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The display calculus (of a logic) can be viewed as the proof-theoretic face
of the logic’s algebraic semantics, enabling us to investigate the logic using the
tools of proof-theory. Here we will consider how to obtain analytic display calculi
for axiomatic extensions of a logic (using substructural logics as an example),
and then discuss how the issue of conservativity between the logic of the display
calculus and certain sublogics can be investigated directly in this setting.

In order to study a logic from a proof-theoretical perspective, it is necessary to
first obtain an analytic proof-calculus for the logic. By an analytic proof-calculus
we mean that the calculus has the subformula property i.e. any proof in the
calculus (of some formula ψ, say) uses only those formulae that are subformulae
of ψ. The point is that the proofs then have nice structural properties, facilitating
further analysis. Despite much work on this topic since Gentzen’s [6] seminal
work on analytic sequent calculi for intuitionistic and classical first-order logics,
many logics still do not have an analytic proof-calculus. Even when an analytic
calculus C is known for some logic L, it is often unclear how to obtain an analytic
calculus for an axiomatic extension L+Ax. The situation is particularly vexing
since many logics are constructed as axiomatic extensions of existing logics.

Belnap’s Display Calculus [1] is a proof-theoretic formalism which generalises
Gentzen’s sequent calculus and is suitable for presenting logics whose logical
operators are residuated. Indeed, the display calculus can be viewed as the proof-
theoretic face of the algebraic semantics of a fully residuated logic. In particular,
the residuation of the logical operators corresponds to a powerful structural
property from the proof-theoretic perspective: the display property. Another
attractive proof-theoretic feature is the general cut-elimination theorem which
applies whenever the rules of the display calculus obey certain easy-to-verify
conditions. Indeed, the formalism has been applied to give analytic calculi for
many different families of logics including substructural logics, tense logics and
bunched implication logics.

Here we address the question of computing analytic display calculi for ax-
iomatic extensions of a logic. In particular, we identify a class of axioms such that
every axiomatic extension using these axioms has an analytic calculus. Previous
work on this topic has focussed on the display calculus [7] for tense logic and
the hypersequent calculus [2] for Full Lambek logic. In contrast, our sufficient
conditions are stated abstractly rather than for concrete calculi. Our results [3, 4]
apply to many well-known display calculi, immediately yielding analytic calculi
for the axiomatic extensions of the corresponding base logics. The set of axioms
that we treat with our procedure is determined by the invertible rules of the
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base calculus. We can also show that it is decidable if an axiom belongs to this
set or not.

Next we consider the reverse direction. We show that under certain additional
conditions, every structural rule satisfying the conditions for cut-elimination is
equivalent to an axiom from the set we identified before. In this way we give a
full characterisation of this set of structural rules. Kracht [7] has shown a similar
characterisation to ours for the concrete case of tense logic. Kracht’s result can
be obtained as a special case of the result presented here.

We conclude by discussing the vexing issue of conservativity that arises nat-
urally when we wish to consider sublogics in a restricted language. Specifically,
suppose that the logic L is defined in the language L, and the logic L′ ⊂ L is
defined in the language L′. Then L is said to be conservative over L′ if every
theorem of L in the language L′ is a theorem of L′. Suppose that C is an analytic
display calculus for L and suppose that δ is a derivation in C of a formula ψ in
the language L′. Now δ can be seen viewed in the usual way as a directed tree
with root ψ (the directed edges correspond to the rules of the calculus and the
nodes correspond to sequents). Notice that δ does not witness a proof of ψ in
the sublogic L′ because certain nodes in δ may not be even interpretable in L′.
However, if we can extract a new tree from δ whose nodes are interpretable in L′,
then conservativity amounts to showing that each edge in the new tree corre-
sponds to a valid inference in L′. The point is that the interesting theoretical
result of conservativity can be expressed proof-theoretically as a transforma-
tion on δ. Moreover, the conservativity result then yields an analytic calculus
for L′. Conservativity [5] of bi-intuitionistic linear logic over full-intuitionistic
linear logic has already been shown in this this way. The analytic display calculi
obtained above thus pave the way for the study of conservativity for a large class
of logics.
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