
Generalizing Belnap’s cut-elimination

Giuseppe Greco

Faculty of Technology, Policy and Management, Delft University of Technology, The
Netherlands

Keywords: display calculi, dynamic logics, multi-type proof-systems.

Display calculi. Nuel Belnap introduced the first display calculus, which he calls
Display Logic [3], as a sequent system augmenting and refining Gentzen’s basic
observations on structural rules. Belnap’s refinement is based on the introduction
of a special syntax for the constituents of each sequent. Indeed, his calculus treats
sequents X ` Y where X and Y are so-called structures, i.e. syntactic objects
inductively defined from formulas using an array of special connectives. Belnap’s
basic idea is that, in the standard Gentzen formulation, the comma symbol ‘,’
separating formulas in the precedent and in the succedent of sequents can be
recognized as a metalinguistic connective, of which the structural rules define
the behaviour.
Belnap took this idea further by admitting not only the comma, but also sev-
eral other connectives to keep formulas together in a structure, and called them
structural connectives. Just like the comma in standard Gentzen sequents is in-
terpreted contextually (that is, as conjunction when occurring on the left-hand
side and as disjunction when occurring on the right-hand side), each structural
connective typically corresponds to a pair of logical connectives, and is inter-
preted as one or the other of them contextually. Structural connectives maintain
relations with one another, the most fundamental of which take the form of ad-
junctions and residuations. These relations make it possible for the calculus to
enjoy the powerful property which gives it its name, namely, the display property.

Belnap’s cut elimination metatheorem. In [3], a meta-theorem is proven, which
gives a set of sufficient conditions in order for a sequent calculus to enjoy cut-
elimination and subformula property. This meta-theorem captures the essentials
of the Gentzen-style cut-elimination procedure, and is the main technical mo-
tivation for the design of Display Logic. The sufficient conditions in Belnap’s
meta-theorem are relatively easy to check, since most of them are verified by
inspection on the shape of the rules. When Belnap’s metatheorem can be ap-
plied, it provides a much smoother and more modular route to cut-elimination
than the Gentzen-style proofs. Moreover, cut-elimination Belnap-style has the
important advantage of being preserved under the addition of structural rules
and introduction rules for new logical connectives,1 whereas a Gentzen-style cut-
elimination proof for the modified system cannot be deduced from the old one,
but must be proved from scratch.

1 Provided the rules in question verify certain conditions which we do not discuss here.



In a slogan, we could say that Belnap-style cut-elimination is to ordinary cut-
elimination what canonicity is to completeness: indeed, canonicity provides a
uniform strategy to achieve completeness. In the same way, the conditions re-
quired by Belnap’s meta-theorem ensure that one and the same given set of
transformation steps is enough to achieve cut elimination for any system satis-
fying them.2 Various refinements and extensions of the original notion of display
calculi exist in the literature, e.g. the proper display calculi in [16, Section 4.2]
for the former, and [4] for the latter.

Contribution. The proposed contribution aims at reporting on the recent ad-
vances of a line of research [6–12] aimed at ‘displaying dynamic logics’. Pre-
liminary results of this line of research have been disseminated in the previ-
ous installment of TACL. The new advancements make it possible to overcome
the hurdles specific to the settings of Baltag-Moss-Solecki’s Dynamic Epistemic
Logic (DEL) [1], Propositional Dynamic Logic (PDL) [14], and monotone modal
logic [5, 13].

Methodology. The solutions to the specific technical difficulties of each logi-
cal system mentioned above require generalising Belnap’s meta-theorem along
different dimensions. Specifically, key to displaying DEL and PDL is the intro-
duction of a multi-type environment for display calculi. This environment makes
it possible to treat the parameters (actions, agents) of the modal connectives as
terms in their own right. The difficulties in the treatment of the preconditions
to the applicability of certain rules are dealt with by a suitable expansion of the
language. Moreover, the display property is guaranteed by the introduction of
certain structural connectives, referred to as virtual adjoints in [7], since they do
not have any semantic interpretation. The price to pay to this language expan-
sion is that one must prove separately that the resulting calculus is a conservative
extension of the original logic. This was achieved in the case of the typed cal-
culus for DEL with a relatively concise and smooth proof. The analogous proof
for PDL is still an open problem.
The specific difficulty posed by monotone modal logic is the fact that its axioma-
tisation excludes the existence of the adjoints of the modal connectives. Rather
than via virtual adjoints, the solution to this problem has been given in terms
of a generalisation of Belnap’s meta-theorem for calculi which do not enjoy the
display property. Specifically, instead of it, the calculi are required to satisfy (a
slight relaxation of) Sambin-Battilotti-Faggian’s visibility property [2].
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