A uniform continuity principle for the Baire space and a corresponding bar induction

Tatsuji Kawai
Japan Advanced Institute of Science and Technology
tatsuji.kawai@jaist.ac.jp

The uniform continuity principle (UC) is the following statement:

UC Every pointwise continuous function $F: \{0,1\}^\mathbb{N} \rightarrow \mathbb{N}$ is uniformly continuous.

Since the Cantor space $\{0,1\}^\mathbb{N}$ is compact, UC is classically true. It is well known, however, that this need not be the case in the constructive mathematics in the sense of Bishop [2].

Berger [1] showed that, in Bishop constructive mathematics, UC is equivalent to a version of fan theorem, called c–FT, thereby gave a characterisation of UC in terms of a fan theorem. In this talk, we generalise the above equivalence to the setting of the Baire space $\mathbb{N}^\mathbb{N}$. We formulate the corresponding uniform continuity principle UC_B for the Baire space and a version of bar induction, called c–BI, and show that UC_B and c–BI are equivalent.

The principle UC_B is the following statement:

UC_B Every pointwise continuous function $F: \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}$ is formally representable.

Here, a function $F: \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}$ is formally representable if F is of the form $\mathcal{P}(r): \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}$ for some morphism $r : \mathcal{B} \rightarrow \mathcal{N}$ from the formal Baire space \mathcal{B} to the formal discrete space \mathcal{N} of natural numbers in the category of formal topologies $FTop$ [4] (or that of formal spaces [3]), where $\mathcal{P}: FTop \rightarrow Top$ is the right adjoint of the standard adjunction between the category of topological spaces Top and $FTop$.

The principle c–BI reads as follows:

c–BI For any c–bar $P \subseteq \mathbb{N}^*$ and a predicate $Q \subseteq \mathbb{N}^*$, if $P \subseteq Q$ and Q is inductive, then $Q(\langle \rangle)$.

Here, a predicate $P \subseteq \mathbb{N}^*$ on the finite sequences of \mathbb{N} is a c–bar if

1. P is a bar, i.e. $(\forall \alpha \in \mathbb{N}^*) (\exists n \in \mathbb{N}) P(\langle \alpha(0), \ldots, \alpha(n-1) \rangle),$
2. there exists a function $\delta: \mathbb{N}^* \rightarrow \mathbb{N}$ such that

$$(\forall a \in \mathbb{N}^*) [P(a) \iff (\forall b \in \mathbb{N}^*) \delta(a) = \delta(a * b)],$$

and a predicate $Q \subseteq \mathbb{N}^*$ is inductive if $(\forall a \in \mathbb{N}^*) [(\forall n \in \mathbb{N}) Q(a * \langle n \rangle) \rightarrow Q(a)].$

We have $BI_M \Rightarrow c$–BI $\Rightarrow BI_D$, where BI_M is the monotone bar induction and BI_D is the bar induction for decidable bars [5].

The equivalence between UC_B and c–BI can be seen as a generalisation of that of Berger in the light of the following observations.
1. A function $F : \{0,1\}^N \to \mathbb{N}$ is uniformly continuous if and only if F is formally representable by some morphism $r : C \to \mathcal{N}$ from the formal Cantor space C to \mathcal{N}.

2. If we replace \mathbb{N} with $\{0,1\}$ everywhere in the statement of c–BI, we obtain a version of fan theorem which is equivalent to c–FT.

We work in Bishop constructive mathematics with the axiom of countable choice and generalised inductive definitions which have rules with countable premises.

References

