Modal Characterization of a First Order Logic for Topology

Alberto Gatto

Imperial College, London, UK alberto.gatto@imperial.ac.uk

If one wants to describe topological spaces in first order terms the following language \mathfrak{L}_2 is probably one of the most 'natural'. \mathfrak{L}_2 is a two-sort first order language: we have first sort variables x, y, ..., that are assigned to points, and second sort variables X, Y, ..., that are assigned to open sets. \mathfrak{L}_2 may be defined over the desired signature of relational and functional symbols. But we always have a symbol =, that is interpreted as the equality relation, and a symbol ε , that is interpreted as the set membership relation. \mathfrak{L}_2 has the 'usual' boolean connectives, and quantifiers $\forall x, \exists x$ for first sort variables and quantifiers $\forall X,$ $\exists X$ for second sort variables with the 'usual' meaning. As we would like to characterize (a fragment of) \mathfrak{L}_2 in modal terms, we restrict the signature of \mathfrak{L}_2 to a countable set \mathfrak{Prop} of unary relation symbols.

If we add some restrictions to \mathfrak{L}_2 , we obtain the first order language \mathfrak{L}_t of [3, Part 1 §2]. \mathfrak{L}_t is just as \mathfrak{L}_2 apart from the definition of second sort quantification. For \mathfrak{L}_t , second sort quantification is defined by:

- If φ is positive¹ in $X, \forall X(x \in X \to \varphi)$ is a formula of \mathfrak{L}_t ;
- If φ is negative in X, $\exists X(x \in X \land \varphi)$ is a formula of \mathfrak{L}_t .

The language \mathfrak{L}_t , unlike \mathfrak{L}_2 , interpreted over topological spaces enjoys 'important' properties 'characterizing' first order logic²: compactness and Löwenheim-Skolem Theorem [3, Part 1 §2, 3]. In fact, there is no language for describing topological spaces that is more expressive than \mathfrak{L}_t and enjoys compactness and Löwenheim Skolem Theorem [3, Part 1 §8].

Moreover \mathfrak{L}_t can express 'non-trivial' topological properties: e.g. (among others) T_0 , T_1 , T_2 and T_3 axioms, triviality, discreteness, etc. (However \mathfrak{L}_t cannot express normality, connectedness and compactness.) (See [3, Part 1 §3].)

Furthermore the \mathfrak{L}_t theory of all T_3 topological spaces is decidable. (However, for i = 0, 1, 2, the \mathfrak{L}_t theory of all T_i topological spaces is undecidable, even without unary relations.) (See [3, Part 2 §1].)

Finally, \mathfrak{L}_t is equivalent over topological spaces to the base-invariant fragment of \mathfrak{L}_2 [3, Part 1, Theorem 4.19], where 'base-invariance' is defined as follows. Call a *basoid model* every structure (A, \mathfrak{B}) where A is a set and \mathfrak{B} is a base for a

¹ An \mathfrak{L}_2 formula is *positive* (*negative*) in a second sort variable X provided all free occurrences of X are under an even (odd) number of negation signs.

² Recall that, according to the Lindström Theorem, first order logic is (roughly) 'the strongest logic (satisfying certain conditions) that enjoys compactness and satisfies the Löwenheim-Skolem Theorem'.

topology over A. Let \mathfrak{B} denote the topology generated by \mathfrak{B} . Let us interpret \mathfrak{L}_2 over basoid models by interpreting second sort variables as elements of \mathfrak{B} . A formula $\varphi(x_1, ..., x_n, X_1, ..., X_m)$ of \mathfrak{L}_2 is said *base-invariant* provided for every basoid model $(A, \mathfrak{B}), a_1, ..., a_n \in A$ and $O_1, ..., O_m \in \mathfrak{B}$,

$$(A,\mathfrak{B})\models\varphi[a_1,...,a_n,O_1,...,O_m] \text{ iff } (A,\mathfrak{B})\models\varphi[a_1,...,a_n,O_1,...,O_m].$$
(1)

Languages to talk about topological spaces have been defined in modal terms as well. They have a long history (see e.g. the seminal [5]) and there is ongoing interest in the field - e.g. (among others) [2]. The main idea is to associate propositional variables to points of a topological space and give a topologically flavored semantics to modal operators.

We consider the derivative operator $\langle d \rangle$: $\langle d \rangle \varphi$ holds at a point *a* provided for all opens *O* containing *a* there is a point $a' \in O \setminus \{a\}$ where φ holds. Together with $\langle d \rangle$, we consider the graded modalities \Diamond^n (for all $n \in \omega$): \Diamond^n holds at a point *a* provided there are (at least) *n* different points at which φ holds. Let $\mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$ denote the modal language in the signature $\{\langle d \rangle, \Diamond^n \mid n \in \omega\}$. We prove that over the class of all T_3 topological spaces \mathfrak{L}_t and $\mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$ are equivalent:

Theorem 1. The following facts hold:

- 1. For all sentences φ of \mathfrak{L}_t there is a sentence³ $\alpha \in \mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$ such that φ and α are equivalent over T_3 models⁴ i.e. for all T_3 models \mathfrak{A} we have that $\mathfrak{A} \models \varphi$ if and only if $\mathfrak{A} \models \alpha$.
- 2. For all sentences $\alpha \in \mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$ there is a sentence $\varphi \in \mathfrak{L}_t$ such that α and φ are equivalent over T_3 models.
- 3. For all formulas $\varphi(x) \in \mathfrak{L}_t$ there is a formula $\alpha \in \mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$ such that $\varphi(x)$ and α are equivalent over T_3 models i.e. for all T_3 models \mathfrak{A} and points $a \in \mathfrak{A}$ we have that $\mathfrak{A} \models \varphi[a]$ if and only if $\mathfrak{A}, a \models \alpha$.
- 4. For all formulas $\alpha \in \mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$ there is a formula $\varphi(x) \in \mathfrak{L}_t$ such that α and φ are equivalent over T_3 models.

Moreover, there is a computable procedure that translates formulas into equivalent formulas between \mathfrak{L}_t and $\mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$.

We prove this result by using a game \dot{a} la Ehrenfeucht-Fraissé.

There are at least two interpretations of this result that are worth mentioning. We can read this result as a van Benthem characterization theorem⁵: over T_3

³ Call a sentence of $\mathfrak{L}_{\langle d \rangle \Diamond \omega}$ every formula of $\mathfrak{L}_{\langle d \rangle \Diamond \omega}$ of the form $\Diamond^n \psi$ of $\neg \Diamond^n \psi$ $(n \in \omega)$. Note that the truth of sentences of $\mathfrak{L}_{\langle d \rangle \Diamond \omega}$ does not depend on the point at which they are evaluated.

⁴ Call a T_3 model every tuple $\mathfrak{A} = (A, \sigma, \{p^{\mathfrak{A}}\}_{p \in \mathfrak{Prop}})$ where (A, σ) is a T_3 topological space and $\{p^{\mathfrak{A}}\}_{p \in \mathfrak{Prop}}$ is the interpretation in \mathfrak{A} of the unary relation symbols in \mathfrak{Prop} .

⁵ Recall that the van Benthem characterization theorem states (roughly) that basic modal logic is equivalent to the bisimulation invariant fragment of first order logic [1].

topological spaces $\mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$ is the base invariant fragment of \mathfrak{L}_2 . We can read this result also as a Kamp theorem⁶: over T_3 topological spaces, $\mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$ 'captures' \mathfrak{L}_t .

This result opens a number of problems: e.g. (among others) since the \mathfrak{L}_t theory of all T_3 topological spaces is decidable, we have that the $\mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$ theory of all T_3 topological spaces is decidable as well, but what is its complexity? Is there some 'nice' axiomatization of the $\mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$ theory of all T_3 topological spaces (note that this would axiomatize the \mathfrak{L}_t theory of all T_3 topological spaces as well). What is the complexity of translating between \mathfrak{L}_t and $\mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$? What happens if we replace T_3 -ness with other conditions? As a first partial answer we prove that:

Theorem 2. Over every class of topological spaces including all T_2 topological spaces, we have that \mathfrak{L}_t and $\mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$ are not equivalent.

The proof uses classical (topo-)bisimulation arguments to show that, unlike in \mathfrak{L}_t , T₃-ness is no expressible in $\mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$. This leads to the following question: what about increasing the expressive power of $\mathfrak{L}_{\langle d \rangle \Diamond^{\omega}}$ to 'capture' \mathfrak{L}_t over classes including all T_2 topological spaces?

Acknowledgments The author thanks Ian Hodkinson for several useful discussions.

References

- 1. van Benthem, J. Modal Correspondence Theory. PhD Thesis, Mathematisch Instituut & Instituut voor Grondslagenonderzoek, University of Amsterdam, 1976.
- van Benthem, J., Bezhanishvili, G.: Modal Logic of Space. In: Handbook of Spatial Logic. Aiello, M., Pratt-Hartmann, I. E., van Benthem, J. (eds.), 217-298, Springer, 2007.
- Flum, J., Ziegler, M.: Topological Model Theory (Lecture Notes in Mathematics). Dold, A., Eckmann, B. (eds.), Springer-Verlag, 1980.
- Kamp, H.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, 1968.
- 5. McKinsey, J., Tarski, A.: The algebra of topology. Ann. Math. 45(1), 141-191, 1944.

⁶ Recall that the Kamp theorem states (roughly) that, over the naturals or the reals, the linear temporal logic with 'until' and 'since' is equivalent to first order logic [4].