Quasi-primal Cornish algebras

Brian A. Davey and Asha Gair *

Mathematics and Statistics La Trobe University Victoria, Australia 3086 B.Davey@latrobe.edu.au agair@students.latrobe.edu.au

Abstract. Varieties generated by quasi-primal algebras are a natural generalisation of Boolean algebras and play an important role in the interface between logic and universal algebra. A Cornish algebra is a bounded distributive lattice equipped with a family of unary operations each of which is either an endomorphism, and so models a strong form of modal operator, or a dual endomorphism, and so models a De Morgan negation. We characterise quasi-primal Cornish algebras. The results yield as a special case a recent result by Davey, Nguyen and Pitkethly describing quasi-primal Ockham algebras. Our characterisation is in terms of the Priestley dual of the algebra.

Keywords: quasi-primal algebra, Cornish algebra, Ockham algebra, Priestley duality

In the late 1940s, Tarski proved that the first-order theory of Boolean algebras is decidable [7]. This can be restated as the *the first-order theory of the variety* generated by the two-element Boolean algebra is decidable. In the early 1970s, it was realised (independently) by Pixley [5,6] and Werner [8] that many of the important properties of the variety of Boolean algebras stem from the fact that the *ternary discriminator* function t, given by

$$t(x, y, z) = \begin{cases} x, & \text{if } x \neq y, \\ z, & \text{if } x = y, \end{cases}$$

is a term function of the two-element Boolean algebra. (It is very easy to check that $t(x, y, z) := ((x \land z) \lor y') \land (x \lor z)$ yields the ternary discriminator on the two-element Boolean algebra.)

A finite algebra is called *quasi-primal* if it has the ternary discriminator as a term function. In the late 1970s, Werner extended Tarski's result by showing that every variety generated by a quasi-primal algebra has a decidable first-order theory. Ten years later, this result played an important role in McKenzie and Valeriote's characterisation of locally finite varieties with a decidable theory [4]. (See Werner [9] for a detailed discussion of quasi-primal algebras.) Given their

 $^{^{\}star}$ The second author was supported by an AMSI Vacation Research Scholarship

importance, it is natural to seek descriptions of the quasi-primal algebras in familiar classes of algebras. Here we characterise quasi-primal Cornish algebras.

An algebra $\mathbf{A} = \langle A; \lor, \land, F^{\mathbf{A}}, 0, 1 \rangle$ is a *Cornish algebra* if $\mathbf{A}^{\flat} := \langle A; \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice, $F = F_{-} \cup F_{+}$, and each $f^{\mathbf{A}} \in F^{\mathbf{A}}$ is an endomorphism of \mathbf{A}^{\flat} if $f \in F_{+}$ and is a dual endomorphism of \mathbf{A}^{\flat} if $f \in F_{-}$. When $f \in F_{-}$, the operation $f^{\mathbf{A}}$ models a negation that satisfies De Morgan's laws. The operations $f^{\mathbf{A}}$, for $f \in F_{+}$, model strong modal operators which preserve \land as well as \lor ; the *next* operator of linear temporal logic is an example. Cornish algebras are a natural generalisation of *Ockham algebras*, which have been extensively studied [1]. Ockham algebras are the special case of Cornish algebras in which $F = F_{-} = \{f\}$.

Recently, Davey, Nguyen and Pitkethly [3] characterised quasi-primal Ockham algebras. Here we give an external characterisation of quasi-primal Cornish algebras and derive from it completely internal sufficient conditions for a Cornish algebra to be quasi-primal. Our results yield the Davey–Nguyen–Pitkethly result for Ockham algebras as a special case. Both the external necessary-andsufficient conditions and the internal sufficient conditions are expressed in terms of the Priestley dual of the algebra.

Let $H: \mathfrak{D} \to \mathfrak{P}$ and $K: \mathfrak{P} \to \mathfrak{D}$ be the Priestley duality functors between the categories \mathfrak{D} of bounded distributive lattices and \mathfrak{P} of Priestley spaces. Using Priestley duality, each finite Cornish algebra \mathbf{A} is, up to isomorphism, of the form $\mathbf{A} = K(\mathbb{W})$ where \mathbb{W} is a finite *Cornish space*, that is, a structure $\mathbb{W} := \langle W; F^{\mathbb{W}}, \leqslant \rangle$ such that $\langle W; \leqslant \rangle$ is a finite ordered set, and $F^{\mathbb{W}} = \{f^{\mathbb{W}} \mid f \in F\}$ is a set of unary operations on W with $f^{\mathbb{W}}$ order-preserving for each $f \in F_+$, and order-reversing for each $f \in F_-$. Occhaam spaces arise in the special case when $F = F_- = \{f\}$.

Since a quasi-primal algebra must be simple, it follows easily that if $\mathbf{A} = K(\mathbb{W})$ is quasi-primal, then the Cornish space \mathbb{W} has no non-empty proper substructures. It is less obvious that a quasi-primal Cornish algebra must have $F_{-} \neq \emptyset$.

Lemma 1. Let $\mathbf{A} = K(\mathbb{W})$ be a quasi-primal Cornish algebra. Then $F^- \neq \emptyset$ and \mathbb{W} has no non-empty proper substructures.

Our external characterisation of quasi-primal Cornish algebras is in terms of pairs of jointly surjective morphisms.

Theorem 2. Let $\mathbf{A} = K(\mathbb{W})$ be a finite Cornish algebra. Then \mathbf{A} is quasiprimal if and only if

- (i) \mathbb{W} has no proper non-empty substructures, and
- (ii) for every finite Cornish space \mathbb{P} and every pair of jointly surjective morphisms $\varphi_0, \varphi_1 \colon \mathbb{W} \to \mathbb{P}$, if there exists $a, b \in W$ with $\varphi_0(a) \leq \varphi_1(b)$ or $\varphi_0(a) \geq \varphi_1(b)$, then there exists $c, d \in W$ with $\varphi_0(c) = \varphi_1(d)$.

We can now give our internal sufficient conditions on \mathbb{W} for $\mathbf{A} = K(\mathbb{W})$ to be quasi-primal. Since each operation symbol $f \in F$ belongs to either F_+ or F_- , we can extend the +/- labelling to the set T of unary terms in the natural way. **Theorem 3.** Let $\mathbf{A} = K(\mathbb{W})$ be a finite Cornish algebra. Then \mathbf{A} is quasiprimal provided \mathbb{W} has the following properties:

- (i) W has no proper non-empty substructures, and
- (ii) there exists a unary term $t \in T^-$ such that, for all $w \in W$, the $t^{\mathbb{W}}$ -orbit of w eventually reaches an odd cycle.

As an application of Thm. 3, below we see the start of an infinite family of quasi-primal Cornish algebras: $f \in F_+$ are indicated by solid lines and $f \in F_-$ are indicated by dotted lines.



The characterisation of quasi-primal Ockham algebras by Davey, Nguyen and Pitkethly [3] can easily be derived from our results.

Theorem 4. Let $\mathbb{W} := \langle W; f^{\mathbb{W}}, \leqslant \rangle$ be a finite Ockham space. Then the Ockham algebra $\mathbf{A} = K(\mathbb{W})$ is quasi-primal if and only if |W| is odd, $\langle W; \leqslant \rangle$ is an antichain and $f^{\mathbb{W}}$ is a cyclic permutation of W.

References

- Blyth, T.S., Varlet, J.C.: Ockham algebras. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1994)
- Cornish, W.H.: Antimorphic Action: Categories of Algebraic Structures with Involutions or Anti-endomorphisms. Research and Exposition in Mathematics, Heldermann, Berlin (1986)
- 3. Davey, B.A., Nguyen, L.T., Pitkethly, J.G.: Counting relations on Ockham algebras. Algebra Universalis (in press)
- 4. McKenzie, R., Valeriote, M.: The Structure of Decidable Locally Finite Varieties. Progress in Mathematics, 79. Birkhäuser, Boston (1989)
- Pixley, A.F.: Functionally complete algebras generating distributive and permutable classes. Math. Z. 114, 361–372 (1970)
- Pixley, A.F.: The ternary discriminator function in universal algebra. Math. Ann. 191, 167–180 (1971)
- Tarski, A.: Arithmetical classes and types of Boolean algebras. Bull. Amer. Math. Soc. 55, 64 (1949)
- Werner, H.: Eine Charakterisierung funktional vollständiger Algebren. Arch. Math. (Basel) 21, 381–385 (1970)
- Werner, H.: Discriminator Algebras. Studien zur Algebra und Ihre Anwendungen, Band 6, Akademie-Verlag, Berlin (1978)