On weak constant domain principle in the Kripke sheaf semantics

Dmitrij Skvortsov*

All-Russian Institute of Scientific and Technical Information, VINITI, skvortsovd@yandex.ru

Abstract. We consider superintuitionistic predicate logics understood in the usual way, as sets of predicate formulas (without equality and function symbols) containing all axioms of Heyting predicate logic **Q-H** and closed under modus ponens, generalization, and substitution of arbitrary formulas for atomic ones.

1 We consider the semantics of predicate Kripke frames with equality (called e-frames, for short), which is equivalent to the semantics of Kripke sheaves (see e.g. [1] or [2]). Namely, an e-frame is a triple M = (W, U, I) formed by a poset W with the least element 0_W , a domain map U defined on W such that $\varnothing \neq U(u) \subseteq U(v)$ for $u \leq v$, and a family I of equivalence relations I_u on U(u) for $u \in W$ such that $I_u \subseteq I_v$ for $u \leq v$. A usual (predicate) Kripke frame is an e-frame with equalities I_u (i.e., $aI_ub \Leftrightarrow a=b$ for $u \in W$, $a,b \in U(u)$).

A valuation $u \models A$ (for $u \in W$ and formulas A with parameters replaced by elements of U(u)) satisfies the monotonicity: $u \leq v$, $u \models A \Rightarrow v \models A$, the usual inductive clauses for connectives and quantifiers, e.g.

$$u \vDash (B \to C) \iff \forall v \ge u [(v \vDash B) \Rightarrow (v \vDash C)],$$

$$u \vDash \forall x B(x) \iff \forall v \ge u \forall c \in U(v) [v \vDash B(c)],$$

etc., and preserves I_u (on every $U(u), u \in W$), i.e.,

$$\bigwedge_{i} (a_i I_u b_i) \Rightarrow (u \vDash A(a_1, \dots, a_n) \Leftrightarrow u \vDash A(b_1, \dots, b_n)).$$

A formula $A(\mathbf{x})$ (where $\mathbf{x} = (x_1, \dots, x_n)$) is valid in M if it is true under any valuation in M, i.e., if $u \models A(\mathbf{a})$ for any $u \in W$ and $\mathbf{a} \in (D_u)^n$. The predicate logic $\mathbf{L}(M)$ of an (e-)frame M is the set of all formulas valid in M.

2 We consider the constant domain principle

$$D = \forall x (P(x) \lor Q) \to \forall x P(x) \lor Q$$

(where P and Q are unary and 0-ary symbols, respectively), and its weak ('negative') version

$$D^{-} = \forall x (\neg P(x) \lor Q) \to \forall x \neg P(x) \lor Q.$$

 $^{^{\}star}$ This work is supported by the RFBR-CNRS-grant # 14-01-93105.

The formula D states (in an e-frame) that $\forall a \in U(u) \exists b \in U(0_W) [aI_ub]$, and similarly, D^- states that $\forall a \in U(u) \exists b \in U(0_W) [\exists v \geq u (aI_vb)]$.

Let D^- -frames be e-frames satisfying the latter condition, i.e., validating D^- .

Clearly, $D \vdash D^-$ (we write $A \vdash B$ for $[\mathbf{Q} \cdot \mathbf{H} + A] \vdash B$). Also:

D is valid in M iff D^- is valid in M iff $U(u) = U(0_W)$ for every $u \in W$ for a usual Kripke frame M. Hence the Kripke-completion of $[\mathbf{Q} \cdot \mathbf{H} + D^-]$ is $[\mathbf{Q} \cdot \mathbf{H} + D]$. Now we describe the Kripke sheaf completion of $[\mathbf{Q} \cdot \mathbf{H} + D^-]$. 3 We consider the following formulas (for n > 0, m > 0):

$$\begin{split} D_{n,m}^- &= \forall z (Q_0 \vee P_0(z)) \& \forall x R(x,x) \rightarrow \\ &\rightarrow Q_0 \vee \forall \mathbf{x}_0 \left[\forall z (P_0(z) \rightarrow Q_1(\mathbf{x}_0) \vee P_1(\mathbf{x}_0,z)) \rightarrow \\ &\rightarrow Q_1(\mathbf{x}_0) \vee \forall \mathbf{x}_1 \left[\forall z (P_1(\mathbf{x}_0,z) \rightarrow Q_2(\mathbf{x}_0,\mathbf{x}_1) \vee P_2(\mathbf{x}_0,\mathbf{x}_1,z)) \rightarrow \\ &\rightarrow \dots \\ &\rightarrow Q_{n-2}(\mathbf{x}_0,\dots,\mathbf{x}_{n-3}) \vee \forall \mathbf{x}_{n-2} \left[\forall z (P_{n-2}(\mathbf{x}_0,\dots,\mathbf{x}_{n-3},z) \rightarrow \\ &\rightarrow Q_{n-1}(\mathbf{x}_0,\dots,\mathbf{x}_{n-2}) \vee P_{n-1}(\mathbf{x}_0,\dots,\mathbf{x}_{n-2},z)) \rightarrow \\ &\rightarrow Q_{n-1}(\mathbf{x}_0,\dots,\mathbf{x}_{n-2}) \vee \forall \mathbf{x}_{n-1},y \left[\forall z (P_{n-1}(\mathbf{x}_0,\dots,\mathbf{x}_{n-2},z) \rightarrow \\ &\rightarrow Q_n(\mathbf{x}_0,\dots,\mathbf{x}_{n-1},y) \vee \neg R(y,z) \right) \rightarrow Q_n(\mathbf{x}_0,\dots,\mathbf{x}_{n-1},y) \right]] \dots] \right]. \end{split}$$

Here P_i are $(1+m\cdot i)$ -ary predicate symbols (for $0 \le i < n$), Q_i are $(m\cdot i)$ -ary symbols (for $0 \le i < n$), Q_n is a $(1+m\cdot n)$ -ary symbol, R is a binary symbol; also $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,m})$ (for $0 \le i < n$) are disjoint lists of different variables, and x, y, z are different variables non-occurring in $\mathbf{x}_0, \dots, \mathbf{x}_{n-1}$.

It can be easily shown that $D_{n,m}^- \vdash D_{n',m'}^-$ for $n \ge n', m \ge m'$ and $D_{1,0}^- \vdash D^-$. Moreover,

$$(\mathbf{Q}\text{-}\mathbf{H} + D^{-}) \ \subset \ (\mathbf{Q}\text{-}\mathbf{H} + \{D^{-}_{n,m}: n \! > \! 0, m \! \geq \! 0\}) \ = \ (\mathbf{Q}\text{-}\mathbf{H} + \{D^{-}_{n,n}: n \! > \! 0\}).$$

Also one can show that the formulas $D_{n,m}^-$ are valid in all D^- -frames. Thus: $D_{n,m}^-$ is valid in an e-frame M iff D^- is valid in an e-frame M, i.e., iff M is a D^- -frame (for any n, m).

Theorem 1. . The logic $(\mathbf{Q}-\mathbf{H}+\{D_{n,m}^-:n>0,m\geq 0\})$ is complete w.r.t. D^- -frames.

Hence this logic is the Kripke sheaf completion of $(\mathbf{Q}-\mathbf{H}+D^{-})$. We believe that this completion is not finitely axiomatizable.

Some related completeness results for extensions with Kuroda's formula $K = \neg \neg \forall x \, (P(x) \lor \neg P(x))$ and with predicate axioms of finite heights P_m^+ will be mentioned in the talk (here $P_0^+ = \bot$ and $P_{n+1}^+ = \forall x \, [\, R_n(x) \lor (R_n(x) \to P_n^+)\,]$ for $n \ge 0$; R_n being different unary predicate symbols).

References

- 1. Shehtman, V. and D. Skvortsov, Semantics of non-classical first order predicate logics. In: Mathematical Logic (ed. P.Petkov), Plenum Press, N.Y., 105–116, 1990 (Proc. of Summer school and conference in mathematical logic 'Heyting'88').
- 2. Gabbay, D., V. Shehtman, and D. Skvortsov, *Quantification in nonclassical logic*, Vol. 1, Sections 2.6, 3.6, Studies in Logic and the Foundations of Mathematics 153: Elsevier, 2009.