
Ideals and involutive filters in residuated lattices
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A bounded integral residuated lattice (= residuated lattice, for short) is an
algebra M = (M ; �,∨,∧,→, , 0, 1) of type 〈2, 2, 2, 2, 2, 0, 0, 〉 such that (i)
(M ; �, 1) is a (non-necessarily commutative) monoid; (ii) (M ; ∨,∧, 0, 1) is a
bounded lattice; (iii) x� y ≤ z iff x ≤ y → z iff y ≤ x z for any x, y z ∈ M .
Put x− = x → 0, x∼ = x  0 for each x ∈ M . A residuated lattice is called
(i) good if it satisfies the identity x−∼ = x∼−; (ii) involutive if it satisfies the
identities x−∼ = x = x∼−.

Residuated lattices form a large class of algebras containing certain classes of
algebras behind many-valued and fuzzy logics (commutative or non-commutative),
e.g., MV -algebras, BL-algebras, MTL-algebras ([1], [7], [4]), and their non-
commutative variants GMV -algebras (= pseudo-MV -algebras), pseudo-BL-al-
gebras, pseudo-MTL-algebras ([6], [10], [2], [3], [5]).

In our talk we will deal with algebraic structure properties of residuated
lattices.

It is well known that congruences on any residuated lattice are in a one-to-
one correspondence with their normal filters. GMV -algebras (and, in particular,
MV -algebras) can be considered, from the point of view of residuated lattices,
as residuated lattices which satisfy identities of divisibility and pre-linearity and
are involutive. If M is such a GMV -algebra, one can define the binary operation
⊕ such that x ⊕ y = (x− � y−)∼ = (x∼ � y∼)− for any x, y ∈ M . Then we
also have x � y = (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−, i.e. the operations � and ⊕ are
mutually dual. Using the operation ⊕, one can define the notion of an ideal (and
a normal ideal), which is dual to the notion of a filter (and a normal filter). That
means, congruences of GMV -algebras are also in a one-to-one connection with
normal ideals. But in general, a dual operation to the multiplication in residuated
lattices does not exist. Consequently a notion of “the (precise) dual to a filter”
does not exist as well. Nevertheless, in [9] a kind of an ideal of a BL-algebra
(which need not be an MV -algebra) has been introduced and it was shown that
such ideals are very useful in the study of structure properties of BL-algebras.
Among others, it is possible to define quotient BL-algebras not only using filters
but in particular cases also using ideals. Namely, quotient BL-algebras induced
by ideals are in fact MV -algebras.
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We introduce the notion of an ideal of general residuated lattices (which need
not be commutative). For this we define two binary operations � and � called
the left and right additions such that: x � y := y−  x and x � y := x∼ → y.
Then ∅ 6= I ⊆ M is called an ideal of M if (1) x, y ∈ I =⇒ x � y ∈ I; (1’)
x, y ∈ I =⇒ x � y ∈ I; (2) x ∈ I, z ∈ M, z ≤ x =⇒ z ∈ I. We show that
every ideal I of a residuated lattice M induces a congruence θI on M and that
the quotient residuated lattice M/θI is involutive.

Let M be a residuated lattice. Then we say that M satisfies the Glivenko
property (GP), if for any x, y ∈M , (x→ y)−∼ = x→ y−∼, (x y)∼− = x 
y∼−. If M is a residuated lattice then we denote D(M) := {x ∈M : x−∼ = 1 =
x∼−}, the set of dense elements of M . We say that a normal filter F of M is
involutive if the quotient residuated lattice M/F is involutive. We show that if
M is a good residuated lattice satisfying (GP) then the involutive filters of M
are exactly all normal filters of M containing D(M). We describe connections
between ideals and normal filters of M .

Let M be a residuated lattice. Then we get: a) If I is an ideal of M then I
is the 0-class in M/θI . b) If F is a normal filter of M , then the class 0/F is an
ideal of M .

Moreover we prove that if I is an ideal of a pseudo BL-algebra and F =
FI = 1/θI , then F is an involutive normal filter of M .

It is known that the variety of residuated lattices is 1-regular, but not regular
[8]. Hence every congruence θ on a residuated lattice M is determined uniquely
by the filter Fθ = 1/θ, but other classes in M/θ can be at the same time also
classes in different congruences on M . Nevertheless, we prove that if M is an
arbitrary pseudo BL-algebra then there is a one-to-one correspondence between
ideals and involutive normal filters of M .
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