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Abstract. Projective unifiers were introduced by S. Ghilardi and suc-
cessfuly applied in propositional logic: intuitionistic and modal, see [6],
[7], [8], Still new applications are being studied, see e.g. [1], [9]. Our aim
is to lift projective unifiers to the first-order (or predicate) level. How-
ever extending results on projective unification of some intermediate and
modal propositional logics to their predicate counterparts is not imme-
diate and it requires a proper definition of substitution and additional
axioms such as the principle of Independence of Premise, IP.

Let a first-order modal language without function symbols be given (for de-
tails see [2]). If ε is a substitution for predicate variables, it is usual (see [11]) to
assume that vf (ε(A)) ⊆ vf (A) for each formula A, where vf(ε(B)) denotes the
set of free variables occurring in B. For our approach, however, such approach
would be too restrictive. We need a more general concept where ε(P (a1, . . . , an))
may contain – in addition to a1, · · · , an – other free variables. These additional
variables are regarded as parameters of the substitution.

If L is an intermediate or modal propositional logic, then Q-L denotes the
corresponding predicate logic. Any predicate logic, in addition to many specific
conditions (see [2]), must be also closed under the (above mentioned extended
concept of) substitution for predicate variables.

Similarly as in propositional logic, a unifier for a formula A in a predicate
logic L is a substitution ε (for predicate variables) such that ε(A) is derivable in
L, i.e. `L ε(A). A formula A is said to be unifiable in L if it has a unifier. A uni-
fier ε for A in L is projective if A `L ε(Pi(a1, . . . , an))↔ Pi(a1, . . . , an) for each
predicate variable Pi. Clearly, if ε is projective for A in L, then A `L ε(B)↔ B
for each formula B. We say that a logic L enjoys projective unification if each
unifiable formula has a projective unifier in L.

An intermediate propositional logic is known to have projective unification
(see [12]) iff it extends LC. We manage to extend this result to predicate logics
even that Q-LC does not enjoy projective unification. The following principle
of Independence of Premise, IP in short, is known in constructive mathematics
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and proof theory:

(IP ) (A⇒ ∃xB(x))⇒ ∃x(A⇒ B(x)),

where x is not free in A. We have

Theorem 1. An intermediate predicate logic L enjoys projective unification iff
L ⊇ IP.Q-LC.

IP.Q-LC denotes an extension of Q-LC with IP , according to the notation of
extensions used in [2]. To prove that any L extending IP.Q-LC enjoys projec-
tive unification it is sufficient to modify the propositional unifier as given by [10].
Thus, for each unifiable first-order formula A one receives in a straightforward
and uniform way (via the ground uniform method) its projective unifier ε which
is a substitution for predicate variables satisfying the condition vf(ε(B)) ⊆ vf(B)
for each formula B .

In case of modal logics the situation is more complicated. Ground unifier
method suffices only to show, see [4], that

Theorem 2. Any modal predicate logic over Q-S5 enjoys projective unification.

As it is known, see [5], a propositional modal logic enjoys projective unifi-
cation iff it extends S4.3. However, even at the propositional level, projective
unifiers cannot be received in a uniform way (using any form of ground unifier
method). Nor one should expect that, in predicate logic, unifiers would satisfy
the condition vf(ε(B)) ⊆ vf(B). Clearly, the modal version of (IP ), that is

(�IP ) �(A→ ∃x�B(x))→ ∃x�(A→ B(x))

is required for projective unification. Though we were only able to prove

Theorem 3. Any modal predicate logic L= with equality enjoys projective uni-
fication iff L= extends �IP.Q-S4.3=.
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