalently, the global
minimal failsets within Ω := S(K)∪ S(K2).
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Figure 8.1 the subalgebras of K2

entails K0 . Thus, we could replace K0 with any other member of UK0 , but this would
have the disadvantage of replacing a unary relation with a binary one. The only other
change which comes to mind would be the trivial one of replacing ! with its converse ".
This certainly feels like an optimal duality. To see that it is we need to find the minimal
unavoidable sets, or equivalently, the global minimal failsets within Ω := S(K) ∪ S(K2).
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Figure 8.2 the subalgebras ∼ and !!! of K2

8.4.2 The Globally Minimal Failsets First, consider the relation ∼ : see Figure 8.2.
Let x : ∼ → K be a homomorphism. Because the fixpoint (a, a) of the Kleene negation
must map to a, it is very easy to show that x is a projection. Thus D(∼) = {ρ1, ρ2}.
Define γ : D(∼) → K by γ(ρ1) = 0 and γ(ρ2) = 1. Since (0, 1) /∈ ∼, and, by Lemma 8.1.1,
(ρ1, ρ2) ∈ ∼D(∼) , we conclude that ∼ ∈ Fail∼(γ), that is, Fail∼(γ) is a failset of ∼. We

shall now show that Fail∼(γ) = {∼}. Note that K
D(∼)
0 = ∅ since, for i = 1, 2, we have

ρi((a, a)) = a /∈ K0 . Thus γ preserves K0 and consequently Fail∼(γ) consists of binary
relations. Let r ∈ Fail∼(γ). Then we can find x, y ∈ D(∼) such that (x, y) ∈ rD(∼) and
(γ(x), γ(y)) /∈ r. As (0, 0), (1, 1) ∈ r, we must have x ̸= y . Consequently, as r is closed
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8.4.2 The Globally Minimal Failsets. First, consider the relation ∼ : see Fig-
ure 8.2. Let x : ∼→ K be a homomorphism. Because the fixpoint (a, a) of the
Kleene negation must map to a, it is very easy to show that x is a projection.
Thus D(∼) = {ρ1,ρ2}. Define γ: D(∼) → K by γ(ρ1) = 0 and γ(ρ2) = 1.
Since (0, 1) /∈ ∼, and, by Lemma 8.1.1, (ρ1,ρ2) ∈ ∼D(∼), we conclude that ∼ ∈
Fail∼(γ), that is, Fail∼(γ) is a failset of∼. We shall now show that Fail∼(γ) = {∼}.
Note that K D(∼)

0 =∅ since, for i = 1, 2, we have ρi((a, a)) = a /∈ K0. Thus γ pre-
serves K0 and consequently Fail∼(γ) consists of binary relations. Let r ∈ Fail∼(γ).
Then we can find x , y ∈ D(∼) such that (x , y) ∈ rD(∼) and (γ(x),γ(y)) /∈ r. As
(0,0), (1,1) ∈ r, we must have x 6= y . Consequently, as r is closed under the
Kleene negation, (0,1), (1, 0) /∈ r, that is, r ⊆ ∼. By the r-on-s Lemma 8.1.2,
there is a homomorphism, namely ϕ = ρ1 uρ2 or ϕ = ρ2 uρ1, from ∼ to r. In
either case, ϕ is one-to-one and hence ϕ(∼) ⊆ r ⊆ ∼ implies that r = ∼. We
have proved that Fail∼(γ) = {∼}, as claimed, and this failset is clearly minimal.
Since this is also a minimal unavoidable set, ∼ is absolutely unavoidable.

(As subsets of K2, the relation ∼ and the relational product ¼ · ´ coincide.
This identification fails on arbitrary spaces D(A) for A ∈K. Indeed, in a typically
schizophrenic way, the identification fails on the dual D(∼) of the corresponding
test algebra, that is, as we shall verify in 9.1.3,

¼D(∼) ·´D(∼) 6= (¼ ·´)D(∼).

Since γ preserves both ¼ and ´, but does not preserve ∼, this shows that, in
general, relational product cannot be an admissible construct.)

An almost identical argument applies to the relation ´. We leave it to the
reader to check that D(´) = {ρ1,ρ2} and that, with γ defined by γ(ρ1) = a and
γ(ρ2) = 0, we have Fail

´
(γ) = {´,¼}, whence this failset is clearly minimal and

´ is also absolutely unavoidable within Ω.
Notice that any failset intersecting either {´,¼} or {∼} must contain that

failset, and that the absolutely avoidable relations K , ∆K and K2 belong to no
failset. Thus any other minimal failset must be a subset ofΩ\{´,¼,∼, K ,∆K , K2}=
UK0 . Thus we can conclude our search for the minimal unavoidable sets within
Ω by showing that UK0 itself is a minimal unavoidable set. First we prove that
UK0 is a failset of K0. The dual of K0 is simply D(K0) = {ρ1}, where ρ1 : K0→ K is
the inclusion map. Define γ: D(K0)→ K by γ(ρ1) = a. Again, the reader should
show that the only unary relation in FailK0

(γ) is K0 and that a binary relation r
is in FailK0

(γ) if and only if (a, a) /∈ r. It follows that FailK0
(γ) = UK0 . It is easy

to check by hand, using the Constructs for Entailment 2.4.5, that {´, s} ` r for
all r, s ∈ UK0 , whence UK0 is a globally minimal failset by the equivalence of (ii)
and (iv) in the Globally Minimal Failset Theorem 8.3.8.

This shows that there are exactly three minimal failsets within Ω, namely

{´,¼}, {∼} and UK0 .
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By the Optimal Duality Theorem 8.3.10, the subsets of Ω which yield optimal
dualities on K are the transversals of this family. Therefore, as expected, the
only choices available are whether to use ´ or its converse and which member
of UK0 to use. Thus, as claimed, there is an essentially unique optimal duality
for K using relations of minimal arity, namely R= {´,∼, K0}.

CHAPTER 9: COMPLETENESS THEOREMS FOR ENTAILMENT

Update 6

Chapter 9 contains a proof that the constructs listed in Constructs for En-
tailment 2.4.5, when augmented with one further construct, are complete.
A stronger form of entailment, known as structural entailment is intro-
duced and characterised in [26]. A detailled analysis of different forms of
entailment relevant to duality theory is conducted in [33].

CHAPTER 10: DUALISABLE ALGEBRAS

Update 7

This chapter contains the Inherent Non-dualisable Algebra Theorem and its
proof. The weaker, but more widely applicable, Non-dualisability Lemma is
stated and proved in [66, 3.4.1]. The chapter contains six problems, three
of which have been solved. The Countability Problem and the Finite De-

gree Problem were solved in the negative in [65]. The Inherent Non-

dualisability Problem was solved in [11] by proving that every finite unary
algebra has a dualisable extension. Part of the Inherent Non-dualisability
Problem asks whether dualisabilty is independent of the generator, i.e., if
ISP(M1) = ISP(M2), for finite algebras M1 and M2, and M1 is dualisable,
does it follow that M2 is also dualisable? This was answered in the af-
firmative in [43] and [73] (independently). Subsequently, corresponding
independence-of-the-generator results have been proved for both strong du-
alisability [48] and full dualisability [21].

Of the remaining three problems, the Dualisibility Problem and the
Dualisable Clones Problem are essentially equivalent and ask which fi-
nite algebras are dualisable. These problems are probably unanswerable.
Nevertheless, significant progress has been made within restricted classes of
algebras; for example, amongst semigroups (and groups) [30, 30, 46, 50, 62,
1, 51, 58] and semilattice-based algebras [29, 32, 12]. The NU Duality The-
orem has been extended to a theorem that applies to both finite lattice-based
algebras and finite group-based algebras [58].
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Dualisability appears to be a finiteness condition on the quasivariety gen-
erated by a finite algebra. Its connection to other familiar finiteness condi-
tions remains unclear. A connection between the residual character of the
variety generated by a finite algebra and its dualisability status has been re-
vealed [32, 58]. While we have an example of an infinite dualisable alge-
bra with no finite base for its equations [29], no finite example is known—
see [27, 59, 5, 61].

The remaining problem, the Decidability Problem, is the holy grail of the
theory of natural dualities and asks if the dualisability of a finite algebra of
finite type is decidable. It remains unsolved. The second part of the problem,
which asks if the existence of a near-unanimity term on a finite algebra is
decidable, was answered in the affirmative in [60].
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