Monadic Fragments of Modal Predicate Logics

Kristina Brantley*

New Mexico State University, Las Cruces, NM, USA kleifest@nmsu.edu

In [10] Wajsberg proved that the modal logic S5 axiomatizes the one-variable fragment (which we will call the *monadic* fragment) of classical predicate logic (QCPC). Prior [8] introduced an intuitionistic analog of S5, known as MIPC, and Bull [4] proved that MIPC axiomatizes the monadic fragment of intuitionistic predicate logic (QIPC). A more transparent proof was later given by Ono and Suzuki [7] using a modification of the famous Henkin construction. The lattice of extensions of MIPC was studied in [1–3] and the correspondence between extensions of MIPC and extensions of QIPC in [7,9]. Our goal is to generalize these results to the modal setting.

Let \mathcal{QL}_M be the modal predicate language, and let QK be the least set of formulas of \mathcal{QL}_M containing all theorems of QCPC, the axiom $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$, and closed under uniform substitution, modus ponens, generalization $(\frac{\varphi}{\forall x\varphi})$, and \Box -necessitation $(\frac{\varphi}{\Box \varphi})$. We define a *modal predicate logic* to be an extension M of QK closed under these rules. Let BM denote the extension of a modal predicate logic M by the Barcan formula $\forall x \Box \varphi \to \Box \forall x\varphi$.

Let \mathcal{L}_M be the propositional modal language and let \mathcal{L}_{MM} be the enrichment of \mathcal{L}_M by the monadic operator \forall . Let mK be the least set of formulas of \mathcal{L}_{MM} containing all axioms of the normal modal logic K for \Box , the S5 axioms for \forall , the bridge axiom $\Box \forall \varphi \rightarrow \forall \Box \varphi$, and closed under substitution, modus ponens, \Box -necessitation, and \forall -necessitation $(\frac{\varphi}{\forall \varphi})$. We define a *monadic modal logic* (*mmlogic*) to be an extension L of mK closed under these rules. Let bL denote the extension of a mm-logic L by the *Barcan formula* $\forall \Box \varphi \rightarrow \forall \Box \varphi$.

We define a translation T from $\mathbf{Form}(\mathcal{L}_{MM})$ to $\mathbf{Form}(Q\mathcal{L}_M)$ inductively by first associating to each propositional letter p a unary predicate P(x) and then setting

$$\begin{array}{ll} T(p) = P(x) \ , & T(\varphi \bullet \psi) = T(\varphi) \bullet T(\psi), \quad T(\ast \varphi) = \ast T(\varphi), \quad T(\forall \varphi) = \forall x T(\varphi), \\ \text{for prop. letters } p & \text{for } \bullet = \lor, \land & \text{for } \ast = \neg, \Box \end{array}$$

For a mm-logic $L \supseteq mK$, we define $\Phi(L) = QK + \{T(\varphi) : L \vdash \varphi\}$ to be the modal predicate logic which extends QK by the translations of all theorems of L. Similarly, for a modal predicate logic $M \supseteq QK$, we define $\Psi(M) = mK + \{\varphi : M \vdash T(\varphi)\}$ to be the mm-logic which extends mK by all formulas of \mathcal{L}_{MM} whose translations are theorems of M.

Lemma 1. For $L \supseteq mK$ and $M \supseteq QK$ we have

1. $\Phi(L) \subseteq M$ iff $L \subseteq \Psi(M)$.

 $^{^{\}star}$ This talk constitutes a portion of my PhD thesis, under the direction of Guram Bezhanishvili.

2 Kristina Brantley

2. $\Psi(\Phi(\mathsf{L})) \supseteq \mathsf{L}$ with equality iff $\mathsf{L} = \Psi(\mathsf{M})$ for some M .

3. $\mathsf{M} \supseteq \Phi(\Psi(\mathsf{M}))$ with equality iff $\mathsf{M} = \Phi(\mathsf{L})$ for some L .

Definition 1. We call $L \supseteq mK$ the monadic fragment of a modal predicate logic $M \supseteq QK$ if $L \vdash \varphi$ iff $M \vdash T(\varphi)$, and denote this relationship by $\langle L; M \rangle$.

To determine whether $\langle L; M \rangle$ for a pair of logics $L \supseteq mK$ and $M \supseteq QK$ we will need to develop a correspondence between semantics for mm-logics and modal predicate logics, which will allow us to prove results concerning extensions of mK similar to those of Ono and Suzuki [7].

An mK-frame is a Kripke frame $\mathfrak{F} = \langle W, R, E \rangle$ where E is an equivalence relation and $RE(w) \subseteq ER(w)$ for all $w \in W$. Recall that a predicate Kripke frame with expanding (constant) domains is a frame $\mathfrak{F} = \langle W, R, D \rangle$, where D assigns to each $w \in W$ a set D_w of objects, and wRv implies $D_w \subseteq D_v$ $(D_w = D_v)$ for all $w, v \in W$. Since there's no readily apparent way to translate between mK-frames and predicate Kripke frames, we employ a smaller class of frames arising from product frames.

We recall that a product [6, p. 222] of Kripke frames $\mathfrak{F}_1 = \langle W_1, R_1 \rangle$ and $\mathfrak{F}_2 = \langle W_2, R_2 \rangle$ is a frame $\mathfrak{F}_1 \times \mathfrak{F}_2 = \langle W_1 \times W_2, R_h, R_v \rangle$ where $(u_1, v_1)R_h(u_2, v_2)$ iff $u_1R_1u_2$ and $v_1 = v_2$, and $(u_1, v_1)R_v(u_2, v_2)$ iff $u_1 = u_2$ and $v_1R_2v_2$. An mKframe $\langle W, R, E \rangle$ is an expanding relativized product frame (erp-frame) [6, p. 432] if \mathfrak{F} is a subframe of a product frame $\mathfrak{F}_1 \times \mathfrak{F}_2$ and for all $(w_1, w_2) \in W$ and $u \in W_1$, if w_1Ru then $(u, w_2) \in W$. We will call \mathfrak{F}_1 and \mathfrak{F}_2 the underlying frames of \mathfrak{F} .

We can now easily translate back and forth between erp-frames and predicate Kripke frames, which provides a basis for our translation theorem. For an erp-frame $\mathfrak{F} = \langle W, R, E \rangle$ we associate a predicate Kripke frame $\mathfrak{F}^{\dagger} = \langle W^{\dagger}, R^{\dagger}, D \rangle$, where $\langle W^{\dagger}, R^{\dagger} \rangle = \langle W_1, R_1 \rangle$, and $D_w = \{v \in W_2 : (w, v) \in W\}$ for each $w \in W^{\dagger}$. We can then define a truth relation by $(\mathfrak{F}^{\dagger}, w) \models p_x^v$ iff $(\mathfrak{F}, (w, v)) \models p$, where φ_x^v is used to denote the formula obtained from φ by replacing every free occurrence of x by v. Similarly, if we start with a predicate Kripke frame $\mathfrak{F} = \langle W, R, D \rangle$, we associate an erp-frame $\mathfrak{F}^{\times} = \langle W^{\times}, R^{\times}, E^{\times} \rangle$ with underlying frames $\langle W, R \rangle$ and $\langle V, V \times V \rangle$, where $V = \bigcup_{w \in W} D_w$ and $W^{\times} = \{(u, v) \in W \times V : v \in D_u\}$. We define a truth relation by $(\mathfrak{F}^{\times}, (w, v)) \models p$ iff $(\mathfrak{F}, w) \models p_x^v$ and arrive at the following theorem.

Theorem 1. 1. If \mathfrak{F} is an erp-frame and $\varphi \in \mathbf{Form}(\mathcal{L}_{MM})$, then $(\mathfrak{F}, (w, v)) \models \varphi$ iff $(\mathfrak{F}^{\dagger}, w) \models (T(\varphi))_x^v$.

2. If \mathfrak{F} is a predicate Kripke frame and $\varphi \in \mathbf{Form}(Q\mathcal{L}_M)$, then $(\mathfrak{F}, w) \models (T(\varphi))_x^v$ iff $(\mathfrak{F}^{\times}, (w, v)) \models \varphi$.

To establish our results we need completeness of some basic monadic modal systems with respect to either product or erp-frames. Completeness for these systems is given by the following.

Theorem 2. 1. [6, Thm. 9.10] mK is complete with respect to the class of all erp-frames, and for $L \in \{K4, S4, S5\}$, mL is complete with respect to the class of all erp-frames for which R is transitive (K4)/ a quasi-order (S4)/ an equivalence relation (S5).

 [6, Cor. 5.10] bK is complete with respect to the class of all product frames, and for L ∈ {K4, S4}¹, bL is complete with respect to the class of all product frames for which R is transitive (K4)/ a quasi-order (S4).

It is possible to give a simpler proof of Theorem 2 using a modified Henkin construction, which is more in keeping with Ono and Suzuki's translation theorem ([7, Theorem 3.5]). We then have the following theorem.

Theorem 3. Let $L \supseteq \mathsf{mK}$ be a mm-logic complete with respect to a class $\{\mathfrak{F}_i\}_{i \in I}$ of erp-frames. If $\mathsf{M} \supseteq \mathsf{QK}$ is complete with respect to $\{\mathfrak{F}_i^{\dagger}\}_{i \in I}$, then $\langle \mathsf{L}; \mathsf{M} \rangle$.

As a consequence of Theorems 2 and 3, we obtain:

Corollary 1. For $L \in \{K, K4, S4, S5\}$ we have $\langle mL; QL \rangle$ and for $L \in \{K, K4, S4\}^2$ we have $\langle bL; BL \rangle$.

The bimodal logic mS4 was first considered by Fischer Servi [5]. She extended the Gödel translation of IPC to S4 to a translation of formulas φ of MIPC to formulas φ^t of mS4, and proved that MIPC $\vdash \varphi$ iff mS4 $\vdash \varphi^t$. The proof required that QS4 $\vdash T(\varphi)$ when mS4 $\vdash \varphi$, but whether or not the other implication holds was left as an open problem. Corollary 1 gives the other implication, and also allows for a simplified version of her proof that MIPC $\vdash \varphi$ iff mS4 $\vdash \varphi^t$.

References

- G. Bezhanishvili. Varieties of monadic Heyting algebras. I. Studia Logica, 61(3):367–402, 1998.
- G. Bezhanishvili. Varieties of monadic Heyting algebras. II. Duality theory. Studia Logica, 62(1):21–48, 1999.
- G. Bezhanishvili. Varieties of monadic Heyting algebras. III. Studia Logica, 64(2):215–256, 2000.
- R. A. Bull. MIPC as the formalisation of an intuitionist concept of modality. J. Symbolic Logic, 31:609–616, 1966.
- G. Fischer-Servi. On modal logic with an intuitionistic base. Studia Logica, 36(3):141–149, 1977.
- D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal logics: theory and applications.
- H. Ono and N.Y. Suzuki. Relations between intuitionistic modal logics and intermediate predicate logics. *Rep. Math. Logic*, (22):65–87, 1988.
- 8. A.N. Prior. Time and Modality. Number 32. 1955.
- N.Y. Suzuki. An algebraic approach to intuitionistic modal logics in connection with intermediate predicate logics. *Studia Logica*, 48(2):141–155, 1989.
- M. Wajsberg. Ein erweiterter Klassenkalkül. Monatsh. Math. Phys., 40(1):113–126, 1933.

¹ Note that bS5 = mS5.

² Note that BS5 = QS5.