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Abstract. In 1950, B.A. Trakhtenbrot showed that the set of first-order
tautologies associated to finite models is not recursively enumerable.
In 1999, P. Hájek generalized this result to the first-order versions of
 Lukasiewicz, Gödel and Product logics, w.r.t. their standard algebras. In
this talk we extend the analysis to the first-order versions of axiomatic
extensions of MTL. Our main result is the following. Let K be a class
of non-trivial MTL-chains: then the set of all first-order tautologies as-
sociated to the finite models over chains in K, fTAUTK

∀ , is Π0
1 -hard. Let

TAUTK be the set of propositional tautologies of K: if TAUTK is decid-
able, we have that fTAUTK

∀ is in Π0
1 . We have similar results also if we

expand the language with the ∆ operator.

Extended abstract

In [6], B.A. Trakhtenbrot showed that the set of first-order tautologies associ-
ated to finite models is not recursively enumerable, in classical first-order logic.
In particular, it is known that such set is Π0

1 -complete: in [8,2] it is shown that
the theorem works also with languages containing only predicates, with at least
a binary one, and without equality. This result implies the fact that the com-
pleteness w.r.t. finite models does not hold, in first-order logic: indeed, the set
of theorems of classical predicate logic is Σ0

1 -complete.
One can ask if a similar result holds also in non-classical logics, for example

many-valued logics. A first answer was given in [5] by P. Hájek, who general-
ized Trakhtenbrot theorem to the first-order versions of  Lukasiewicz, Gödel and
Product logics, with respect to their standard algebras.

In this talk we outline the results of [1], where a generalized version of Trakht-
enbrot theorem is presented, for the (first-versions) of the axiomatic extensions
of MTL ([4,3]).

The main results that we will discuss are the following ones:

– Let K be a class of non-trivial MTL-chains: then the set of all first-order
tautologies associated to the finite models over chains in K, fTAUTK

∀ , is
Π0

1 -hard. Let now TAUTK be the set of propositional tautologies of K: if



TAUTK is decidable, we have that fTAUTK
∀ is in Π0

1 . As a consequence, if L
is a consistent axiomatic extension of MTL, and K is the class of all L-chains,

then fTAUT(L∀)
def
= fTAUTK

∀ is Π0
1 -hard: moreover, if L is decidable, then

fTAUT(L∀) is Π0
1 -complete.

– By the previous results we have that the decidability of a consistent ax-
iomatic extension L of MTL is a sufficient condition for the Π0

1 -completess
of fTAUT(L∀). Is it also necessary? We will show that the answer is posi-
tive if L is recursively axiomatizable: however, we have negative results if we
expand the language of L with constants, and L is not recursively axiomati-
zable.

– We conclude by showing some negative results about the expansions of MTL
with the ∆ operator, and discussing some open problems.
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