Hereditary Structural Completeness in Intermediate Logics

Alex Citkin

Metropolitan Telecommunications, New York, NY USA

If \vdash is a (finitary, structural, single-conclusion) consequence relation (in a given propositional language), by $\mathsf{Th}(\vdash)$ we denote the set of the theorems of \vdash . Recall that a consequence relation \vdash is called *structurally complete* (\mathcal{SC} for short), if $\vdash \subset \vdash'$ yields $\mathsf{Th}(\vdash) \subset \mathsf{Th}(\vdash')$ for any consequence relation \vdash' extending \vdash . And \vdash is *hereditarily structurally complete* (\mathcal{HSC} for short) if \vdash and all its extensions are \mathcal{SC} . For every consequence relation \vdash there is the greatest consequence relation \vdash° that has the same set of theorems as \vdash . Clearly, \vdash° is \mathcal{SC} , and we call this consequence relation a *structural completion of* \vdash . If L is a logic (understood as a set of formulas closed under modus ponens and substitutions), by L° we denote a structural completion of L , that is the greatest consequence relation having L as its set of theorems. For instance, Int° is a consequence relation defined by axiom schemata of intuitionistic propositional logic, modus ponens and Visser rules (for definitions cf. [6]).

If R is a set of (finitary structural single-conclusion) rules, we say that rules R are *admissible* for \vdash if $\mathsf{Th}(\vdash) = \mathsf{Th}(\vdash^{\mathsf{R}})$, where \vdash^{R} is the least consequence relation containing \vdash and all rules from R.

Proposition 1. Let \vdash be a consequence relation and R be the set of all rules admissible for \vdash . Then \vdash° is \mathcal{HSC} if and only if rules R form a basis of admissible rules in every extension of \vdash where these rules are admissible.

Proof (a sketch). Let ⊢ be a consequence relation and R be a set of all rules admissible for ⊢. Then ⊢° = ⊢^R. Suppose rules R form a basis of admissible rules of a consequence relation ⊢₀ extending ⊢°. Since all rules from R are ⊢-derivable and ⊢₀ is an extension of ⊢°, all rules R are ⊢₀-derivable. By assumption, rules R form a basis of rules admissible for ⊢₀. Hence, all admissible for ⊢₀ rules are ⊢₀-derivable, that is, ⊢₀ is *SC*.

Conversely, suppose \vdash° is \mathcal{HSC} consequence relation and R is the set of all rules admissible for \vdash° . Let \vdash_{0} be a consequence relation extending \vdash° . Then all rules admissible for \vdash_{0} are \vdash_{0} -derivable: if there is a rule r admissible for \vdash_{0} but not \vdash_{0} -derivable, we would have $\vdash_{0} \subset \vdash_{0}^{\{r\}} \subseteq \vdash^{\circ}_{0}$, i.e. \vdash_{0} would be not \mathcal{SC} , and this would contradict the assumption that \vdash° is \mathcal{HSC} .

From [6, Theorem 3.9] and Proposition 1 we get the following:

Corollary 1. Int[°] is hereditarily structurally complete. Hence, the following consequence relations are \mathcal{HSC} : KC° , M_n° , BD_1° , G_k° , LC° , Sm° , V° .

Recall from [4] that the set of all \mathcal{HSC} intermediate logics forms a countable principal filter of the lattice of all intermediate logics, and every \mathcal{HSC} intermediate

2 A. Citkin

logic is finitely axiomatizable. The situation with \mathcal{HSC} structural completions is totally different. In fact, in [8] it was proven that there is continuum many intermediate logics admitting Visser rules. Hence, the following holds.

Theorem 1. (a) There is continuum many intermediate logics having HSC structural completion

- (b) There are not finitely axiomatizable intermediate logics having HSC structural completion
- (c) There are not finitely approximated \mathcal{HSC} consequence relations
- (d) The class of all HSC consequence relations has no least element, thus, this class does not form a lattice (or even a lower semilattice).

For algebraizable (in sense of [1]) logics, every consequence relation \vdash has a corresponding quasivariety \mathcal{Q}_{\vdash} , and \vdash is \mathcal{SC} if and only if \mathcal{Q}_{\vdash} is generated by its free algebra $\mathbf{F}_{\omega}(\mathcal{Q}_{\vdash})$ of a countable rank (see e.g. [7,2]). If \mathcal{Q} is a quasivariety, by \mathcal{Q}° we denote the least quasivariety generating the same variety as \mathcal{Q} .

If **A** is an algebra, by $\mathcal{Q}(\mathbf{A})$ we denote a quasivariety generated by **A**. If \mathcal{Q} is a quasivariety and θ is a congruence of algebra **A**, we say that θ is a \mathcal{Q} -congruence if $\mathbf{A}/\theta \in \mathcal{Q}$.

A quasivariety Q is said to be *primitive* if every subquasivariety of Q is structurally complete (see [7, 2]).

Given a quasivariety Q, an algebra **A** is called *weakly* Q-projective if **A** is embedded in its every homomorphic preimage from Q; and **A** is called Q-irreducible if the meet of all proper Q-congruences of **A** is a proper Q-congruence.

Recall from [5] that a locally finite quasivariety Q is primitive if and only if all its finitely generated Q-irreducible algebras are weakly Q-projective.

Denote by Z_k a k-element single-generated Heyting algebra, and by Z - the infinite single-generated algebra – the Rieger-Nishimura ladder. Let \mathcal{H}_n denotes a variety of all Heyting algebras of height n. If \mathbf{A}, \mathbf{B} are Heyting algebras, by $\mathbf{A} \oplus \mathbf{B}$ we denote a concatenation of \mathbf{A} and \mathbf{B} , that is, $\mathbf{A} \oplus \mathbf{B}$ is the algebra obtained by putting \mathbf{B} on top of \mathbf{A} and identifying the greatest element of \mathbf{A} with the least element of \mathbf{B} .

The Proposition below follows from [3] and [6, Theorem 5.4].

Proposition 2. (a) Every finitely generated weakly \mathcal{H}_n° -projective algebra is of shape $\mathbf{A} \oplus \mathbf{B}$, where $\mathbf{A} \oplus \mathsf{Z}_2$ is a projective Heyting algebra.

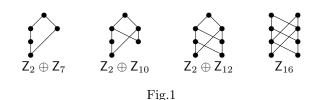
- (b) a finitely generated s.i. algebra is weakly H^o_n-projective if and only if it is a projective Heyting algebra;
- (c) finitely generated not s.i. algebras of the height less than n are not weakly \mathcal{H}_n° -projective.

From the above proposition we obtain the following theorem.

Theorem 2. (a) Q(Z) is primitive;

(b) $\mathcal{Q}(\mathsf{Z}_{2k+1})$ is primitive if and only if $k \in \{1, 2, 4\}$;

(c) $\mathcal{Q}(\mathsf{Z}_{2k})$ is primitive if and only if k < 8.



Indeed, if $k \notin \{1, 2, 4\}$, algebra Z_{2k+1} is free in $\mathcal{Q}_k := \mathcal{Q}(Z_{2k+1})$. Observe that for all $k \notin \{1, 2, 4\}$ algebra $Z_2 \oplus Z_7$ (see Fig.1) is embedded into Z_{2k+1} , hence $Z_2 \oplus Z_7 \in \mathcal{Q}_k$. Algebra $Z_2 \oplus Z_{10} \in \mathcal{Q}_k$, for $Z_2 \oplus Z_{10}$ is a subdirect product of algebras $Z_{\oplus}Z_7$ and $Z_2 \oplus Z_5$, and the latter algebra is embedded into Z_{2k+1} . But algebra $Z_2 \oplus Z_7$ is not weakly \mathcal{Q}_k -projective: algebra $Z_2 \oplus Z_7$ is a homomorphic image of $Z_2 \oplus Z_{10}$, but $Z_2 \oplus Z_7$ is not embedded into $Z_2 \oplus Z_{10}$.

If $k \geq 8$, the quasivariety $\mathcal{Q}_k := \mathcal{Q}(\mathsf{Z}_{2k})$ is not primitive for the following reason (we consider case k = 8): algebra Z_{16} is free in \mathcal{Q}_8 , algebras $\mathsf{Z}_2 \oplus \mathsf{Z}_{10}$ and $\mathsf{Z}_2 \oplus \mathsf{Z}_{12}$ are embedded in Z_{16} and, hence, $\mathsf{Z}_2 \oplus \mathsf{Z}_{10}, \mathsf{Z}_2 \oplus \mathsf{Z}_{12} \in \mathcal{Q}_8$; algebra $\mathsf{Z}_2 \oplus \mathsf{Z}_{10}$ is \mathcal{Q}_8 -irreducible, but not weakly \mathcal{Q}_8 -projective (algebra $\mathsf{Z}_2 \oplus \mathsf{Z}_{10}$ is a homomorphic image of $\mathsf{Z}_2 \oplus \mathsf{Z}_{12}$, but not embedded into the latter).

Recall that Z_{4n} is a single-generated free algebra of \mathcal{H}_n . Since $\mathcal{Q}(Z_{4n})$ is not primitive for all $n \geq 4$, we can conclude the following.

Corollary 2. For every $n \ge 4$ the quasivariety \mathcal{H}_n° is not primitive. In other words, the structural completions of logics BD_n are not \mathcal{HSC} for all $n \ge 4$.

References

- BLOK, W. J., AND PIGOZZI, D. Algebraizable logics. *Mem. Amer. Math. Soc.* 77, 396 (1989), vi+78.
- CINTULA, P., AND METCALFE, G. Structural completeness in fuzzy logics. Notre Dame J. Form. Log. 50, 2 (2009), 153–182.
- CITKIN, A. On admissible rules of intuitionistic propositional logic. Math. USSR, Sb. 31 (1977), 279–288. (A. Tsitkin).
- CITKIN, A. I. Structurally complete superintuitionistic logics. Dokl. Akad. Nauk SSSR 241, 1 (1978), 40–43.
- GORBUNOV, V. A. Lattices of quasivarieties. Algebra i Logika 15, 4 (1976), 436–457, 487–488.
- IEMHOFF, R. Intermediate logics and Visser's rules. Notre Dame J. Formal Logic 46, 1 (2005), 65–81.
- OLSON, J. S., RAFTERY, J. G., AND VAN ALTEN, C. J. Structural completeness in substructural logics. Log. J. IGPL 16, 5 (2008), 455–495.
- RYBAKOV, V. V. Intermediate logics preserving admissible inference rules of Heyting calculus. Math. Logic Quart. 39, 3 (1993), 403–415.