The logic of quasi true

Antonio Di Nola¹, Revaz Grigolia² and Giacomo Lenzi¹

 ¹ University of Salerno, Salerno, Italy {adinola,gilenzi}@unisa.it
² Tbilisi State University, Tbilisi, Georgia revaz.grigolia@tsu.ge

Abstract. We introduce the new logic CL, which is an extension of the infinitely valued Łukasiewicz logic L, the language of which enriched by 0-ary connective c that is interpreted as "quasi-false", the algebraic counterpart of which are algebras from a quasi-variety generated by the perfect Chang MV-algebras C signature of which enriched by the constant element **c**. For this aim we introduce a new class **CL** of algebras which is a quasi-variety and the algebras from this quasi-variety we name CL-algebras. Adding a new inference rule to the logic CL, thereby increased a deducibility power, we introduce the logic CL^+ and defining the notion of quasi-true (q-true) formulas it is proved the completeness theorem for this logic.

Keywords: MV-algebra. Perfect algebra. Łukasiewicz logic.

1 Introduction

MV-algebras are the algebraic counterpart of Łukasiewicz sentential calculus Ł [1]. Since there are non simple linearly ordered MV-algebras, in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. We look for a logic which is an extension of \mathbf{L} that is evaluated over a non simple MV-chain. There are MV-algebras which are not semisimple, i.e. the intersection of their maximal ideals (the radical of A) is different from $\{0\}$. Non-zero elements from the radical of A are called infinitesimals. Perfect MV-algebras are those non semisimple MV-algebras generated by their infinitesimal elements. The perfect algebra C is introduced by Chang in [1] which is generated by the one infinitesimal element c. Considering the unit interval MV-algebra [0, 1] as the structure over which to evaluate a formula of a sentential calculus, one has many possibilities to evaluate a formula. Let us start with Łukasiewicz logic Ł, and evaluate formulasover [0, 1]. A truth value $x \in [0, 1], x \neq 1$, can be considered as the value of a not-true formula. The distance of x from 1 can be considered as expressing how much x is close to be true. Starting from x, assuming $v(\alpha) = x$, where $v(\alpha)$ is the valuation of the formula a, then after a finite number of steps made by the strong disjunction \oplus , like $v(\alpha), v(\alpha \oplus \alpha), v(\alpha \oplus \alpha \oplus \alpha), \dots$, we get, for every evaluation $v, v(\alpha \oplus ... \oplus \alpha) = 1$, and, similarly using the strong conjunction \odot , also $v(\alpha \odot ... \odot \alpha) = 0$. This cannot be for Lukasiewicz tautologies α , indeed we have $v(\alpha) = 1$ and $v(\alpha \odot ... \odot \alpha) = 1$, for all evaluations v. All that is due to the simplicity of [0, 1]. Assume now to evaluate L over a ultrapower *[0, 1] of [0, 1]. Assume there is a formula α such that $v(\alpha)$ is infinitesimally close to 1. We are interested in considering such formulas having a *co-infinitesimal* value for every evaluation. For any of such formulas the behavior has to be intermediate between the behavior of tautologies and the behavior of formulas evaluated into a real number in [0, 1]. It is reasonable to look at such formulas as *quasi true*. So it is an interesting task to explore the way to make *formal* such a concept of *quasi truth* and to develop logics allowing a generalization of the concept of truth. We look for logics which are extensions of L having evaluation over a non simple MV-chain. So, we can think of the logic CL of the perfect MV-algebra C, roughly speaking, as a variant of logic of the concept of "quasi-true", or better of the concept of "infinitesimally close to the truth".

2 *CL*-algebras

An algebra $A = (A, 0, \mathbf{c}, \neg, \oplus)$ is said to be *CL*-algebra if $A = (A, 0, \neg, \oplus)$ is *MV*-algebra and in addition it satisfy the following axioms:

- 1) $2(x^2) = (2x)^2$,
- 2) $2\mathbf{c} \odot \neg \mathbf{c} = \mathbf{c}$,
- 3) $(\mathbf{c} \odot \neg x) \land x = 0,$
- 4) $\mathbf{c} \rightarrow \neg \mathbf{c} = 1$,
- 5) $y^2 \oplus ((2\neg y) \odot (y \odot \neg x)) = 0 \Rightarrow (2x = 1),$
- 6) $x \wedge \mathbf{c} = 0 \Rightarrow x = 0.$

Comment. The identity 1) says that a CL-algebra is a member of the subvariety V(C) (= the variety generated by all perfect MV-algebras) of the variety of all MV-algebras. The second 2) says that $\mathbf{c} \neq \mathbf{c} \vee \neg \mathbf{c}$ and $\mathbf{c} \neq 1$. 3) says that \mathbf{c} is the atom in a totally ordered CL-algebra. 4) says that $\mathbf{c} \leq \neg \mathbf{c}$. 5) gives that we exclude the algebras $C_m = \Gamma(Z \times_{lex} \cdots \times_{lex} Z, (1, 0, ..., 0))$ where the number of factors Z is equal to $m \geq 3$, \times_{lex} is the lexicographic product and Γ is well known Mundici's functor establishing a categorical equivalence between the category of MV-algebras and the category of lattice ordered groups with strong unite. 6) says that $\mathbf{c} \neq 0$ and (C, \mathbf{c}) is the only subdirectly irreducible algebra; here we have analogy with Boolean algebras.

Hereinafter we denote a CL-algebra as (A, \mathbf{c}) , where A is an MV-algebra. Denote the class of all CL-algebras by **CL**. We assume that **CL** contains oneelement CL-algebra.

Theorem 1. 1) The class **CL** is a quasivariety.

2) **CL** is generated by (C, c). Moreover, CL = SP(C, c), where **S** is the operator of taking a subalgebra and **P** is the operator of taking a direct product.

3) Let (A, \mathbf{c}) be a totally ordered CL-algebra. There is no element $x \in A$ such that $n\mathbf{c} < x < (n+1)\mathbf{c}$ for some $n \in Z^+$.

4) The CL-algebra (C, c) is a subalgebra of every CL-algebra (A, c).

5) Any CL-algebra (A, \mathbf{c}) is represented as a subdirect product of copies of CL-algebras (C, \mathbf{c}) .

3 *CL*- and CL^+ -logics

Now we define a logic CL, the algebraic counterparts of which are CL-algebras. The language of CL consists of the propositional variables, propositional constant c and logical connectives \rightarrow , \neg . The formulas are defined as usual. The following formulas are axioms of CL:

L1. $\alpha \rightarrow (\beta \rightarrow \alpha)$, L2. $(\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))$, L3. $(\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha)$, L4. $((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow ((\beta \rightarrow \alpha) \rightarrow \alpha)$, Lp. $2(\alpha^2) \leftrightarrow (2\alpha)^2$, CL. $c \rightarrow \neg c$, CL1. $2c \odot \neg c \leftrightarrow c$, CL2. $(c \rightarrow \alpha) \lor \neg \alpha$. Inference rules: MP. $\alpha, \alpha \rightarrow \beta \Rightarrow \beta$, R1. $\alpha \lor \neg c \Rightarrow \alpha$,

R2. $\neg(\beta \to \neg\beta) \to \neg((\beta \to \neg\beta) \to (\beta \to \alpha)) \Rightarrow \neg\alpha \to \alpha$.

Semantically, we say that a formula α is 1-true if it is identically true in every CL-algebra, and α is q-true if $\neg \alpha \rightarrow \alpha$ is 1-true.

Theorem 2. 1) α is 1-true iff $\vdash_{CL} \alpha$. Hence, α is q-true iff $\vdash_{CL} \neg \alpha \rightarrow \alpha$. 2) $\vdash_{CL} 2(\neg c)^n$ for any $n \in Z^+$.

Let CL^+ be the extension of the logic CL by the inference rule R4: $(\alpha \lor \neg \alpha) \rightarrow \alpha \Rightarrow \alpha$.

Theorem 3. α is q-true iff $\vdash_{CL^+} \alpha$.

For every formula α of the logic CL^+ define its translation $tr(\alpha)$ into classical logic Cl as follows: (1) if α is a propositional variable p, then $tr(\alpha) = \alpha$; (2) $tr(c) = p \land \neg p$; (3) $tr(\alpha \to \beta) = tr(\alpha) \to tr(\beta)$; (4) $tr(\neg \alpha) = \neg tr(\alpha)$.

Theorem 4. 1) $\vdash_{CL^+} \alpha$ iff $\vdash_{Cl} tr(\alpha)$. 2) If $\vdash_{Cl} \alpha$, then $\vdash_{CL^+} \alpha$.

References

 Chang, C.C.: Algebraic Analysis of Many-Valued Logics. In: Trans. Amer. Math. Soc. vol. 88, pp. 467-490.(1958)