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If one wants to describe topological spaces in first order terms the following
language L2 is probably one of the most ‘natural’. L2 is a two-sort first order
language: we have first sort variables x, y, ..., that are assigned to points, and
second sort variables X,Y, ..., that are assigned to open sets. L2 may be defined
over the desired signature of relational and functional symbols. But we always
have a symbol =, that is interpreted as the equality relation, and a symbol ε,
that is interpreted as the set membership relation. L2 has the ‘usual’ boolean
connectives, and quantifiers ∀x, ∃x for first sort variables and quantifiers ∀X,
∃X for second sort variables with the ‘usual’ meaning. As we would like to
characterize (a fragment of) L2 in modal terms, we restrict the signature of L2

to a countable set Prop of unary relation symbols.
If we add some restrictions to L2, we obtain the first order language Lt of [3,

Part 1 §2]. Lt is just as L2 apart from the definition of second sort quantification.
For Lt, second sort quantification is defined by:

– If ϕ is positive1 in X, ∀X(xεX → ϕ) is a formula of Lt;
– If ϕ is negative in X, ∃X(xεX ∧ ϕ) is a formula of Lt.

The language Lt, unlike L2, interpreted over topological spaces enjoys ‘impor-
tant’ properties ‘characterizing’ first order logic2: compactness and Löwenheim-
Skolem Theorem [3, Part 1 §2, 3]. In fact, there is no language for describing
topological spaces that is more expressive than Lt and enjoys compactness and
Löwenheim Skolem Theorem [3, Part 1 §8].

Moreover Lt can express ‘non-trivial’ topological properties: e.g. (among oth-
ers) T0, T1, T2 and T3 axioms, triviality, discreteness, etc. (However Lt cannot
express normality, connectedness and compactness.) (See [3, Part 1 §3].)

Furthermore the Lt theory of all T3 topological spaces is decidable. (However,
for i = 0, 1, 2, the Lt theory of all Ti topological spaces is undecidable, even
without unary relations.) (See [3, Part 2 §1].)

Finally, Lt is equivalent over topological spaces to the base-invariant fragment
of L2 [3, Part 1, Theorem 4.19], where ‘base-invariance’ is defined as follows. Call
a basoid model every structure (A,B) where A is a set and B is a base for a

1 An L2 formula is positive (negative) in a second sort variable X provided all free
occurrences of X are under an even (odd) number of negation signs.

2 Recall that, according to the Lindström Theorem, first order logic is (roughly) ‘the
strongest logic (satisfying certain conditions) that enjoys compactness and satisfies
the Löwenheim-Skolem Theorem’.
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topology over A. Let B̂ denote the topology generated by B. Let us interpret
L2 over basoid models by interpreting second sort variables as elements of B. A
formula ϕ(x1, ..., xn, X1, ..., Xm) of L2 is said base-invariant provided for every
basoid model (A,B), a1, ..., an ∈ A and O1, ..., Om ∈ B,

(A,B) |= ϕ[a1, ..., an, O1, ..., Om] iff (A, B̂) |= ϕ[a1, ..., an, O1, ..., Om]. (1)

Languages to talk about topological spaces have been defined in modal terms
as well. They have a long history (see e.g. the seminal [5]) and there is ongoing
interest in the field - e.g. (among others) [2]. The main idea is to associate propo-
sitional variables to points of a topological space and give a topologically flavored
semantics to modal operators.

We consider the derivative operator 〈d〉: 〈d〉ϕ holds at a point a provided for
all opens O containing a there is a point a′ ∈ O \ {a} where ϕ holds. Together
with 〈d〉, we consider the graded modalities ♦n (for all n ∈ ω): ♦n holds at a
point a provided there are (at least) n different points at which ϕ holds. Let
L〈d〉♦ω denote the modal language in the signature {〈d〉,♦n |n ∈ ω}. We prove
that over the class of all T3 topological spaces Lt and L〈d〉♦ω are equivalent:

Theorem 1. The following facts hold:

1. For all sentences ϕ of Lt there is a sentence3 α ∈ L〈d〉♦ω such that ϕ and α
are equivalent over T3 models4 - i.e. for all T3 models A we have that A |= ϕ
if and only if A |= α.

2. For all sentences α ∈ L〈d〉♦ω there is a sentence ϕ ∈ Lt such that α and ϕ
are equivalent over T3 models.

3. For all formulas ϕ(x) ∈ Lt there is a formula α ∈ L〈d〉♦ω such that ϕ(x) and
α are equivalent over T3 models - i.e. for all T3 models A and points a ∈ A
we have that A |= ϕ[a] if and only if A, a |= α.

4. For all formulas α ∈ L〈d〉♦ω there is a formula ϕ(x) ∈ Lt such that α and ϕ
are equivalent over T3 models.

Moreover, there is a computable procedure that translates formulas into equiva-
lent formulas between Lt and L〈d〉♦ω .

We prove this result by using a game à la Ehrenfeucht-Fräıssé.
There are at least two interpretations of this result that are worth mentioning.

We can read this result as a van Benthem characterization theorem5: over T3

3 Call a sentence of L〈d〉♦ω every formula of L〈d〉♦ω of the form ♦nψ of ¬♦nψ (n ∈ ω).
Note that the truth of sentences of L〈d〉♦ω does not depend on the point at which
they are evaluated.

4 Call a T3 model every tuple A = (A, σ, {pA}p∈Prop) where (A, σ) is a T3 topological
space and {pA}p∈Prop is the interpretation in A of the unary relation symbols in
Prop.

5 Recall that the van Benthem characterization theorem states (roughly) that basic
modal logic is equivalent to the bisimulation invariant fragment of first order logic
[1].



Modal Characterization of a First Order Logic for Topology 3

topological spaces L〈d〉♦ω is the base invariant fragment of L2. We can read this
result also as a Kamp theorem6: over T3 topological spaces, L〈d〉♦ω ‘captures’
Lt.

This result opens a number of problems: e.g. (among others) since the Lt

theory of all T3 topological spaces is decidable, we have that the L〈d〉♦ω theory of
all T3 topological spaces is decidable as well, but what is its complexity? Is there
some ‘nice’ axiomatization of the L〈d〉♦ω theory of all T3 topological spaces (note
that this would axiomatize the Lt theory of all T3 topological spaces as well).
What is the complexity of translating between Lt and L〈d〉♦ω? What happens
if we replace T3-ness with other conditions? As a first partial answer we prove
that:

Theorem 2. Over every class of topological spaces including all T2 topological
spaces, we have that Lt and L〈d〉♦ω are not equivalent.

The proof uses classical (topo-)bisimulation arguments to show that, unlike in
Lt, T3-ness is no expressible in L〈d〉♦ω . This leads to the following question:
what about increasing the expressive power of L〈d〉♦ω to ‘capture’ Lt over classes
including all T2 topological spaces?
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