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In [10] Wajsberg proved that the modal logic S5 axiomatizes the one-variable
fragment (which we will call the monadic fragment) of classical predicate logic
(QCPC). Prior [8] introduced an intuitionistic analog of S5, known as MIPC, and
Bull [4] proved that MIPC axiomatizes the monadic fragment of intuitionistic
predicate logic (QIPC). A more transparent proof was later given by Ono and
Suzuki [7] using a modification of the famous Henkin construction. The lattice
of extensions of MIPC was studied in [1–3] and the correspondence between
extensions of MIPC and extensions of QIPC in [7, 9]. Our goal is to generalize
these results to the modal setting.

Let QLM be the modal predicate language, and let QK be the least set of
formulas of QLM containing all theorems of QCPC, the axiom �(ϕ → ψ) →
(�ϕ→ �ψ), and closed under uniform substitution, modus ponens, generaliza-
tion ( ϕ

∀xϕ ), and �-necessitation ( ϕ
�ϕ ). We define a modal predicate logic to be

an extension M of QK closed under these rules. Let BM denote the extension of
a modal predicate logic M by the Barcan formula ∀x�ϕ→ �∀xϕ.

Let LM be the propositional modal language and let LMM be the enrichment
of LM by the monadic operator ∀. Let mK be the least set of formulas of LMM

containing all axioms of the normal modal logic K for �, the S5 axioms for ∀,
the bridge axiom �∀ϕ → ∀�ϕ, and closed under substitution, modus ponens,
�-necessitation, and ∀-necessitation ( ϕ

∀ϕ ). We define a monadic modal logic (mm-
logic) to be an extension L of mK closed under these rules. Let bL denote the
extension of a mm-logic L by the Barcan formula ∀�ϕ→ ∀�ϕ.

We define a translation T from Form(LMM ) to Form(QLM ) inductively by
first associating to each propositional letter p a unary predicate P (x) and then
setting

T (p) = P (x)
for prop. letters p

, T (ϕ • ψ) = T (ϕ) • T (ψ)
for •=∨,∧

, T (Bϕ) = BT (ϕ)
for B=¬,�

, T (∀ϕ) = ∀xT (ϕ).

For a mm-logic L ⊇ mK, we define Φ(L) = QK + {T (ϕ) : L ` ϕ} to be the
modal predicate logic which extends QK by the translations of all theorems of
L. Similarly, for a modal predicate logic M ⊇ QK, we define Ψ(M) = mK + {ϕ :
M ` T (ϕ)} to be the mm-logic which extends mK by all formulas of LMM whose
translations are theorems of M.

Lemma 1. For L ⊇ mK and M ⊇ QK we have

1. Φ(L) ⊆ M iff L ⊆ Ψ(M).
? This talk constitutes a portion of my PhD thesis, under the direction of Guram
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2. Ψ(Φ(L)) ⊇ L with equality iff L = Ψ(M) for some M.
3. M ⊇ Φ(Ψ(M)) with equality iff M = Φ(L) for some L.

Definition 1. We call L ⊇ mK the monadic fragment of a modal predicate logic
M ⊇ QK if L ` ϕ iff M ` T (ϕ), and denote this relationship by 〈L;M〉.

To determine whether 〈L;M〉 for a pair of logics L ⊇ mK and M ⊇ QK we will
need to develop a correspondence between semantics for mm-logics and modal
predicate logics, which will allow us to prove results concerning extensions of
mK similar to those of Ono and Suzuki [7].

An mK-frame is a Kripke frame F = 〈W,R,E〉 where E is an equivalence
relation and RE(w) ⊆ ER(w) for all w ∈ W . Recall that a predicate Kripke
frame with expanding (constant) domains is a frame F = 〈W,R,D〉 , where
D assigns to each w ∈ W a set Dw of objects, and wRv implies Dw ⊆ Dv

(Dw = Dv) for all w, v ∈ W . Since there’s no readily apparent way to translate
between mK-frames and predicate Kripke frames, we employ a smaller class of
frames arising from product frames.

We recall that a product [6, p. 222] of Kripke frames F1 = 〈W1, R1〉 and
F2 = 〈W2, R2〉 is a frame F1×F2 = 〈W1 ×W2, Rh, Rv〉 where (u1, v1)Rh(u2, v2)
iff u1R1u2 and v1 = v2, and (u1, v1)Rv(u2, v2) iff u1 = u2 and v1R2v2. An mK-
frame 〈W,R,E〉 is an expanding relativized product frame (erp-frame) [6, p. 432]
if F is a subframe of a product frame F1 × F2 and for all (w1, w2) ∈ W and
u ∈W1, if w1Ru then (u,w2) ∈W . We will call F1 and F2 the underlying frames
of F.

We can now easily translate back and forth between erp-frames and predicate
Kripke frames, which provides a basis for our translation theorem. For an erp-
frame F = 〈W,R,E〉 we associate a predicate Kripke frame F† =

〈
W †, R†, D

〉
,

where
〈
W †, R†

〉
= 〈W1, R1〉, and Dw = {v ∈W2 : (w, v) ∈W} for each w ∈W †.

We can then define a truth relation by (F†, w) � pvx iff (F, (w, v)) � p, where ϕv
x

is used to denote the formula obtained from ϕ by replacing every free occurrence
of x by v . Similarly, if we start with a predicate Kripke frame F = 〈W,R,D〉,
we associate an erp-frame F× = 〈W×, R×, E×〉 with underlying frames 〈W,R〉
and 〈V, V × V 〉, where V =

⋃
w∈W Dw and W× = {(u, v) ∈ W × V : v ∈ Du}.

We define a truth relation by (F×, (w, v)) � p iff (F, w) � pvx and arrive at the
following theorem.

Theorem 1. 1. If F is an erp-frame and ϕ ∈ Form(LMM ), then (F, (w, v)) �
ϕ iff (F†, w) � (T (ϕ))vx.

2. If F is a predicate Kripke frame and ϕ ∈ Form(QLM ), then (F, w) � (T (ϕ))vx
iff (F×, (w, v)) � ϕ.

To establish our results we need completeness of some basic monadic modal
systems with respect to either product or erp-frames. Completeness for these
systems is given by the following.

Theorem 2. 1. [6, Thm. 9.10] mK is complete with respect to the class of all
erp-frames, and for L ∈ {K4,S4,S5}, mL is complete with respect to the
class of all erp-frames for which R is transitive (K4)/ a quasi-order (S4)/
an equivalence relation (S5).
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2. [6, Cor. 5.10] bK is complete with respect to the class of all product frames,
and for L ∈ {K4,S4}1, bL is complete with respect to the class of all product
frames for which R is transitive (K4)/ a quasi-order (S4).

It is possible to give a simpler proof of Theorem 2 using a modified Henkin con-
struction, which is more in keeping with Ono and Suzuki’s translation theorem
([7, Theorem 3.5]).We then have the following theorem.

Theorem 3. Let L ⊇ mK be a mm-logic complete with respect to a class {Fi}i∈I
of erp-frames. If M ⊇ QK is complete with respect to {F†i}i∈I , then 〈L;M〉.

As a consequence of Theorems 2 and 3, we obtain:

Corollary 1. For L ∈ {K,K4,S4,S5} we have 〈mL;QL〉 and for L ∈ {K,K4,S4}2
we have 〈bL;BL〉.

The bimodal logic mS4 was first considered by Fischer Servi [5]. She extended
the Gödel translation of IPC to S4 to a translation of formulas ϕ of MIPC to
formulas ϕt of mS4, and proved that MIPC ` ϕ iff mS4 ` ϕt. The proof required
that QS4 ` T (ϕ) when mS4 ` ϕ, but whether or not the other implication holds
was left as an open problem. Corollary 1 gives the other implication, and also
allows for a simplified version of her proof that MIPC ` ϕ iff mS4 ` ϕt.
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1 Note that bS5 = mS5.
2 Note that BS5 = QS5.


