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We prove a representation theorem for non-monotonic inference relations that are
defined over elements of some Boolean algebras and obey the rules of System P.
An inference relation is represented by a closure operator on the Stone space
of the Boolean algebra. This representation theorem generalizes and gives new
insights into existing completeness theorems for System P.

Let A be a Boolean algebra. A non-monotonic inference relation on A is a
binary relation |∼ on the carrier of A which satisfies the axioms of System P:

– a |∼ a (Id)
– If a |∼ c and c ≤ d then a |∼ d (RW)
– If a |∼ c and a |∼ d then a |∼ c ∧ d (And)
– If a |∼ b and a |∼ c then a ∧ b |∼ c (CM)
– If a |∼ c and b |∼ c then a ∨ b |∼ c (Or)

The standard semantics for System P is given by a poset ≤ on some set W .
Assuming that we have a Boolean algebra homomorphism J·K : A → PW we
define a |∼ c to hold if for all w ∈ JaK there is a v ∈ JaK with v ≤ w such that
u ∈ JcK for all u ≤ v with u ∈ JaK. If ≤ is well-founded this is equivalent to setting
a |∼ c if the ≤-minimal elements of JaK are all in JcK. This clause captures the
intuition that a non-monotonic inference from a to c holds if the most relevant
instances of a are instances of c.

System P is applied as a framework for defeasible reasoning in artificial in-
telligence [4]. It is also the non-nested fragment of a conditional logic developed
in philosophy and linguistics [5, 7]. In this context the restriction to non-nested
formulas is not essential for most properties of the logic. Moreover, the same
semantics is used in belief revision [2, 1].

Completeness proofs for System P, seen as inferences system over Boolean
formulas, with respect to its order semantics are provided by [4] and [7]. These
proofs are technical and it is not clear how they can be seen as extensions of the
Stone duality between Boolean algebras and Stone spaces. The reason for these
difficulties is a mismatch between the order semantics and System P. It it noticed
in [7] that the addition of a condition, called coherence, to System P greatly
simplifies the completeness proof. This condition is also considered in the context
of AGM belief revision where it is the postulate (K-8r) [6]. The problem with the
coherence condition is that it is rather complex and thus not expressible in the
language of conditional logic. By increasing the expressivity of the language and
assuming an analogue of coherence [8] obtains a general representation result.
The language of [8] contains an unary operator f whose semantic interpretation
maps JaK ⊆W to the the set Jf(a)K ⊆W of ≤-minimal elements of JaK. This is



strictly more expressive than conditional logic and unnatural in applications to
defeasible reasoning.

In our approach we represent a non-monotonic inference relation on a Boolean
algebra with a closure operator on the Stone space of the algebra. This generalizes
the order semantics as one can take the closure operator to map a set to its upset
in a poset. The upsets in a poset are closed under unions which corresponds to
the fact that this closure operator preserves arbitrary joins. Our semantics is a
weakening of the order semantics in that we do not require the preservation of
arbitrary joins. In this way we remove the mismatch between the System P and
its order semantics by weakening the semantics instead of adding the coherence
condition on the algebraic side.

Our main result is that for every non-monotonic inference relation |∼ on a
Boolean algebra A there is a closure operator cl on the Stone space of A such
that a |∼ c iff ā ⊆ cl(ā ∩ c̄), where we write ū for the clopen corresponding to an
element u of A. In the statement of this result we identify the elements a and c
of A with the corresponding clopen set in the stone space.

An crucial observation behind this result is to define for every clopen set A,
corresponding to an element a of the algebra, the closed set MA =

⋂
{c̄ | a |∼ c}.

One can think of MA as the set of minimal elements in A. The closure operator cl
is then defined to be the closure operator corresponding to the meet-semilattice
of all sets X which satisfy that A ⊆ X for every clopen A with MA ⊆ X. A
crucial property of this construction is that for all clopens A and subsets X of
the Stone space we have that

MA ⊆ X iff A ⊆ cl(A ∩X).

In the case where cl takes upsets in some poset this condition characterizes MA

as the minimal elements of A.

We also obtain the completeness of System P with respect to posets. For this
aim we prove that every Stone space with a closure operator resulting from the
representation is the image of a closure operator that preserves arbitrary joins
under a continuous function that preserves the validity of conditionals. One can
then see that this closure operator results from a poset.

In the finite case we obtain a proper duality by using a suitable notion of
morphism and observing that the closure operators corresponding to an inference
relation are precisely the antimatroids over the atoms of the Boolean algebra.
Antimatroids are a generalization of posets that provide a combinatorial ab-
straction of the notion of a convex set [3]. We are currently trying to extend the
duality to the infinite case.
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3. Bernhard Korte, László Lovász, and Rainer Schrader. Greedoids. Springer, 1991.
4. Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic reasoning,

preferential models and cumulative logics. Artificial Intelligence, 44(1-2):167–207,
1990.

5. David Lewis. Counterfactuals. Blackwell Publishers, 1973.
6. Hans Rott. Belief contraction in the context of the general theory of rational choice.

The Journal of Symbolic Logic, 58(4):1426–1450, 1993.
7. Frank Veltman. Logics for Conditionals. PhD thesis, University of Amsterdam,

1985.
8. Frank Wolter. The algebraic face of minimality. Logic and Logical Philosophy,

6(0):225–240, 2004.


