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1 Introduction

A class of algebras K is said to have the finite embeddability property (FEP), if
for every algebra A in K and every finite partial subalgebra B of A, there exists
a finite algebra D in K such that B embeds into D. Recall that B is a partial
subalgebra of A, if B is a subset of A together with partial operations fB for
each n-ary operation fA on A, where fB is:

fB(b1, . . . , bn) =

{
fA(b1, . . . , bn), if fA(b1, . . . , bn) ∈ B.

undefined, if fA(b1, . . . , bn) /∈ B.

The FEP is a strong property, as it yields decidability for finitely axiomati-
zable classes and generation by finite algebras for (quasi)varieties.

A residuated lattice is an algebra (A,∧,∨, ·, \, /, 1) where (A, ·, 1) is a monoid,
(A,∧,∨) is a lattice and for all a, b, c ∈ A, we have ab ≤ c iff a ≤ c/b iff b ≤ a\c.
As usual, we write x ≤ y for x = x ∧ y. It is not hard to see that the class of
residuated lattices is a variety. For more on residuated lattices, see for example
[5].

The FEP was studied for various classes of residuated lattices by W. Blok
and C. van Alten in a series of papers. Since residuated lattices form algebraic
semantics for substructural logics (see [5]), the FEP for a variety of residuated
lattices yields the strong finite model property for the corresponding substruc-
tural logic. In that respect the FEP is a very desirable, but also fairly rare
property.

In [4], among other things, the FEP is established for all subvarieties of
integral (satisfying x ≤ 1) residuated lattices axiomatized by equations over the
language of join, multiplication and 1; the method used is that of residuated
frames. In that respect integrality is a strong condition, but already in [7] it is
replaced by the weaker condition

xm ≤ xn for m 6= n, m ≥ 1, n ≥ 0,

known as a knotted inequality ; the price to pay for such a generalization is to
assume commutativity (of multiplication). The variety of all residuated lattices
satisfying a knotted inequality does not have the FEP, but in [1] it is shown that
the FEP holds for an infinite collection of non-commutative varieties satisfying
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a knotted inequality. (Further subvarieties of these axiomatized by equations of
over the language {∨, ·, 1} have the FEP.) Each of them is axiomatized by a
monoid identity, the simplest of which is xyx = xxy, and in general it is given
relative to a vector a = (a0, a1, . . . , ar) of natural numbers whose sum is r + 1
and whose product is 0 (namely an additive, non-trivial, decomposition of the
number r + 1):

xy1xy2 · · · yrx = xa0y1x
a1y2 · · · yrxar . (a)

In [3] it is shown, by developing a theory for a distributive version of resid-
uated frames, that in the presence of integrality we can obtain the FEP for all
varieties of residuated lattices that are distributive and are axiomatized over the
language {∨, ·, 1} (actually, even further, we can allow the ∧ connective in many
places). For example, the FEP is established for all integral and fully distribu-
tive residuated lattices. In all residuated lattices multiplication distributes over
join, but if, further, both multiplication and join distribute over meet, we call
the residuated lattice fully distributive. Algebras such as lattice-ordered groups,
Heyting algebras, and all semilinear residuated lattices (including MV-algebras
and BL-algebras), are fully distributive residuated lattices. Furthermore, fully
distributive residuated lattices admit a nice representation theorem [2].

In this submission, we relax the integrality condition to a combination of a
knotted inequality (for m > n) and an equation (a), for some decomposition a
of a positive integer, thus obtaining infinitely many varieties of fully distributive
residuated lattices with the FEP, outside the setting of integrality or commuta-
tivity.

2 The construction of D

We consider a variety V of fully distributive residuated lattices axiomatixed
by a knotted inequality xm ≤ xn, m > n, and an equation of the form (a).
(We may also assume that the axiomatization of the variety contains further
equations over the language {∨, ·, 1}, and even some controlled occurences of ∧,
as explained in [3].) We will show that V has the FEP.

We consider an algebra A in V and a finite partial subalgebra B of A;
let B = {b1, b2, . . . , bk}. Let W = (W, ◦,f, ε) be the {·,∧, 1}-subalgebra of A
generated by B (note that we use different notation for the restrictions of the
operations of A on W ). Observe that polynomials over (W, ◦,f, ε) that contain
a single variable x with a single occurrence must look like u(x) = (y ◦ x ◦ z)fw
for y, z, w ∈ W , and since multiplication distributes over meet, we can even
assume that y and z do not have f in them. We denote the set of all such
polynomials by SW and we define the set W ′ = SW ×B, as well as the relation
N from W to W ′, given by xN(u, b) iff uA(x) ≤A b.For X ⊆ W and Y ⊆ W ′,
we define XB = {z ∈ W ′ : (∀x ∈ X)(x N z)} and Y C = {w ∈ W : (∀y ∈
Y )(w N y)} and also the map γN on W by γN (X) = XBC. We denote by
γN [P(W )] the image of this map and call its members closed sets. The algebra
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W+
A,B = (γN[℘(W)],∩,∪N, ◦N, \, /) is called the Galois algebra of WA,B, where

for X,Y ⊆W we define X •N Y = γN (X • Y ), for all operations • ∈ {◦,∪,f}.

Lemma 1. The structure WA,B = (W,W ′, N, ◦,f, ε) supports a distributive
residuated frame structure in the sense of [3]. Therefore,

1. The algebra W+
A,B is a distributive residuated lattice (and fN is simply ∩).

2. The map b 7→ {(id, b)}C is a (partial algebra) embedding of B into W+
A,B.

3. W+
A,B is in V.

4. Every set in W+
A,B is an intersection of sets of the form {(u, b)}C for u ∈

SW , b ∈ B.

We will take W+
A,B to play the role of D in the definition of the FEP. The

above lemma provides the embedding and also the membership in V, so the only
thing that remains to be shown is the finiteness of D = W+

A,B, and this is the
content of the next section.

3 Toward finiteness

By Lemma 1(4), it suffices to show that there are only finitely many closed sets
of the form {(u, b)}C for u ∈ SW , b ∈ B. In particular, since B is finite, it suffices
to show that for each b ∈ B, the set Cb = {{(u, b)}C : u ∈ SW } is finite. We will
show that in Cb, ordered under (reverse) inclusion, all antichains, descending
chains and ascending chains are finite, thus yielding finiteness. Toward this goal,
we will construct an auxiliary structure F and a onto homomorphism h from
F to W. F will be based on the construction of a free meet-semilattice over a
poset.

3.1 The construction M

Given a pomonoid Q, we endow the setM(Q) of all nonempty finitely generated
upsets of Q with the operations A∧B := A∪B and A•B := ↑{ab : a ∈ A, b ∈ B}.
, for A,B ∈M(Q).

A semilattice monoid is an algebra A = (A,∧, ·, 1) such that (A,∧) is a
semilattice, (A, ·, 1) is a monoid and multiplication distributes over meet. As
usual we define x ≤ y ⇐⇒ x ∧ y = x.

Lemma 2. If Q is a pomonoid, then M(Q) with the above oprations is a semi-
lattice monoid.

Recall that a poset is said to be dually well partially ordered if it has no
infinite antichains and no infinite ascending chains.

Lemma 3. If the Q pomonoid is dually well-partially ordered, then so isM(Q).

Lemma 4. If P and Q are pomonoids and f : P→Q is a pomonoid homomor-
phism (order-preserving monoid homomorphism) then f̄ : M(P)→M(Q) is a
semilattice monoid homomorphism, where f̄(A) =

∧
a∈A

f(a).
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3.2 The construction of F and finiteness

In [1], it is shown that given a knotted inequality, an equation of the form (a)
and a positive integer k, we can construct a k-generated pomonoid H that is free
for (but not in) the class of pomonoids that satisfy the knotted inequality and
(a). It is further shown in [1] that H is dually well partially ordered, if m > n
in the knotted inequality. We then define F as M(H), so Lemma 3 applies. By
the k-freeness of H and Lemma 4, we obtain the following.

Lemma 5. There is a surjective semilattice-monoid homomorphism h : F→W.

Lemma 6. For each b ∈ B, (Cb,⊇) is a dually well partially ordered set and has
no infinite descending chains. Recall Cb = {{(u, b)}C : u ∈ SW }.
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