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We consider two natural operations on modal logics — lexicographic (or
ordered) sums and products. Like “usual” product of modal logics, the lexico-
graphic sum and the lexicographic product of modal logics are defined semanti-
cally — via corresponding operation on their frames.

Investigation of lexicographic products of modal logics was started by the first
author in [2], where numerous completeness results were obtained. Lexicographic
sums of modal logics appeared in many contexts: for example, sums of provability
logics were axiomatized by L. Beklemishev [3]; the second author applied sums
to investigate complexity of modal logics [4]; decidability and the finite model
property of sums were investigated by S. Babenyshev and V. Rybakov [1].

We present new general completeness results for lexicographic sums and prod-
ucts of modal logics. In particular, it follows that in many cases these operations
lead to the same logics (Theorems 1 and 2), and the resulting logic is the fusion
extended by three certain Sahlqvist formulas. Theorem 3 describes more diffi-
cult case when we need infinitely many extra axioms to axiomatize lexicographic
products; in particular, it gives the axiomatization of the lexicographic square
of the minimal logic K.

Definitions. For the sake of simplicity, we consider operations on monomodal
logics.

Definition 1 Let I = (I, S) be a frame, {Fi = (Wi, Ri) | i ∈ I} be a family
of frames. The lexicographic (or ordered) sum

∑
I

Fi is the frame (W,R+, S+),

where W is the disjoin sum
∑
I

Wi = {(w, i) | i ∈ I, w ∈Wi}, and

(w, i)R+(u, j) ⇐⇒ i = j & wRiu,

(w, i)S+(u, j) ⇐⇒ iSj.

If for all i Fi = F, we write F B I for
∑
I

Fi; the frame F B I is called the

lexicographic product of frames F and I.
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Definition 2 For logics L1, L2, put∑
L2

L1 = Log({
∑
I

Fi | I |= L2, {Fi | i in I} |= L1}),

L1 B L2 = Log({FB I | F |= L1, I |= L2}).

Completeness. A modal formula is closed, if it does not contain propositional
variables. By a closed sentence we mean the standard translation of a closed
modal formula. A logic L is Horn axiomatizable, if the class of all its frames
is the class of all first-order models of a theory consisting of strict universal
Horn sentences and closed sentences. The standard systems K,T,K4,S4,S5
are examples of Horn axiomatizable logics.

Consider the following bimodal formulas:

α = �2p→ �1�2p, β = �2p→ �2�1p, γ = ♦2p→ �1♦2p.

L1 ∗ L2 denotes the fusion of logics L1 and L2.

Theorem 1. Consider unimodal logics L1 and L2. Suppose L1 ∗ L2 + {α, β, γ}
is Kripke complete, L2 is Horn axiomatizable. Then

∑
L2

L1 = L1 ∗L2 + {α, β, γ}.

Corollary 1. Let L1 and L2 be canonical unimodal logics, L2 Horn axiomatiz-
able. Then

∑
L2

L1 = L1 ∗ L2 + {α, β, γ}.

The following theorem is a generalization of [2, Proposition 32].

Theorem 2. If L1 and L2 are Horn axiomatizable Kripke complete unimodal
logics and ♦> ∈ L1, then L1 B L2 = L1 ∗ L2 + {α, β, γ}.

Definition 3 For unimodal logics L1, L2 put

L1 .s L2 = L1 ∗ L2 + {α, β, γ} ∪Ξ1 ∪Ξ2 ∪Ξ3,

where

Ξ1 = {♦2♦2p ∧ ♦2ϕ→ ♦2(♦2p ∧ ϕ) | ϕ is a c-formula},
Ξ2 = {♦2�2⊥ ∧ ♦2ϕ→ ♦2(�2⊥ ∧ ϕ) | ϕ is a c-formula},
Ξ3 = {♦i2ϕ→ �

j
2(♦2> → ♦2ϕ) | i, j ≥ 0, ϕ is a c-formula},

and by a c-formula we mean a closed modal formula without �2.

Theorem 3. If L1 and L2 are Horn axiomatizable Kripke complete logics, then
L1 B L2 = L1 .s L2.
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