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A strict implication is an implication which is interpreted as the combination of
material implication and a kind of necessity. Using modal logic, a strict impaction ¢ —
1 can be translated as (J(¢ D ) where D is the material implication in classical
propositional logic. The strict implication language Lg consists of a denumerable set
V of propositional variables, connectives A,V,— and constants L. The set Lg of all
formulas is defined inductively by the following rule:

Ls3¢u=plL](oNd)[(oV)]|(d— ),

A sequent is an expression of the form I' - ¢ where I is a finite multiset of formu-
las. The strict implication fragment of modal logics are studied in [9, 5, 8,4, 7, 3]. Here
we concentrate on weak strict implication logics in [3] which axiomatize logical conse-
quences over classes of frames. The minimal weak strict implication logic wK,, consists
of the following axioms and rules:
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Weak Heyting algebras are algebras for wK,, which is the strict implication fragment of
the minimal normal modal logic K. These algebras are studied in [6]. A weak Heyting
algebra (WHA) is an algebra (A, A,V, L, T, —) where (A, A,V, L, T) is a bounded
distributive lattice and — is a binary operation on A satisfying the following conditions
forall a,b,c € A:

ChH(a—=bA(a—c)=a— (bAc),
C(a—=c)A(b—=c)=(aVd) —c,
CHa—a=T,
CHa@a—=bADb—=c)<(a—0),

where < is the lattice order.

In this paper, we will consider those Lambek calculi into which strict implication
logics can be conservatively extended. The idea behind this work is that strict implica-
tion algebras can be viewed as reducts of residuated groupoids. Residuated groupoids
are algebras for Lambek calculi. For those Lambek calculi, we can construct Gentzen-
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style sequent calculi. By cut elimination and the subformula property for those sequent
calculi, we can obtain natural sequent calculi for weak strict implication logics.

A bounded distributive lattice-ordered residuated groupoid (BDRG) is an algebra
(A, ANV, T, L, —, -, ) where (A,A,V, T, L) is a bounded distributive lattice and
-, —, < are binary operations on A satisfying the following residuation condition for
all a,b,c € A: RES)a-b < ciff b < a — ciff a < ¢ < b. For sequent calculus
DFNL™ for BDRGs, see e.g. [1].

Lemma 1. Let (A,A,V, T, L, —, - <) be a BDRG. Then its (\,V, T, L, —)-reduct
is a WHA iff the following conditions holds for all a,b,c € A, (w*) a-b < a, and (ct*)
a-b<(a-b)-b

A residuated weak Heyting algebra is a BDRG satisfying the conditions (w*) and
(ct*). Let RWH be the class of all such algebras. A class of algebras is canonical if it is
closed under canonical extensions (see e.g. [10]). We can prove that WH is canonical.
In the canonical extension of a WHA, we define a product - and < to get a RWHA.

Theorem 1. For every Lg-sequent I' = ¢, I' Fyk,, ¢ iff RWH = I'F ¢.

For introducing Gentzen-style sequent calculus for RWH, we allow two structure
operators ® and ® for A and - respectively. The sequent calculus Grwy consists of the
following axioms and rules:
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In the rule (VR), ¢ is equal to 1 or 2.

Theorem 2. The following mix rule

Ao Ig]...[o] 9

(M) =T AT o

is admissible in Grwy. Moreover, Grwy has the subformula property.

The approach can be extended to cover many extensions of wK,,. Firstly, by ap-
plying the algorithm ALBA [2], one can define inductive sequents in the language Lg
which have first-order correspondents and are canonical.

Consider the set of sequents £* = {¢ F ¢ | ¢, are terms built from T, L and
propositional variables using only -}. Given a sequent (o) x F § € L* the propositional
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variables occurred in which are among p1, . . ., p,, the structural rule corresponding to

o is defined as
5[F1/p1,,Fn/pn] = A

X[Fl/p177Fn/pn] = A

where 8[I1/p1,..., 1% /ps) and x[I'1/p1,. .., n/pn] are obtained from ¢ and x by
substituting uniformly I for p;.

(©0)

Theorem 3. Assume that D is a set of inductive sequents in L, and ¥ = {t € L* | s
corresponds to t for some s € ®}. Then the algebraic sequent DFN L+(LT/) is a conser-
vative extension of SgpLi(P), where SgpL is an algebraic sequent system for algebras
obtained from WHA by deleting the conditions (C3) and (C4).

Theorem 4. For any set of sequents ¥ C L°®, the (Mix) rule is admissible in the
Gentzen-style sequent system GpenL+ (OF), where ¥ = {®o | 0 € U}

Theorem 5. For any set of sequents W C L®, (1) I'g__ , (ow) ¢ iffAlg* (@) ETH
&; (2) if every subformula of 6 is a subformula of x for each sequent x & 6 € W, then
GpenL+(®P) has the subformula property.
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