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Among propositional substructural logics, these obtained from Gentzen’s se-
quent calculus for intuitionistic logic (LJ) by removing a subset of the rules
contraction (c), exchange (e), left weakening (i), and right weakening (o) play
a prominent role, e.g. in [3] such logics are called basic substructural logics. If
all above mentioned rules are removed from LJ then the full Lambek calculus is
obtained.

The decidability of such logics, i.e. their sets of theorems, usually follows from
the fact that they have a cut-free sequent system. Such an argument, used in [8],
however, fails if the rule of contraction is involved since the proof-search tree is
then infinite. Nevertheless, already Gentzen proved [4, 5] that LJ is decidable
and the same was shown [7] for FL with the rules of exchange and contraction
(FLec) using an idea by Kripke [9]. It remained open whether same holds for FL
with contraction (FLc) and FL with contraction and right weakening (FLco).
We show that these logics are, on the contrary, undecidable by showing that
their common positive fragment (FL+

c ) is already undecidable.
In fact, we show that the equational theory of square-increasing residuated

lattices (RLc), which are sound and complete algebraic semantics for FL+
c , is

undecidable. However, the algebraic notions were used only for convenience, the
whole construction can be shown using, e.g. proof-theoretical notions, because
the main ideas remain the very same.

Theorem 1. The equational theory of RLc is undecidable. Consequently, the
sets of formulae provable in FL+

c , FLc, and FLco are undecidable.

Note that this is not very common among known substructural logics. The
undecidability of the positive fragment of the involutive distrubutive FLec is
proved in [10] and the same for the equational theory of modular lattices is
shown in [2].

In what follows, we give the main ideas of the proof. It was proved in [6] that
the deducibility problem for FL+

c is undecidable using a string rewriting system
(SRS) which simulates Minsky machines by square-free words, i.e. the rule of
contraction cannot affect them.
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This SRS is then equivalently expressed in terms of atomic conditional SRSs
which differ from SRSs in two aspects. First, only rules with atomic right side
are allowed, i.e. x a where x ∈ Σ∗ and a ∈ Σ. Second, the usage of every rule
is restricted by a specific context in which it is applicable.

Finally, an encoding of atomic conditional SRSs in RLc is shown. Roughly
speaking the conditionality in rules is expressed by join and an auxiliary rewriting
system (inspired by [1]), the rewriting symbol  is encoded by an implication
and a set of rules by a meet of encoded rules. Although the constant 1 plays
also an important role in this encoding, it can be shown that it is not necessary.
Therefore even the fragments of RLc and FL+

c containing only join, meet, and
an implication are undecidable.

We conclude with some notes. The whole construction can be easily modified
for logics having a weaker form of contraction xk ≤ xl, 1 ≤ k < l. More inter-
estingly, as the construction, in fact, provides a chain of explicit reductions, it
is possible to obtain a form of “algorithmic” deduction theorem.

Theorem 2. Let T ∪ {ϕ} be a finite set of formulae. There is an explicit algo-
rithm that produces a formula ψ (given an input ϕ and T ) such that ψ is provable
in FL+

c iff ϕ is provable in FLc from T .
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