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A variety V of residuated lattices has the finite embeddability property
(shortly FEP) if every finite partial subalgebra B of A ∈ V is embeddable into a
finite member of V. This property is equivalent to the finite model property for
the universal theory of V. Consequently, if V is finitely axiomatizable and has
the FEP then its universal theory is decidable.

There exists already a bunch of results on the FEP for particular varieties
of residuated lattices usually using the same construction due to Blok and van
Alten [1]. Nevertheless, it is not clear whether the FEP for a variety of residu-
ated lattices V implies that this construction works for V. In this talk we show
that for varieties axiomatized over {∨, ·, 1} this is really the case if we generalize
the construction a little bit. A similar result holds also for varieties of distribu-
tive residuated lattices axiomatized over {∧,∨, ·, 1} if we use the construction
announced in [4].

We formulate the above result more precisely. Recall that a residuated frame
W = 〈M, Z,N〉 is a triple, where M is a monoid, Z a set and N ⊆ M × Z a
nuclear relation (see [5]). The nuclear relation N induces a nucleus γ on P(M)
whose basis consists of the sets {x ∈ M | x N z} for z ∈ Z. We call these sets
basic closed sets of W. The dual algebra W+ of W is defined as the residuated
lattice P(M)γ . A Gentzen residuated frame is a tuple 〈W,B〉, where W is a
residuated frame and B a partial algebra in the signature of residuated lattices
such that B generates (as a monoid) M, there is an injection of B into Z, and
the relation N satisfies the rules from the the full Lambek calculus (see [5]). We
call 〈W,B〉 antisymmetric if for all a, b ∈ B we have a N b, b N a implies a = b.

Theorem 1. Let V be a variety of residuated lattices axiomatized over {∨, ·, 1}.
Then the following are equivalent:

1. V has the FEP.
2. For every algebra A ∈ V and a finite partial subalgebra B of A there is

an antisymmetric Gentzen residuated frame 〈W,B〉 such that W+ ∈ V and
every basic closed set of W forms a regular language.

Using the above theorem, one can reprove most of the known positive results
on the FEP via a regularity condition from the language theory. Let V be a
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variety of residuated lattices axiomatized over {∨, ·, 1}. Given A ∈ V and a finite
partial subalgebra B of A, there is always an antisymmetric Gentzen residuated
frame 〈W,B〉 such that W+ ∈ V. Namely, W = 〈B∗, B∗ ×B∗ ×B,N〉, where
B∗ is the free monoid generated by B and x N 〈u, v, b〉 iff id∗(uxv) ≤A b. The
function id∗:B∗ → A is the free extension of the inclusion of B into A.

Thus if we want to prove the FEP for the variety V, it suffices to show that
the basic closed sets of W are regular languages. This is easy if V is integral
using well-known Higman’s lemma and the generalized Myhill-theorem [3].

Theorem 2 ([5]). Every variety V of integral residuated lattices axiomatized
over {∨, ·, 1} has the FEP.

Similarly, using the fact that a language is regular iff it is permutable and quasi-
periodic or co-quasi-periodic (see [7]), one can immediately prove the next two
theorems.

Theorem 3 ([9]). Let V be a variety of commutative residuated lattices axiom-
atized over {∨, ·, 1} and satisfying xm ≤ xn for m 6= n. Then V has the FEP.

Theorem 4 ([2]). Let V be a variety of residuated lattices axiomatized over
{∨, ·, 1} satisfying xyx = x2y and xm ≤ xn for m 6= n. Then V has the FEP.

An analogous characterization of the FEP as in Theorem 1 can be obtained
for varieties of distributive residuated lattices if we replace the regular languages
by regular tree languages, i.e., sets of terms over {∧, ·} recognizable by a finite
tree automaton (for details on regular tree languages see [6]).

Then one can prove the following theorem immediately using Kruskal tree
theorem and the generalized Myhill-theorem for tree languages [8].

Theorem 5 ([4]). Every subvariety of distributive integral residuated lattices
axiomatized over {∧,∨, ·, 1} has the FEP.
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