On weak constant domain principle in the Kripke sheaf semantics

Dmitrij Skvortsov

All-Russian Institute of Scientific and Technical Information, VINITI,
skvortsovd@yandex.ru

Abstract. We consider superintuitionistic predicate logics understood in the usual way, as sets of predicate formulas (without equality and function symbols) containing all axioms of Heyting predicate logic $\mathbf{Q-H}$ and closed under modus ponens, generalization, and substitution of arbitrary formulas for atomic ones.

1 We consider the semantics of predicate Kripke frames with equality (called e-frames, for short), which is equivalent to the semantics of Kripke sheaves (see e.g. [1] or [2]). Namely, an e-frame is a triple $M = (W, U, I)$ formed by a poset W with the least element 0_W, a domain map U defined on W such that $\emptyset \neq U(u) \subseteq U(v)$ for $u \leq v$, and a family I of equivalence relations I_u on $U(u)$ for $u \in W$ such that $I_u \subseteq I_v$ for $u \leq v$. A usual (predicate) Kripke frame is an e-frame with equalities I_u (i.e., $aI_u b \iff a = b$ for $u \in W$, $a, b \in U(u)$).

A valuation $u \models A$ (for $u \in W$ and formulas A with parameters replaced by elements of $U(u)$) satisfies the monotonicity: $u \leq v$, $u \models A \Rightarrow v \models A$, the usual inductive clauses for connectives and quantifiers, e.g.

\[u \models (B \to C) \iff \forall v \geq u [(v \models B) \Rightarrow (v \models C)], \]
\[u \models \forall x B(x) \iff \forall v \geq u \forall c \in U(v) [v \models B(c)], \]

e tc., and preserves I_u (on every $U(u), u \in W$), i.e.,
\[\bigwedge_i (a_i I_u b_i) \Rightarrow (u \models A(a_1, \ldots, a_n) \iff u \models A(b_1, \ldots, b_n)). \]

A formula $A(x)$ (where $x = (x_1, \ldots, x_n)$) is valid in M if it is true under any valuation in M, i.e., if $u \models A(a)$ for any $u \in W$ and $a \in (D_u)^n$. The predicate logic $\mathbf{L}(M)$ of an (e)-frame M is the set of all formulas valid in M.

2 We consider the constant domain principle
\[D = \forall x (P(x) \lor Q) \to \forall x P(x) \lor Q \]
(where P and Q are unary and 0-ary symbols, respectively), and its weak (‘negative’) version
\[D^- = \forall x (\neg P(x) \lor Q) \to \forall x \neg P(x) \lor Q. \]

* This work is supported by the RFBR-CNRS-grant # 14-01-93105.
The formula \(D \) states (in an e-frame) that \(\forall a \in U(u) \exists b \in U(0w) [aI_0b] \), and similarly, \(D^- \) states that \(\forall a \in U(u) \exists b \in U(0w) [\exists v \geq u (aI_vb)] \).

Let \(D^- \)-frames be e-frames satisfying the latter condition, i.e., validating \(D^- \).

Clearly, \(D \vdash D^- \) (we write \(A \vdash B \) for \(\exists \in A \vdash B \)). Also:

\(D \) is valid in \(M \) iff \(D^- \) is valid in \(M \) iff \(U(u) = U(0w) \) for every \(u \in W \) for a usual Kripke frame \(M \). Hence the Kripke-completion of \([\mathbf{Q} \mathbf{H} + D^-] \) is \([\mathbf{Q} \mathbf{H} + D] \). Now we describe the Kripke sheaf completion of \([\mathbf{Q} \mathbf{H} + D^-] \).

We consider the following formulas (for \(n > 0, m \geq 0 \)):

\[
D^-_{n,m} = \forall z(Q_0 \lor P_0(z)) \land \forall x R(x, x) \rightarrow
\rightarrow Q_0 \lor \forall x_0 [\forall z(P_0(z) \rightarrow Q_1(x_0) \lor P_1(x_0, z)) \rightarrow
\rightarrow Q_1(x_0) \lor \forall x_1 [\forall z(P_1(x_0, z) \rightarrow Q_2(x_0, x_1) \lor P_2(x_0, x_1, z)) \rightarrow
\rightarrow \ldots
\rightarrow Q_{n-2}(x_0, \ldots, x_{n-3}) \lor \forall x_{n-2} [\forall z(P_{n-2}(x_0, \ldots, x_{n-3}, z) \rightarrow
\rightarrow Q_{n-1}(x_0, \ldots, x_{n-2}) \lor P_{n-1}(x_0, \ldots, x_{n-2}, z)) \rightarrow
\rightarrow Q_{n-1}(x_0, \ldots, x_{n-2}) \lor \forall x_{n-1}, y [\forall z(P_{n-1}(x_0, \ldots, x_{n-2}, z) \rightarrow
\rightarrow Q_n(x_0, \ldots, x_{n-1}, y) \lor \neg R(y, z)) \rightarrow Q_n(x_0, \ldots, x_{n-1}, y)] \ldots] .
\]

Here \(P_i \) are \((1+m \cdot i)-ary\) predicate symbols (for \(0 \leq i < n \))\), \(Q_i \) are \((m \cdot i)-ary\) symbols (for \(0 \leq i < n \))\), \(R \) is a \(2 \)-ary binary symbol; also \(x_i = (x_{i,1}, \ldots, x_{i,m}) \) (for \(0 \leq i < n \)) are disjoint lists of different variables, and \(x, y, z \) are different variables non-occurring in \(x_0, \ldots, x_{n-1} \).

It can be easily shown that \(D^-_{n,m} \vdash D^-_{n',m'} \) for \(n \geq n', m \geq m' \) and \(D^-_{1,0} \vdash D^- \). Moreover,

\[
[\mathbf{Q} \mathbf{H} + D^-] \subset [\mathbf{Q} \mathbf{H} + \{D^-_{n,m} : n > 0, m \geq 0 \}) = [\mathbf{Q} \mathbf{H} + \{D^-_{n,n} : n > 0 \}].
\]

Also one can show that the formulas \(D^-_{n,m} \) are valid in all \(D^- \)-frames. Thus:

\(D^-_{n,m} \) is valid in an e-frame \(M \) iff \(D^- \) is valid in an e-frame \(M \), i.e., iff \(M \) is a \(D^- \)-frame (for any \(n, m \)).

Theorem 1. The logic \([\mathbf{Q} \mathbf{H} + \{D^-_{n,m} : n > 0, m \geq 0 \}) \) is complete w.r.t. \(D^- \)-frames.

Hence this logic is the Kripke sheaf completion of \([\mathbf{Q} \mathbf{H} + D^-] \). We believe that this completion is not finitely axiomatizable.

Some related completeness results for extensions with Kuroda’s formula \(K = \neg \forall x(P(x) \lor \neg P(x)) \) and with predicate axioms of finite heights \(P^n \) will be mentioned in the talk (here \(P_0^+ = \perp \) and \(P_{n+1}^+ = \forall x [R_n(x) \lor (R_n(x) \rightarrow P^n_+)] \)

for \(n \geq 0 \); \(R_n \) being different unary predicate symbols).

References
