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The verification of higher-order recursive programs is a challenging issue, for
which model-checking techniques have been considered. Programs are abstracted
using higher-order recursion schemes (HORS); and a recursion scheme G can be
understood as a simply-typed λ-term with fixpoint operators Y , over a set Σ =
a, b, c . . . of free variables of order at most one. In the spirit of a Church encoding,
the set Σ can be seen as a ranked alphabet, over which the normalization of G
computes a potentially infinite value tree 〈G〉, typically approximating the set of
behaviors of a functional program.

The higher-order model-checking problem then consists in checking whether
a monadic second-order logic (MSO) formula φ holds at the root of 〈G〉. A
convenient approach is to translate φ into an equivalent alternating parity tree
automaton (APT) Aφ, a kind of non-deterministic top-down tree automaton
enriched with alternation and coloring. A transition over a binary symbol a is
typically of the form

δ(q0, a) = (2, q2) ∨ ((1, q1) ∧ (1, q2) ∧ (2, q0)) (1)

This models the alternating behavior of Aφ: when reading the symbol a in the
state q0, the automaton Aϕ can either (i) drop the left subtree of a, and explore
the right subtree with state q2, or (ii) explore twice the left subtree of a in
parallel, once with state q1 and the other time with state q2, and explore the
right subtree of a with state q0. Kobayashi observed that the transition (1) can
be reflected by giving to the symbol a the following refined intersection type:

a : (∅ → q2 → q0) ∧ ((q1 ∧ q2)→ q0 → q0) (2)

From this observation, and given an APT A, Kobayashi defines an intersection
type system where a higher-order recursion scheme G has type q iff the automaton
A has an execution over its value tree 〈G〉 from that state q. The connection of
intersection types with linear logic comes from the linear decomposition of the
intuitionistic arrow

A⇒ B = !A ( B

which regards a program of type A ⇒ B as a program of type !A ( B which
thus uses its input !A only once in order to compute its output B ; but where
the exponential modality “ ! ” enables at the same time the program to discard
or to duplicate this single input !A. This striking similarity with the alternating
behavior of APT led us to investigate the relation between Kobayashi’s inter-
section type system and the relational semantics of linear logic. In the relational
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model, the exponential modality ! is interpreted as a finite multiset construc-
tion, which keeps track of the number of times an argument is called by the
function. In [4], we translate Kobayashi’s intersection type system (restricted
to the simply-typed λ-calculus) to a non-idempotent variant. Adapting a cor-
respondence developped by Bucciarelli and Ehrhard [1] between indexed linear
logic and the relational semantics of linear logic, we then establish that the re-
sulting type system computes the relational semantics of simply-typed λ-terms.

An obstruction to the extension of this correspondence to all HORS comes
from the fact that a value tree 〈G〉 is typically infinite, and can therefore use
countably some of its free variables. For that reason, we developped an alterna-
tive relational semantics of linear logic, where the exponential modality noted
A 7→  A is interpreted as the set of finite-or-countable multisets of elements of
A, see [5] for details. These semantics feature a coinductive fixpoint operator,
which interprets the syntactic recursion operator Y . This alternative and “in-
finitary” relational interpretation of linear logic enables us to establish a clean
correspondence between (i) the coinductive intersection type system originally
constructed by Kobayashi (ii) the executions of an alternating tree automaton
(iii) our “infinitary” variant of the traditional relational semantics of linear logic.

However, this approach only captures a fragment of MSO logic, since it does
not account for the coloring ability of APT. Indeed, Aφ has a coloring function Ω
which assigns to every state q ∈ Q a color Ω(q) ∈ N. This additional information
is devised so that an execution of the APT Aϕ over the value tree 〈G〉 proves
the validity of the associated MSO formula ϕ iff it is winning for the parity
condition induced by Ω, that is iff for every infinite branch of the run-tree, the
greatest color encountered infinitely often is even. Kobayashi and Ong extended
the original intersection type system in order to integrate this extra coloring
information. In a series of recent papers [5, 6], we show that the type system
they obtain can be slightly altered (and in fact improved) in order to disclose
the modal nature of colors, and its connection to the exponential modality of
linear logic. In our modal reformulation, the refinement type (2) associated to
the transition of an APT may be colored (or modalised) in the following way:

a : (∅ → �c2 q2 → q0) ∧ ((�c1 q1 ∧�c2 q2)→ �c0 q0 → q0) (3)

where �c describes a family of modal operators, indexed by colors c ∈ N. This
coloring information can be incorporated in the infinitary relational semantics
using a very simple and elementary comonad, defined as follows:

� A = Col ×A = &c∈Col A

where Col ⊆ N typically denotes the finite set of colors appearing in Aϕ. The
existence of a distributive law λ :  ◦� ⇒ � ◦  enables us to compose the
comonad � with the exponential modality  of our infinitary relational seman-
tics, in order to obtain a new and “colored” exponential modality A 7→  �A. In
the resulting infinitary and colored relational model, the semantic counterpart
of the colored intersection typing (3) is:

[[a]] = { ([], ([(c2, q2)], q0)) , ([(c1, q1), (c2, q2)], ([(c0, q0)], q0)) } (4)
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We then defined an inductive-coinductive fixpoint operator Y , based on the
principles of alternating parity tree automata: it behaves inductively in the scope
of an odd color, and coinductively when the color is even, see [5] for details. This
interpretation of the fixpoint operator Y based on parity may be also formulated
at the level of intersection types, see [6]. Finally, we prove that a recursion scheme
G produces a tree 〈G〉 over which Aϕ has a winning execution from q if and only
if its colored relational semantics contains q.

This connection with linear logic leads us to a new proof of the decidability of
the “selection problem” established by Carayol and Serre [2]. Our semantic proof
of decidability [3] is based on the construction of a finitary and colored semantics
of linear logic, adapted this time from the traditional qualitative semantics of
linear logic based on prime-algebraic lattices and Scott-continuous functions be-
tween them — rather than from its alternative quantitative relational semantics.
Interestingly, this qualitative semantics of linear logic corresponds to an inter-
section type system with subtyping, formulated in particular by Terui in [8]. It
should be noted that the decidability of the “selection problem” implies in par-
ticular the decidability result for MSO formulas established by Ong [7] ten years
ago. This decidability result gives a strong evidence of the conceptual as well as
technical relevance of the connection which we have established and developed
[3–6] between higher-order model-checking and linear logic1.
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1 Although the papers mentioned here [3–6] will be published this year, the truth is
that it took us several years of work to carry out the connection between higher-
order model-checking and linear logic described in this brief survey. The idea and the
details of the connection were thus exposed in seminar talks and at various stages
of development in the past three years.


