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Given a syntax S endowed with some rewrite rules, and given a denotational
semantics D for S (i.e. a semantics which gives to any term t of S an interpre-
tation JtKD that is invariant under the rewrite rules), we say that D is injective
with respect to S if, for any two normal terms t and t′ of S, JtKD = Jt′KD im-
plies t = t′. In categorical terms, injectivity corresponds to faithfulness of the
“interpretation-functor” from S to D; it is a natural and well studied question
for denotational semantics of λ-calculi and term rewriting systems (see [7,10]).
All (positive) results of injectivity of denotational models with respect to some
syntax fit in the general perspective of abolishing the traditional distinction
between syntax and semantics.

Starting from investigations on denotational semantics of System F (second
order typed λ-calculus), in 1987 Girard [8] introduced linear logic (LL), a re-
finement of intuitionistic logic. He defines two new modalities, ! and ?, giving a
logical status to structural rules and allowing one to distinguish between linear
resources (i.e. usable exactly once during the cut-elimination process) and re-
sources available at will (i.e. erasable and duplicable during the cut-elimination
process). One of the main features of LL is the possibility of representing proofs
geometrically (so as the λ-calculus terms) by means of particular graphs called
proof-structures. Among proof-structures it is possible to characterize “in a ge-
ometric way” the ones corresponding to proofs in LL sequent calculus through
the Danos-Regnier correctness criterion [2] (see also [11]): roughly speaking, a
proof-structure is a proof-net (i.e. it corresponds to a proof in LL sequent calcu-
lus) if and only if it fulfils some conditions about acyclicity and connectedness
(ACC).4

Ehrhard [3] introduced finiteness spaces, a denotational model of LL (and
λ-calculus) which interprets formulas by topological vector spaces and proofs
by analytical functions: in this model the operations of differentiation and the
Taylor expansion make sense. Ehrhard and Regnier [4,5,6] internalized these op-
erations in the syntax and thus introduced differential linear logic DiLL0 (which

4 Strictly speaking, this equivalence holds only in some fragments of LL, for example
the multiplicative one (MLL) without ⊥. In larger fragments of LL, as for instance
MELL (the multiplicative-exponential fragment of LL, sufficiently expressive to en-
code the λ-calculus) one only has that all proof-nets are ACC proof-structures, but
to obtain the converse ACC is not sufficient, additional hypotheses are required.
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encodes the resource λ-calculus, see [5]), where the promotion rule (the only one
in LL which is responsible for introducing the !-modality and hence for creating
resources available at will, marked by boxes in LL proof-structures) is replaced
by three new “finitary” rules introducing !-modality which are perfectly sym-
metric to the rules for the ?-modality: this allows a more subtle analysis of the
resources consumption during the cut-elimination process. At the syntactic level,
the Taylor expansion decomposes a LL proof-structure in a (generally infinite)
formal sum of DiLL0 proof-structures, each of which contains resources usable
only a fixed number of times. Roughly speaking, each element of the Taylor ex-
pansion T (π) of a LL proof-structure π is a DiLL0 proof-structure obtained from
π by replacing each box B in π with nB copies of its content (for any nB ∈ N),
recursively.

The question of injectivity of some set-based denotational model (i.e. denota-
tional model whose interpretations are sets) with respect to LL proof-structures
has been first addressed in [11] and some remarkable (positive and negative)
results are in [11,9,1]: in particular, in [11] Tortora de Falco has shown that
coherent semantics in not injective with respect to MELL proof-nets, but it is
injective with respect to some fragments of MELL, for instance the fragment of
MELL that encodes the λ-calculus.

Our contribution aims at looking further into the relationship between the
Taylor expansion and the relational model. The relational model is one of the
well-known and simplest denotational semantics of LL and λ-calculus: it inter-
prets LL proof-structures as morphisms in the category of sets and relations.
Our work proves that the relational semantics is injective with respect to MELL
proof-structures fulfilling some condition about connectedness. The injectivity of
the relational model in the similar case of MELL proof-structures without weak-
enings has already recently been proved by de Carvalho and Tortora de Falco in
[1]. Our proof follows a different and more geometrical approach based on the no-
tion of Taylor expansion; it represents both a simplification and a generalization
of the result contained in [1]:

1. We notice that, given a cut-free and η-expanded (i.e. with atomic axioms)
MELL proof-structure π, each point of the Taylor expansion of π is isomorphic
to one and only one element of the set of injective points of the interpretation
of π in the relational model, quotiented by the equivalence relation induced
by atoms renaming. (This does not hold if π contains cuts, consistently with
the idea that the Taylor expansion of a MELL proof-structure can be seen as
an object between syntax and semantics). We can thus use a graph-theoretic
representation of the elements of the relational interpretation of a cut-free
and η-expanded MELL proof-structure by means of DiLL0 proof-structures.

2. We show that every box-connected5 MELL proof-structure π is uniquely de-
termined by the point of order 2 in its Taylor expansion (i.e. the DiLL0

5 Informally, a MELL proof-structure is box-connected if, for every box B, all the
content of B is “accessible” from its !-door. Our notion of accessibility is related
to that of empire, a well-known tool of the theory of MLL proof-nets introduced
by Girard in [8]. Notice that a box-connected MELL proof-structure might contain
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proof-structure obtained from π by taking exactly two copies of the content
of each box of π, recursively)6: if π1 and π2 are two box-connected MELL
proof-structures (possibly with cuts) such that their respective Taylor ex-
pansions T (π1) and T (π2) have the same point of order 2, then π1 = π2.
In order to do a comparison with mathematical analysis, the analogous of
this result is that analytical functions fulfilling some condition are uniquely
determined by their second derivative!

3. As a corollary of points (1) and (2), we show that the relational model is
injective with respect to box-connected MELL proof-structures: given two
cut-free and η-expanded box-connected MELL proof-structures, if they have
the same interpretation in relational semantics then they are identical.

We would like to stress that the box-connectedness hypothesis in our results
of points (2) and (3) is quite general and not ad hoc: all ACC MELL proof-
structures, all MELL proof-nets without ⊥ and weakening, and all MELL proof-
structures that are the translation of λ-terms are box-connected. Moreover, box-
connectedness is preserved under cut-elimination.
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cuts, while in [1] MELL proof-structures are all cut-free: in this respect our result
generalizes [1].

6 Following the approach of [1], the order of the point of the Taylor expansion allowing
one to distinguish two different MELL proof-structures π and π′ depends on π and
π′: in this respect our result simplifies [1].


