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If ` is a (finitary, structural, single-conclusion) consequence relation (in a
given propositional language), by Th(`) we denote the set of the theorems of
`. Recall that a consequence relation ` is called structurally complete (SC
for short), if ` ⊂ `′ yields Th(`) ⊂ Th(`′) for any consequence relation `′
extending `. And ` is hereditarily structurally complete (HSC for short) if
` and all its extensions are SC . For every consequence relation ` there is the
greatest consequence relation `◦ that has the same set of theorems as `. Clearly,
`◦ is SC , and we call this consequence relation a structural completion of `.
If L is a logic (understood as a set of formulas closed under modus ponens and
substitutions), by L◦ we denote a structural completion of L, that is the greatest
consequence relation having L as its set of theorems. For instance, Int◦ is a
consequence relation defined by axiom schemata of intuitionistic propositional
logic, modus ponens and Visser rules (for definitions cf. [6]).

If R is a set of (finitary structural single-conclusion) rules, we say that rules
R are admissible for ` if Th(`) = Th(`R), where `R is the least consequence
relation containing ` and all rules from R.

Proposition 1. Let ` be a consequence relation and R be the set of all rules
admissible for `. Then `◦ is HSC if and only if rules R form a basis of admissible
rules in every extension of ` where these rules are admissible.

Proof (a sketch). Let ` be a consequence relation and R be a set of all rules
admissible for `. Then `◦ = `R. Suppose rules R form a basis of admissible rules
of a consequence relation `0 extending `◦. Since all rules from R are `-derivable
and `0 is an extension of `◦, all rules R are `0-derivable. By assumption, rules
R form a basis of rules admissible for `0. Hence, all admissible for `0 rules are
`0-derivable, that is, `0 is SC .

Conversely, suppose `◦ is HSC consequence relation and R is the set of all
rules admissible for `◦. Let `0 be a consequence relation extending `◦. Then all
rules admissible for `0 are `0-derivable: if there is a rule r admissible for `0 but
not `0-derivable, we would have `0 ⊂ `{r}0 ⊆ `◦0, i.e. `0 would be not SC , and
this would contradict the assumption that `◦ is HSC .

From [6, Theorem 3.9] and Proposition 1 we get the following:

Corollary 1. Int◦ is hereditarily structurally complete. Hence, the following
consequence relations are HSC : KC◦,Mn

◦,BD1
◦,Gk

◦, LC◦,Sm◦,V◦.

Recall from [4] that the set of all HSC intermediate logics forms a countable
principal filter of the lattice of all intermediate logics, and everyHSC intermediate
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logic is finitely axiomatizable. The situation with HSC structural completions
is totally different. In fact, in [8] it was proven that there is continuum many
intermediate logics admitting Visser rules. Hence, the following holds.

Theorem 1. (a) There is continuum many intermediate logics having HSC structural
completion

(b) There are not finitely axiomatizable intermediate logics having HSC structural
completion

(c) There are not finitely approximated HSC consequence relations
(d) The class of all HSC consequence relations has no least element, thus, this

class does not form a lattice (or even a lower semilattice).

For algebraizable (in sense of [1]) logics, every consequence relation ` has a
corresponding quasivariety Q`, and ` is SC if and only if Q` is generated by its
free algebra Fω(Q`) of a countable rank (see e.g. [7, 2]). If Q is a quasivariety,
by Q◦ we denote the least quasivariety generating the same variety as Q.

If A is an algebra, byQ(A) we denote a quasivariety generated by A. IfQ is a
quasivariety and θ is a congruence of algebra A, we say that θ is a Q-congruence
if A/θ ∈ Q.

A quasivariety Q is said to be primitive if every subquasivariety of Q is
structurally complete (see [7, 2]).

Given a quasivariety Q, an algebra A is called weakly Q-projective if A
is embedded in its every homomorphic preimage from Q; and A is called Q-
irreducible if the meet of all properQ-congruences of A is a properQ-congruence.

Recall from [5] that a locally finite quasivariety Q is primitive if and only if
all its finitely generated Q-irreducible algebras are weakly Q-projective.

Denote by Zk a k-element single-generated Heyting algebra, and by Z - the
infinite single-generated algebra – the Rieger-Nishimura ladder. Let Hn denotes
a variety of all Heyting algebras of height n. If A,B are Heyting algebras, by
A ⊕ B we denote a concatenation of A and B, that is, A ⊕ B is the algebra
obtained by putting B on top of A and identifying the greatest element of A
with the least element of B.

The Proposition below follows from [3] and [6, Theorem 5.4].

Proposition 2. (a) Every finitely generated weakly H◦n-projective algebra is of
shape A⊕B, where A⊕ Z2 is a projective Heyting algebra.

(b) a finitely generated s.i. algebra is weakly H◦n-projective if and only if it is a
projective Heyting algebra;

(c) finitely generated not s.i. algebras of the height less than n are not weakly
H◦n-projective.

From the above proposition we obtain the following theorem.

Theorem 2. (a) Q(Z) is primitive;
(b) Q(Z2k+1) is primitive if and only if k ∈ {1, 2, 4};
(c) Q(Z2k) is primitive if and only if k < 8.
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Z2 ⊕ Z7 Z2 ⊕ Z10 Z2 ⊕ Z12 Z16

Fig.1

Indeed, if k /∈ {1, 2, 4}, algebra Z2k+1 is free in Qk := Q(Z2k+1). Observe that
for all k /∈ {1, 2, 4} algebra Z2 ⊕ Z7 (see Fig.1) is embedded into Z2k+1, hence
Z2 ⊕ Z7 ∈ Qk. Algebra Z2 ⊕ Z10 ∈ Qk, for Z2 ⊕ Z10 is a subdirect product of
algebras Z⊕Z7 and Z2 ⊕ Z5, and the latter algebra is embedded into Z2k+1. But
algebra Z2 ⊕ Z7 is not weakly Qk-projective: algebra Z2 ⊕ Z7 is a homomorphic
image of Z2 ⊕ Z10, but Z2 ⊕ Z7 is not embedded into Z2 ⊕ Z10.

If k ≥ 8, the quasivariety Qk := Q(Z2k) is not primitive for the following
reason (we consider case k = 8): algebra Z16 is free in Q8, algebras Z2 ⊕ Z10

and Z2 ⊕ Z12 are embedded in Z16 and, hence, Z2 ⊕ Z10,Z2 ⊕ Z12 ∈ Q8; algebra
Z2 ⊕ Z10 is Q8-irreducible, but not weakly Q8-projective (algebra Z2 ⊕ Z10 is a
homomorphic image of Z2 ⊕ Z12, but not embedded into the latter).

Recall that Z4n is a single-generated free algebra of Hn. Since Q(Z4n) is not
primitive for all n ≥ 4, we can conclude the following.

Corollary 2. For every n ≥ 4 the quasivariety H◦n is not primitive. In other
words, the structural completions of logics BDn are not HSC for all n ≥ 4.
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