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Within the mathematical logic field, much effort has been devoted to prove
completeness of different axiomatizations with respect to classes of algebras de-
fined on the real unit interval [0, 1] (see for instance [1] and [2]), but in general,
what has been mainly achieved are axiomatizations and results concerning fini-
tary completeness, that is, for deductions from a finite number of premises.

In this work we are concerned with the problem of strong completeness, i.e.,
completeness for deductions from an arbitrary number of premises. In particular,
we will focus on showing strong completeness for logics of a left-continuous t-
norm. These will be extensions of the monoidal t-norm based logic, MTL, the
logic of prelinear, bounded, commutative and integral residuated lattices [3],
expanded with rational truth-constants and with an arbitrary set of connectives
under some constraints.

It is known that MTL is strongly complete with respect to the class of all
standard algebras based of left-continuous t-norms [2]. Some particular exten-
sions of MTL enjoy more concrete completeness results: BL, Gédel, Product or
Lukasiewicz logics are complete wrt single particular standard algebras. How-
ever, these completeness results are for finitary deductions, only in a few cases
(e.g. in Godel logic) they hold in general.

Regarding the issue of enforcing strong completeness in MTL logics expanded
with rational constants, the main references are [4] and [5]. While the former
focuses on the strong standard completeness for Product logic extended with
rational constants following the usual algebraic approach, the latter is framed
in the context of Pavelka-style completeness, a different (infinitary) notion of
completeness originally introduced by Pavelka in the context of Lukasiewicz
logic [6]. We will not deal here with this kind of completeness, we only notice
that it is a weaker notion than that of strong standard completeness.

The paper by Cintula [5] explores different notions of rational expansions
of MTL, and shows that adding a pair of infinitary deduction rules for each
discontinuity point in the connectives’ truth-functions on the unit real interval
[0,1] makes these logics Pavelka-style complete. Cintula also makes an obser-
vation that will partially orient our work: for a rational standard algebra (i.e.,
over [0, 1] with rational constants) with a non-continuous operation, there is no
finitary axiomatic system that is strongly complete with respect to it.

In this abstract we present an alternative way (with respect to the Pavelka-
style approach) to enforce strong standard completeness of rational expansions
of MTL. The approach is based on the idea that the problem of devising an
axiomatization that is strongly standard complete is not exactly linked to the



discontinuity points of the connectives but rather to changes in some regularity
conditions of the corresponding operations, like monotonicity and continuity.
Our main result is, given any arbitrary left-continuous t-norm *, to present an
axiomatic system M TLY strongly complete with respect to the rational standard
algebra [0, 1]9 It is defined as the extension of the MTL with the usual book-
keeping axioms for &, — and A connectives, the rule ¢V ¢ ¢ for each rational
¢ < 1, and the following adaptation of the density rule of some first order logics:

{yV(p—=2V(E— w)}ce[o,l]Q
TV (e =)

Note that the definition of proof when infinitary rules are present is a tree
(rather than a sequence), where the root is the consequence of the deduction, the
leaves are either axioms or formulas from the premise set, and each branch rep-
resents the application of a deduction rule. The finite depth of the tree maintains
the correction for what respects reasoning by induction on proofs.

The rule (VD) is strong enough for our purposes over the MTL language,
but if we want to expand the logic with more general connectives (with corre-
sponding “regular enough” operations), particular rules for each one of them are
needed. Indeed, the density rule allows us to determine the values of the new
operations from the ones given by the rational constants, under certain regular-
ity conditions referring to both monotonicity and continuity. We call these well
behaved operations representable, and we show that for them it is possible to
specify rules on a language expanding M TL® modeling those regularity condi-
tions. We also show that for a set OP of representable operations, the system
MTLE(OP) resulting from adding to MTLY the regularity rules for the oper-
ations in OP, (and the book-keeping axioms and congruence rules of OP), is
strongly complete with respect to extended standard algebra [0, 1]9(OP).

We note that our proposed axiomatizations are in many cases finitely pre-
sented -except for the set of book-keeping axioms. It is also remarkable that, if
the Monteiro-Baaz operator A belongs to O P, the axiomatic system M TLY (OP)
can be simplified a lot.
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