
On decidability of some classes of Stone algebras

Pavol Zlatoš
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A typical (nontrivial) first order theory is undecidable. According to an early
result of Tarski [15], the theory of Boolean algebras is one of the lucky ex-
ceptions. This was extended by Ershov to the decidability (of the theory) of
relatively complemented distributive lattices as well as to Boolean algebras with
a distinguished ultrafilter or prime ideal in [6], and to Post algebras in [7]. As
shown by Rabin [13], even the second order theory of Boolean algebras with
quantification over ideals is still decidable, implying the decidability of the first
order theory of Boolean algebras with a sequence of distinguished ideals. On the
other hand, several seemingly moderate generalizations of Boolean algebras are
already undecidable. They include (bounded) distributive lattices (Grzegorczyk
[8]), Boolean pairs, i.e., Boolean algebras with a distinguished subalgebra (Rubin
[14]), all varieties of Heyting algebras properly extending the variety of Boolean
algebras (Burris [3]), etc.

In our contribution we pursue examining the borderline between decidabil-
ity and undecidability in the close vicinity of Boolean algebras. Iterating Ka-
triňák’s version of the Chen-Grätzer triple construction applied consecutively
to n Boolean algebras (see [10], [4], [5]) we introduce the finitely axiomatizable
classes SAn of n-th degree Stone algebras as follows. Given Boolean algebras
B1, B2, . . . , Bn and their homomorphisms hi Bi → Bi+1 (1 ≤ i < n), referred to
as the structure maps, we take the P-lattice

B1 oh1
B2 oh2

. . .ohn−1
Bn = {(b1, b2, . . . , bn) ∈ B1 ×B2 × . . .×Bn |

h1(b1) ≥ b2, h2(b2) ≥ b3, . . . , hn−1(bn−1) ≥ bn} ,

regarded as a (0, 1)-sublattice of the direct product B1 × B2 × . . . × Bn, with
pseudocomplement

(b1, b2, . . . , bn)∗ = (b∗1, h1(b∗1), . . . , (hn−1 ◦ · · · ◦ h1)(b∗1)) .

Next we introduce two finitely axiomatizable subclasses SAi and SAs of the class
SAn, with all the structure maps hi in their P-lattice representation injective or
surjective, respectively. Then the class of all Post algebras of degree n is defini-
tionally equivalent to the intersection SAi

n ∩ SAs
n (cf. Katriňák-Mitschke [11],

Balbes-Dwinger [2]). Taking the liberty of confusing first order languages, the
class SADn of all n-th degree Stone algebras which are dually pseudocomple-
mented and form a dual Stone algebra under the operation of dual pseudocom-
plement satisfies the inclusions PAn ⊆ SADn ⊆ SAs

n.
Building on Rubin’s undecidability proof of the class of Boolean pairs [14]

we show that already the class SAi
2 of all Stone algebras with Boolean dense



elements set and injective structure map h1 is hereditarily undecidable, hence
all the classes SAi

n are undecidable for n ≥ 2, too. The same is true for the
classes SAn and the class of all Gödel algebras, i.e., Heyting algebras satisfying
(x→ y) ∨ (y → x) = 1.

On the other hand, using Rabin’s method of interpretation (semantic em-
bedding) from [12] and his above mentioned result from [13] we show that all
the classes SAs

n are decidable. As a consequence we obtain the decidability of
the classes SADn, as well as another proof of Ershov’s decidability result for the
classes PAn. Finally, from a result of K. and P. Idziak [9], characterizing varieties
of Heyting algebras with decidable first order theory of their finite members, it
follows that the classes of all finite algebras in SAn are decidable for each n.

This is a joint work with M. Adamč́ık [1].
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