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Quantales. The term quantale was introduced by Mulvey as the ‘quantum’ coun-
terpart of the term locale. Locales can be thought of as pointfree topologi-
cal spaces, and as such, in the locally compact Hausdorff case, they are dual
to commutative C∗-algebras via the Gelfand duality. Mulvey considered quan-
tales in the context of a research program aimed at providing dual counterparts
to general C∗-algebras, and extending Gelfand duality to noncommutative C∗-
algebras.
In Gelfand duality, the algebra-to-space direction consists of associating any
commutative C∗-algebra with its maximal ideal space. This construction was
extended to noncommutative C∗-algebras by considering the spectrum MaxA of
any unital C∗-algebra A, i.e. the unital involutive quantale of closed linear sub-
spaces of A. This gives rise to a functor Max which was extensively studied for
more than a decade as it was considered the best candidate for the C∗-algebra-to-
quantale direction of a noncommutative Gelfand-Naimark duality. Remarkably,
MaxA is a complete invariant of A, i.e. if A and A′ are C∗-algebras such that
MaxA and MaxA′ are isomorphic, then A and A′ are isomorphic. However, there
are several problems with Max: 1) it has no adjoints, which is a necessary condi-
tion for its providing one direction of a duality; 2) it is not full on isomorphisms,
i.e. some isomorphisms of spectra of C∗-algebras do not arise from C∗-algebra
morphisms [5]; 3) there is no purely algebraic characterization of the class of
quantales isomorphic to quantales of type MaxA; 4) there is no canonical way of
constructing A from MaxA. These difficulties motivate the quest for alternative
ways of linking C∗-algebras and quantales.
Besides their interest in relation to C∗-algebras, quantales have been extensively
studied in logic and theoretical computer science: not only do they provide the
standard algebraic semantics for various resource-sensitive logics such as lin-
ear logic [2,12], they have also been applied to the study of the semantics of
concurrent systems and their observable behaviour, described in terms of finite
observations. Finite observations are formalized as semidecidable properties, and
can therefore be identified with open sets of a topological space [11]; however,
this perspective does not account for those (quantum-theoretic) situations where
performing finite observations on a systems produces changes in the system it-
self. In those cases, the set of the finite observations that can be performed on a
system has a natural noncommutative structure of quantale. The basic view on
quantales as generalized topologies can be retrieved also in this context. In [1],
this perspective on quantales was applied to provide a uniform algebraic frame-
work for process semantics and develop a systematic study of various notions of
observational equivalence between processes.
Merging perspectives: the case study of Penrose tilings. Recently, investigation
has focused on ways to integrate the two perspectives on quantales as noncommu-
tative topologies and as algebras of experimental observations on computational
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(or physical) systems, and use them to investigate the connection between quan-
tales and C∗-algebras. In [6], an important example was studied, which concerns
a classification of Penrose tilings using quantales. This classification is alter-
native to the one previously introduced by Connes (consisting in associating a
certain C∗-algebra AK with the space (K,∼) of Penrose tilings). The classifica-
tion in [6] is based on a logic of finite observations performed on Penrose tilings,
the Lindenbaum-Tarski algebra of which is a quantale (denoted by Pen). This
classification arises from a canonical representation of the free quantale Pen
as a quantale Pen of relations on (K,∼). In [6], the exact connection between
Pen and AK was left as an open problem, but since Pen is not isomorphic to
MaxAK , the case study of Penrose tilings was considered pivotal in finding the
alternative connection between quantales and C∗-algebras in the restricted but
geometrically significant setting in which they both arise from groupoids.

Étale groupoids and their quantales. Resende [10] generalized the example of
Penrose tilings to a bijective correspondence between localic étale groupoids
and certain unital involutive quantales referred to as inverse quantal frames
(indeed, their underlying sup-lattice structure is a frame). An important feature
of inverse quantal frames Q is that, denoting the unit of Q by e, the restriction
of the product to the subquantale Qe = e↓ coincides with the lattice meet.
The groupoid-to-quantale direction of this correspondence arises from observing
that, for every étale localic groupoid G = (G0, G1), the groupoid structure-maps
induce a structure of unital involutive quantale on the locale G1, which becomes
an inverse quantale frame. Conversely, the étale localic groupoid associated with
an inverse quantal frame Q is based on the locales G0 := Qe and G1 := Q.

Towards a non étale generalization of Resende’s correspondence. In [7], a unital
involutive quantale is associated with any topological groupoid in a way alter-
native to Resende’s but compatible with it when the topological groupoid is
étale. This route makes it possible to account for the connection between the
quantale Pen and the C∗-algebra AK , which was left as an open problem in [6].
The quantale associated with a topological groupoid G is the sub sup-lattice of
P(G1) generated by the inverse semigroup S of the images of the local bisections
of G.

Spatial SGF-quantales. Building on [7], in [8], a bijective correspondence is es-
tablished between certain unital involutive quantales referred to as spatial SGF-
quantales and topological groupoids in which G0 is sober. This class of groupoids
includes equivalence relations arising from group actions, and significantly ex-
tends the class of étale topological groupoids. Dually, inverse quantal frames are
exactly those SGF-quantales in which the underlying sup-lattice is a frame. The
correspondence defined in [8] extends the theory of [10] to a point-set, non étale
setting. Interestingly, this correspondence also forms the basis of a representa-
tion theorem for SGF-quantales into unital involutive quantales of relations [9],
similar to the one for relation algebras in [4].

Étale vs. non étale. The comparison between the correspondences in [10] and [8]
is facilitated by the observation that a topological groupoid is étale iff the images
of its local bisections form a base for the topology on G1. The étale topological
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setting can be shown to be exactly the one in which the groupoid-to-quantale
routes in [10] and in [8] coincide.
Work in progress. The present talk reports on ongoing work [3] aimed at gen-
eralizing the bijective correspondence (on objects) of [8] from a topological to
a localic setting. This amounts to defining a bijective correspondence between
general SGF-quantales and localic (non étale) groupoids. As to the groupoid-
to-quantale direction, for any localic groupoid G = (G0, G1), we first generate
an inverse quantal frame Q̃ from the local bisections “restricted” to the locally
closed elements of G0, and then define Q(G) as the subquantale of Q̃ gener-
ated by those elements in Q̃ corresponding to the images of the original (i.e.
“unrestricted”) local bisections of G. The quantale-to-groupoid direction is the
difficult one. For any SGF-quantale Q the main strategy consists in proving the
existence of the greatest subquantale Q′ of Q which is also a frame, so that it is
possible to define G(Q) = (G0, G1) with O(G0) := Qe and O(G1) := Q′.
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