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In [10] Wajsberg proved that the modal logic S5 axiomatizes the one-variable
fragment (which we will call the monadic fragment) of classical predicate logic
(QCPC). Prior [8] introduced an intuitionistic analog of S5, known as MIPC, and
Bull [4] proved that MIPC axiomatizes the monadic fragment of intuitionistic
predicate logic (QIPC). A more transparent proof was later given by Ono and
Suzuki [7] using a modification of the famous Henkin construction. The lattice
of extensions of MIPC was studied in [1-3] and the correspondence between
extensions of MIPC and extensions of QIPC in [7,9]. Our goal is to generalize
these results to the modal setting.

Let QLj); be the modal predicate language, and let QK be the least set of
formulas of QL) containing all theorems of QCPC, the axiom O(¢ — v¢) —
(Op — ), and closed under uniform substitution, modus ponens, generaliza-
tion (), and O-necessitation (). We define a modal predicate logic to be
an extension M of QK closed under these rules. Let BM denote the extension of
a modal predicate logic M by the Barcan formula VzOyp — OVzp.

Let £ be the propositional modal language and let £, be the enrichment
of L by the monadic operator V. Let mK be the least set of formulas of Lysas
containing all axioms of the normal modal logic K for [J, the S5 axioms for V,
the bridge axiom [V — VO, and closed under substitution, modus ponens,
U-necessitation, and V-necessitation (%). We define a monadic modal logic (mm-
logic) to be an extension L of mK closed under these rules. Let bL denote the
extension of a mm-logic L by the Barcan formula VOp — Y.

We define a translation T from Form(Lysr) to Form(QLy) inductively by
first associating to each propositional letter p a unary predicate P(x) and then
setting

T(p)=Px), T(pey)=T(p)eT(}), T(rp)=xT(p), T(Ve)=VzT(p).

for prop. letters p for e=V,A for *:ﬁ,lj

For a mm-logic L D mK, we define #(L) = QK + {T(¢) : L - ¢} to be the
modal predicate logic which extends QK by the translations of all theorems of
L. Similarly, for a modal predicate logic M 2 QK, we define (M) = mK + {¢ :
M E T'(¢)} to be the mm-logic which extends mK by all formulas of £75s whose
translations are theorems of M.

Lemma 1. For L D mK and M D QK we have
1. &(L) CTM iff LC W(M).

* This talk constitutes a portion of my PhD thesis, under the direction of Guram
Bezhanishvili.
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2. U(P(L)) D L with equality iff L = ¥ (M) for some M.
3. M D @(¥(M)) with equality iff M = &(L) for some L.

Definition 1. We call L O mK the monadic fragment of a modal predicate logic
MDD QK ifLF ¢ iff M T (), and denote this relationship by (L; M).

To determine whether (L; M) for a pair of logics L 2 mK and M D QK we will
need to develop a correspondence between semantics for mm-logics and modal
predicate logics, which will allow us to prove results concerning extensions of
mK similar to those of Ono and Suzuki [7].

An mK-frame is a Kripke frame § = (W, R, E) where E is an equivalence
relation and RE(w) C ER(w) for all w € W. Recall that a predicate Kripke
frame with expanding (constant) domains is a frame § = (W, R, D), where
D assigns to each w € W a set D, of objects, and wRv implies D,, € D,
(Dy = D,) for all w,v € W. Since there’s no readily apparent way to translate
between mK-frames and predicate Kripke frames, we employ a smaller class of
frames arising from product frames.

We recall that a product [6, p. 222] of Kripke frames §; = (Wi, Ry) and
SQ = <W2,R2> is a frame 31 X 52 = <W1 X WQ,R}L,RU> where (ul,vl)Rh(UQ,v2)
iff ug Ryus and vy = ve, and (uq, v1) Ry (ug, va) iff w3 = ug and vy Rove. An mK-
frame (W, R, E) is an expanding relativized product frame (erp-frame) [6, p. 432]
if § is a subframe of a product frame F; x F2 and for all (wy,ws) € W and
u € W1, if wy Ru then (u,wz) € W. We will call §; and §2 the underlying frames
of §.

We can now easily translate back and forth between erp-frames and predicate
Kripke frames, which provides a basis for our translation theorem. For an erp-
frame § = (W, R, E) we associate a predicate Kripke frame F = <WT, R, D> ,
where (W1, RT) = (W1, Ry), and D,, = {v € Wy : (w,v) € W} for each w € WT.
We can then define a truth relation by (§',w) F p? iff (§, (w,v)) E p, where ¢¥
is used to denote the formula obtained from ¢ by replacing every free occurrence
of x by v . Similarly, if we start with a predicate Kripke frame § = (W, R, D),
we associate an erp-frame §* = (W, R*, E*) with underlying frames (W, R)
and (V,V x V), where V' = {J,,cyp Dw and W* = {(u,v) € W xV : v € D,}.
We define a truth relation by (F*, (w,v)) E p iff (§,w) F p? and arrive at the
following theorem.

Theorem 1. 1. If§ is an erp-frame and ¢ € Form(Lyspr), then (F, (w,v)) E
¢ iff (8T, w) F (T(p))s.

2. If§ is a predicate Kripke frame and ¢ € Form(QLyy), then (§,w) E (T'(p))%
iff (3%, (w,v)) F .

To establish our results we need completeness of some basic monadic modal

systems with respect to either product or erp-frames. Completeness for these

systems is given by the following.

Theorem 2. 1. [6, Thm. 9.10] mK is complete with respect to the class of all
erp-frames, and for L € {K4,54,S5}, mL is complete with respect to the
class of all erp-frames for which R is transitive (K4)/ a quasi-order (S4)/
an equivalence relation (S5).
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2. 16, Cor. 5.10] bK is complete with respect to the class of all product frames,
and for L € {K4,S4}1, bL is complete with respect to the class of all product
frames for which R is transitive (K4)/ a quasi-order (S4).

It is possible to give a simpler proof of Theorem 2 using a modified Henkin con-
struction, which is more in keeping with Ono and Suzuki’s translation theorem
([7, Theorem 3.5]).We then have the following theorem.

Theorem 3. Let L O mK be a mm-logic complete with respect to a class {F;}ier
of erp-frames. If M D QK is complete with respect to {SI}%’EI: then (L; M).

As a consequence of Theorems 2 and 3, we obtain:

Corollary 1. ForL € {K,K4,54,S5} we have (mL; QL) and for L € {K,K4,S4}>
we have (bL; BL).

The bimodal logic mS4 was first considered by Fischer Servi [5]. She extended
the Godel translation of IPC to S4 to a translation of formulas ¢ of MIPC to
formulas ¢ of mS4, and proved that MIPC - ¢ iff mS4 - ©t. The proof required
that QS4 - T'(¢) when mS4 = ¢, but whether or not the other implication holds
was left as an open problem. Corollary 1 gives the other implication, and also
allows for a simplified version of her proof that MIPC I~ ¢ iff mS4 - t.
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! Note that bS5 = mS5.
2 Note that BS5 = QS5.



