On maps between Stone-Čech compactifications induced by lattice homomorphisms

Themba Dube

University of South Africa, Department of Mathematical Sciences, Pretoria, South Africa http://www.unisa.ac.za

Abstract. Broverman [2] has shown that if X and Y are completely regular Hausdorff spaces, and $t: \mathbb{Z}(Y) \to \mathbb{Z}(X)$ is a lattice homomorphism between the lattices of their zero-sets, then there is a continuous map $\tau: \beta X \to \beta Y$ induced by t. In this talk I will expound this idea and supplement Broverman's results by first showing that this phenomenon holds in the category of completely regular frames. Among results I will present, which were not considered by Broverman, are necessary and sufficient conditions (in terms of properties of the map t) for the induced map τ to be (i) the inclusion of a subspace, (ii) surjective, and (iii) irreducible. Time allowing, I will show that if X and Y are pseudocompact, then t pulls back z-ultrafilters to z-ultrafilters if and only if $cl_{\beta X}t(Z) = \tau^{\leftarrow}[cl_{\beta Y}Z]$ for every $Z \in \mathbb{Z}(Y)$ if and only if t is σ -homomorphism.

Keywords: Tychonoff space, Stone-Čech compactification, zero-set, lattice homomorphism, σ -frame homomorphism, cozero part of a frame

1 Introduction

Let X and Y be Tychonoff spaces and Z(X) and Z(Y) be the lattices of their zero-sets. In [2], Broverman shows that any lattice homomorphism (throughout understood to preserve the bottom and the top elements) $t: Z(Y) \to Z(X)$ induces a continuous map $\tau: \beta X \to \beta Y$. This is how he does it. Recall that, in the notation of Gillman and Jerison [3], for any $p \in \beta X$, A^p is the z-ultrafilter on X given by

$$Z \in \mathbf{A}^p \quad \Longleftrightarrow \quad p \in \mathrm{cl}_{\beta X} Z.$$

Now $t^{\leftarrow}[\mathbf{A}^p]$ is a prime z-filter in Y, and is therefore contained in some unique z-ultrafilter \mathbf{A}^q on Y. Broverman shows that the function $\tau: \beta X \to \beta Y$ defined by $\tau(p) = q$ is a continuous map.

Our approach in obtaining such an induced map between Stone-Čech compactifications of frames is different. We take the following categorical path. Let DLat denote the category of bounded distributive lattices and their homomorphisms. Recall that the ideal-lattice functor $\mathfrak{J}: DLat \to Frm$ sends $A \in DLat$ to the frame $\mathfrak{J}A$ of ideals of A, and sends a lattice homomorphism $\phi: A \to B$ to the frame homomorphism $\mathfrak{J}\phi: \mathfrak{J}A \to \mathfrak{J}B$ given by

$$\mathfrak{J}\phi(I) = \{ b \in B \mid b \le \phi(a) \text{ for some } a \in I \}.$$

Now let L and M be completely regular frames and $\phi: \operatorname{Coz} L \to \operatorname{Coz} M$ be a lattice homomorphism. Then ϕ preserves the completely below relation, \prec , and hence $\mathfrak{J}\phi(I) \in \beta M$ whenever $I \in \beta L$. Since βL and βM are subframes of $\mathfrak{J}(\operatorname{Coz} L)$ and $\mathfrak{J}(\operatorname{Coz} M)$ respectively, it follows that the restriction of $\mathfrak{J}\phi$ to βL is a frame homomorphism into βM . We denote it by $\overline{\phi}$. The aim of this note is to explore some properties of the frame homomorphism $\overline{\phi}$ with the view to obtaining new results concerning the map $\tau: \beta X \to \beta Y$ induced by a lattice homomorphism $t: \mathbb{Z}(Y) \to \mathbb{Z}(X)$. Sample results are given in the next section.

2 Some main results

We borrow the adjectives "dense" and "codense" from frames and use them to describe lattice homomorphisms in the same way as they describe frame homomorphisms.

Proposition 1. The homomorphism $\bar{\phi}: \beta L \to \beta M$ is one-one iff ϕ is dense.

Proof (Outline). The proof hinges on the following description of the right adjoint of $\bar{\phi}$. For any $J \in \beta M$,

$$\bar{\phi}_*(J) = \bigvee \{ r_L(c) \mid c \in \operatorname{Coz} L \text{ and } \phi(c) \in J \}$$
$$= \bigcup \{ r_L(c) \mid c \in \operatorname{Coz} L \text{ and } \phi(c) \in J \}.$$

Corollary 1. Let $t: \mathbf{Z}(Y) \to \mathbf{Z}(X)$ be a lattice homomorphism. The induced map $\tau: \beta X \to \beta Y$ is onto iff t is codense.

Following Ball, Hager and Walters-Wayland [1], we formulate the following definition.

Definition 1. A lattice homomorphism $\phi: \operatorname{Coz} L \to \operatorname{Coz} M$ is uplifting if whenever $u \lor v = 1$ in $\operatorname{Coz} M$, then there exist $a, b \in \operatorname{Coz} L$ such that $a \lor b = 1$, $\phi(a) \le u$ and $\phi(b) \le v$. We say a lattice homomorphism $t: \mathbb{Z}(Y) \to \mathbb{Z}(X)$ is deflating if, for any disjoint zero-sets E and F of X, there are disjoint zero-sets G and H of Y such that $E \subseteq t(G)$ and $F \subseteq t(H)$.

Proposition 2. The following conditions are equivalent for a lattice homomorphism ϕ : Coz $L \rightarrow$ Coz M.

- 1. $\bar{\phi}: \beta L \to \beta M$ is onto.
- 2. ϕ is uplifting.
- 3. Whenever $u \prec v$ in $\operatorname{Coz} M$, there are elements $a \prec b$ in $\operatorname{Coz} L$ such that $u \leq \phi(a)$ and $\phi(b) \leq v$.

3

Recall from [4, Lemma II 2.1] that if $f: X \to Y$ is a continuous map between Tychonoff spaces, then $\mathfrak{O}f: \mathfrak{O}Y \to \mathfrak{O}X$ is one-one if and only if f is the inclusion of a subspace.

Corollary 2. Let $t: \mathbb{Z}(Y) \to \mathbb{Z}(X)$ be a lattice homomorphism. The induced map $\tau: \beta X \to \beta Y$ is the inclusion of a subspace iff t is deflating.

A frame homomorphism $h: L \to M$ is *-dense if, for any $a \in L$

$$h_a(a) = 0 \implies a = 0.$$

Recall that a surjective continuous map is called *irreducible* if it sends no proper closed subset of its domain onto its codomain. Since, for any continuous map $f: X \to Y$, and any $U \in \mathfrak{O}X$,

$$(\mathfrak{O}f)_*(U) = Y \smallsetminus \overline{f[X \smallsetminus U]},$$

it follows that

a closed continuous surjection $f: X \to Y$ is irreducible iff the frame map $\mathfrak{O}f: \mathfrak{O}Y \to \mathfrak{O}X$ is *-dense.

Let us call a lattice homomorphism $\psi: A \to B$ inverse-dense if, for any ideal J of $B, \psi^{\leftarrow}[J] = \{0\}$ implies $J = \{0\}$.

Proposition 3. The map $\bar{\phi}: \beta L \to \beta M$ is *-dense iff ϕ is inverse-dense.

Corollary 3. Let $t: \mathbf{Z}(Y) \to \mathbf{Z}(X)$ be a codense lattice homomorphism. The induced map $\tau: \beta X \to \beta Y$ is irreducible iff for every nontrivial z-filter \mathcal{F} in X, there is a zero-set $Z \neq Y$ of Y such that $t(Z) \in \mathcal{F}$.

References

- Ball, R.N., Hager, A.W., Walters-Wayland, J.: An intrinsic characterization of monomorphisms in regular Lindelöf locales. Appl. Categor. Struct. 15, 109–118 (2007)
- Broverman, S.: Homomorphisms between lattices of zero-sets. Canad. Math. Bull. 21, 1–5 (1978)
- Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton (1960)
- 4. Johnstone, P.T. Stone Spaces. Cambridge University Press, Cambridge (1982)