Modal Characterization of a First Order Logic for Topology

Alberto Gatto

Imperial College, London, UK
alberto.gatto@imperial.ac.uk

If one wants to describe topological spaces in first order terms the following language \mathcal{L}_2 is probably one of the most ‘natural’. \mathcal{L}_2 is a two-sort first order language: we have first sort variables $x, y, ...$, that are assigned to points, and second sort variables $X, Y, ...$, that are assigned to open sets. \mathcal{L}_2 may be defined over the desired signature of relational and functional symbols. But we always have a symbol $=$, that is interpreted as the equality relation, and a symbol \in, that is interpreted as the set membership relation. \mathcal{L}_2 has the ‘usual’ boolean connectives, and quantifiers $\forall x, \exists x$ for first sort variables and quantifiers $\forall X, \exists X$ for second sort variables with the ‘usual’ meaning. As we would like to characterize (a fragment of) \mathcal{L}_2 in modal terms, we restrict the signature of \mathcal{L}_2 to a countable set Prop of unary relation symbols.

If we add some restrictions to \mathcal{L}_2, we obtain the first order language \mathcal{L}_t of [3, Part 1 §2]. \mathcal{L}_t is just as \mathcal{L}_2 apart from the definition of second sort quantification. For \mathcal{L}_t, second sort quantification is defined by:

- If φ is positive in X, $\forall X (x \in X \rightarrow \varphi)$ is a formula of \mathcal{L}_t;
- If φ is negative in X, $\exists X (x \in X \land \varphi)$ is a formula of \mathcal{L}_t.

The language \mathcal{L}_t, unlike \mathcal{L}_2, interpreted over topological spaces enjoys ‘important’ properties ‘characterizing’ first order logic2: compactness and Löwenheim-Skolem Theorem [3, Part 1 §2, 3]. In fact, there is no language for describing topological spaces that is more expressive than \mathcal{L}_t and enjoys compactness and Löwenheim Skolem Theorem [3, Part 1 §8].

Moreover \mathcal{L}_t can express ‘non-trivial’ topological properties: e.g. (among others) T_0, T_1, T_2 and T_3 axioms, triviality, discreteness, etc. (However \mathcal{L}_t cannot express normality, connectedness and compactness.) (See [3, Part 1 §3].)

Furthermore the \mathcal{L}_t theory of all T_3 topological spaces is decidable. (However, for $i = 0, 1, 2$, the \mathcal{L}_t theory of all T_i topological spaces is undecidable, even without unary relations.) (See [3, Part 2 §1].)

Finally, \mathcal{L}_t is equivalent over topological spaces to the base-invariant fragment of \mathcal{L}_2 [3, Part 1, Theorem 4.19], where ‘base-invariance’ is defined as follows. Call a basoid model every structure (A, \mathfrak{B}) where A is a set and \mathfrak{B} is a base for a

1 An \mathcal{L}_2 formula is positive (negative) in a second sort variable X provided all free occurrences of X are under an even (odd) number of negation signs.

2 Recall that, according to the Lindström Theorem, first order logic is (roughly) ‘the strongest logic (satisfying certain conditions) that enjoys compactness and satisfies the Löwenheim-Skolem Theorem’.
topology over A. Let \mathfrak{B} denote the topology generated by \mathfrak{B}. Let us interpret \mathcal{L}_2 over basoid models by interpreting second sort variables as elements of \mathfrak{B}. A formula $\varphi(x_1, \ldots, x_n, X_1, \ldots, X_m)$ of \mathcal{L}_2 is said base-invariant provided for every basoid model (A, \mathfrak{B}), $a_1, \ldots, a_n \in A$ and $O_1, \ldots, O_m \in \mathfrak{B}$,

$$(A, \mathfrak{B}) \models \varphi[a_1, \ldots, a_n, O_1, \ldots, O_m] \text{ iff } (A, \hat{\mathfrak{B}}) \models \varphi[a_1, \ldots, a_n, O_1, \ldots, O_m]. \quad (1)$$

Languages to talk about topological spaces have been defined in modal terms as well. They have a long history (see e.g. the seminal [5]) and there is ongoing interest in the field - e.g. [2]. The main idea is to associate propositional variables to points of a topological space and give a topologically flavored semantics to modal operators.

We consider the derivative operator (d); $\langle d \rangle \varphi$ holds at a point a provided for all opens O containing a there is a point $a' \in O \setminus \{a\}$ where φ holds. Together with (d), we consider the graded modalities \Diamond^n (for all $n \in \omega$): \Diamond^n holds at a point a provided there are (at least) n different points at which φ holds. Let $\mathcal{L}_{t(\Diamond^n)}$ denote the modal language in the signature $\{\langle d \rangle, \Diamond^n | n \in \omega\}$. We prove that over the class of all T_3 topological spaces \mathcal{L}_t and $\mathcal{L}_{t(\Diamond^n)}$ are equivalent:

Theorem 1. The following facts hold:

1. For all sentences φ of \mathcal{L}_t there is a sentence $\alpha \in \mathcal{L}_{t(\Diamond^n)}$ such that φ and α are equivalent over T_3 models4 - i.e. for all T_3 models \mathfrak{A} we have that $\mathfrak{A} \models \varphi$ if and only if $\mathfrak{A} \models \alpha$.
2. For all sentences $\alpha \in \mathcal{L}_{t(\Diamond^n)}$ there is a sentence $\varphi \in \mathcal{L}_t$ such that α and φ are equivalent over T_3 models.
3. For all formulas $\varphi(x) \in \mathcal{L}_t$ there is a formula $\alpha \in \mathcal{L}_{t(\Diamond^n)}$ such that $\varphi(x)$ and α are equivalent over T_3 models - i.e. for all T_3 models \mathfrak{A} and points $a \in \mathfrak{A}$ we have that $\mathfrak{A} \models \varphi[a]$ if and only if $\mathfrak{A}, a \models \alpha$.
4. For all formulas $\alpha \in \mathcal{L}_{t(\Diamond^n)}$ there is a formula $\varphi(x) \in \mathcal{L}_t$ such that α and φ are equivalent over T_3 models.

Moreover, there is a computable procedure that translates formulas into equivalent formulas between \mathcal{L}_t and $\mathcal{L}_{t(\Diamond^n)}$.

We prove this result by using a game à la Ehrenfeucht-Fraïssé.

There are at least two interpretations of this result that are worth mentioning. We can read this result as a van Benthem characterization theorem5:

3 Call a sentence of $\mathcal{L}_{t(\Diamond^n)}$ every formula of $\mathcal{L}_{t(\Diamond^n)}$ of the form $\Diamond^n \psi$ of $\neg \Diamond^n \psi$ ($n \in \omega$).

4 Call a T_3 model every tuple $\mathfrak{A} = (A, \sigma, \{p^A\}_{p \in \mathfrak{Prop}})$ where (A, σ) is a T_3 topological space and $\{p^A\}_{p \in \mathfrak{Prop}}$ is the interpretation in \mathfrak{A} of the unary relation symbols in \mathfrak{Prop}.

5 Recall that the van Benthem characterization theorem states (roughly) that basic modal logic is equivalent to the bisimulation invariant fragment of first order logic [1].
topological spaces $\mathcal{L}_{(d)\diamond}^*$ is the base invariant fragment of \mathcal{L}_2. We can read this result also as a Kamp theorem\(^6\): over T_3 topological spaces, $\mathcal{L}_{(d)\diamond}^*$ ‘captures’ \mathcal{L}_t.

This result opens a number of problems: e.g. (among others) since the \mathcal{L}_t theory of all T_3 topological spaces is decidable, we have that the $\mathcal{L}_{(d)\diamond}^*$ theory of all T_3 topological spaces is decidable as well, but what is its complexity? Is there some ‘nice’ axiomatization of the $\mathcal{L}_{(d)\diamond}^*$ theory of all T_3 topological spaces (note that this would axiomatize the \mathcal{L}_t theory of all T_3 topological spaces as well). What is the complexity of translating between \mathcal{L}_t and $\mathcal{L}_{(d)\diamond}^*$? What happens if we replace T_3-ness with other conditions? As a first partial answer we prove that:

Theorem 2. Over every class of topological spaces including all T_2 topological spaces, we have that \mathcal{L}_t and $\mathcal{L}_{(d)\diamond}^*$ are not equivalent.

The proof uses classical (topo-)bisimulation arguments to show that, unlike in \mathcal{L}_t, T_3-ness is no expressible in $\mathcal{L}_{(d)\diamond}^*$. This leads to the following question: what about increasing the expressive power of $\mathcal{L}_{(d)\diamond}^*$ to ‘capture’ \mathcal{L}_t over classes including all T_2 topological spaces?

Acknowledgments The author thanks Ian Hodkinson for several useful discussions.

References

\(^6\) Recall that the Kamp theorem states (roughly) that, over the naturals or the reals, the linear temporal logic with ‘until’ and ‘since’ is equivalent to first order logic [4].