Ideals and involutive filters in residuated lattices

Jiří Rachůnek¹ and Dana Šalounová²

¹ Department of Algebra and Geometry, Faculty of Sciences, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic jiri.rachunek@upol.cz

² Department of Mathematical Methods in Economy, Faculty of Economics, VŠB–Technical University Ostrava, Sokolská 33, 701 21 Ostrava, Czech Republic dana.salounova@vsb.cz

A bounded integral residuated lattice (= residuated lattice, for short) is an algebra $M = (M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ of type $\langle 2, 2, 2, 2, 2, 0, 0, \rangle$ such that (i) $(M; \odot, 1)$ is a (non-necessarily commutative) monoid; (ii) $(M; \lor, \land, 0, 1)$ is a bounded lattice; (iii) $x \odot y \leq z$ iff $x \leq y \rightarrow z$ iff $y \leq x \rightsquigarrow z$ for any $x, y z \in M$. Put $x^- = x \rightarrow 0$, $x^{\sim} = x \rightsquigarrow 0$ for each $x \in M$. A residuated lattice is called (i) good if it satisfies the identity $x^{-\sim} = x^{\sim -}$; (ii) involutive if it satisfies the identity $x^{-\sim} = x^{\sim -}$;

Residuated lattices form a large class of algebras containing certain classes of algebras behind many-valued and fuzzy logics (commutative or non-commutative), e.g., MV-algebras, BL-algebras, MTL-algebras ([1], [7], [4]), and their non-commutative variants GMV-algebras (= pseudo-MV-algebras), pseudo-BL-algebras, pseudo-MTL-algebras ([6], [10], [2], [3], [5]).

In our talk we will deal with algebraic structure properties of residuated lattices.

It is well known that congruences on any residuated lattice are in a one-toone correspondence with their normal filters. GMV-algebras (and, in particular, MV-algebras) can be considered, from the point of view of residuated lattices, as residuated lattices which satisfy identities of divisibility and pre-linearity and are involutive. If M is such a GMV-algebra, one can define the binary operation \oplus such that $x \oplus y = (x^- \odot y^-)^{\sim} = (x^{\sim} \odot y^{\sim})^-$ for any $x, y \in M$. Then we also have $x \odot y = (x^- \oplus y^-)^{\sim} = (x^{\sim} \oplus y^{\sim})^-$, i.e. the operations \odot and \oplus are mutually dual. Using the operation \oplus , one can define the notion of an ideal (and a normal ideal), which is dual to the notion of a filter (and a normal filter). That means, congruences of GMV-algebras are also in a one-to-one connection with normal ideals. But in general, a dual operation to the multiplication in residuated lattices does not exist. Consequently a notion of "the (precise) dual to a filter" does not exist as well. Nevertheless, in [9] a kind of an ideal of a BL-algebra (which need not be an MV-algebra) has been introduced and it was shown that such ideals are very useful in the study of structure properties of BL-algebras. Among others, it is possible to define quotient *BL*-algebras not only using filters but in particular cases also using ideals. Namely, quotient *BL*-algebras induced by ideals are in fact MV-algebras.

2 Jiří Rachůnek, Dana Šalounová

We introduce the notion of an ideal of general residuated lattices (which need not be commutative). For this we define two binary operations \oslash and \oslash called the left and right additions such that: $x \oslash y := y^- \rightsquigarrow x$ and $x \oslash y := x^- \to y$. Then $\emptyset \neq I \subseteq M$ is called an *ideal* of M if (1) $x, y \in I \implies x \oslash y \in I$; (1') $x, y \in I \implies x \odot y \in I$; (2) $x \in I, z \in M, z \leq x \implies z \in I$. We show that every ideal I of a residuated lattice M induces a congruence θ_I on M and that the quotient residuated lattice M/θ_I is involutive.

Let M be a residuated lattice. Then we say that M satisfies the Glivenko property (GP), if for any $x, y \in M$, $(x \to y)^{--} = x \to y^{--}$, $(x \to y)^{--} = x \to y^{--}$. If M is a residuated lattice then we denote $D(M) := \{x \in M : x^{--} = 1 = x^{--}\}$, the set of *dense* elements of M. We say that a normal filter F of M is *involutive* if the quotient residuated lattice M/F is involutive. We show that if M is a good residuated lattice satisfying (GP) then the involutive filters of Mare exactly all normal filters of M containing D(M). We describe connections between ideals and normal filters of M.

Let M be a residuated lattice. Then we get: a) If I is an ideal of M then I is the 0-class in M/θ_I . b) If F is a normal filter of M, then the class 0/F is an ideal of M.

Moreover we prove that if I is an ideal of a pseudo *BL*-algebra and $F = F_I = 1/\theta_I$, then F is an involutive normal filter of M.

It is known that the variety of residuated lattices is 1-regular, but not regular [8]. Hence every congruence θ on a residuated lattice M is determined uniquely by the filter $F_{\theta} = 1/\theta$, but other classes in M/θ can be at the same time also classes in different congruences on M. Nevertheless, we prove that if M is an arbitrary pseudo BL-algebra then there is a one-to-one correspondence between ideals and involutive normal filters of M.

Acknowledgments. The first author was supported by the IGA PřF 2015010, the second author was supported by ESF Project CZ.1.07/2.3.00/20.0296.

References

- Cignoli, R. L. O., D'Ottaviano, I. M. L. and Mundici, D.: Algebraic Foundation of Many-valued Reasoning. Kluwer Acad. Publ., Dordrecht – Boston – London, 2000.
- Di Nola, A., Georgescu, G. and Iorgulescu, A.: Pseudo-BL algebras: Part I, Multiple-Valued Logic 8 (2002), 673–714.
- Di Nola, A., Georgescu, G. and Iorgulescu, A.: Pseudo-BL algebras: Part II, Multiple-Valued Logic 8 (2002), 715–750.
- Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124 (2001), 271–288.
- Flondor, P., Georgescu, G., Iorgulescu, A.: Pseudo-t-norms and pseudo-BL algebras. Soft Comput. 5 (2001), 355–371.
- Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras. Multiple Valued Logic 6 (2001), 95–135.
- 7. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Amsterdam, 1998.

- Jipsen, P., Tsinakis, C.: A survey of residuated lattices. In: Ordered algebraic structures (ed. J. Martinez), Kluwer Acad. Publ. Dordrecht, 2002, pp. 19–56.
- Lele, C., Nganou, J.B.: MV-algebras derived from ideals in BL-algebras. Fuzzy Sets Syst. 218 (2013), 103–113.
- Rachůnek, J.: A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255–273.