On pretransitive logics of finite depth

Andrey Kudinov^{*†} and Ilya Shapirovsky^{*}

*Institute for Information Transmission Problems of the Russian Academy of Sciences [†]Higher School of Economics [†]Moscow Institute of Physics and Technology {kudinov, shapir}@iitp.ru

We study logics with expressible "transitive closure" modality (*pretransitive* logics). In such logics we can express formulas of finite depth. We prove the finite model property for a family of pretransitive logics of finite depth.

There is an old problem about decidability of logics $\mathsf{K}_{\mathsf{n}}^{\mathsf{m}} = \mathsf{K} + \Box^{m} p \to \Box^{n} p$, where \Box^{m} is the sequence of m boxes. For the case when $m \leq 1$ or $n \leq 1$, and for the trivial case m = n the finite model property (FMP) is known. As for the other cases it is unknown whether $\mathsf{K}_{\mathsf{n}}^{\mathsf{m}}$ has FMP or even if it is decidable.

If n > m then the logic K_n^m is *pretransitive*¹, which means that we can express the truth in a point-generated submodel. Formally, L is *pretransitive* if there exists a formula $\chi(p)$ with a single variable p such that for any Kripke model M with $M \models L$ and for any w in M we have

$$\mathsf{M},w\vDash\chi(p)\Leftrightarrow\forall u(wR^*u\Rightarrow\mathsf{M},u\vDash p),$$

where R^* is the transitive reflexive closure of the accessibility relation of M. It is known [2] that L is pretransitive iff for some $k \ge 0$ it contains the formula of *k*-transitivity $\Box^{\le k} p \to \Box^{k+1} p$, where

$$\Box^{\leq k}\varphi = \bigwedge_{i=0}^k \Box^i \varphi.$$

We put $\Box^* \varphi = \Box^{\leq k} \varphi$ for the least such k. In particular, for $\mathsf{K}_{\mathsf{n}}^{\mathsf{m}}$ $(n > m) \ \Box^* \varphi = \Box^{\leq n-1} \varphi$.

For logics $\mathsf{K}_{\leq m} = \mathsf{K} + \Box^{\leq m} p \to \Box^{m+1} p$, FMP is also unknown for all m > 1 (the logic $\mathsf{K}_{\leq 1} = \mathsf{w}\mathsf{K}4$ is known to have FMP).

Since logics K_n^m and $\mathsf{K}_{\leq \mathsf{m}}$ are Kripke complete, to prove FMP we can proceed in the following standard way: for an L-frame F and a satisfiable in F formula φ to construct a finite L-frame in which formula φ is still satisfiable. We do not know how to do this for arbitrary K_n^m - and $\mathsf{K}_{\leq \mathsf{m}}$ -frames, but we find a way to construct filtrations for all such pretransitive frames of finite depth. Here the depth of a frame (W, R) is the maximal length of chains in the skeleton of (W, R^*) .

Lemma 1. Let L be one of the logics K_n^m , $K_{\leq m}$, $n > m \ge 1$. If a formula is satisfiable in an L-frame of finite depth h, then it is satisfiable in a finite L-frame

¹ or conically expressive [2], or weakly transitive [5], or (n-1)-transitive [1]

A. Kudinov, I. Shapirovsky

of depth h; the size of the latter frame is bounded by

$$2^{2^{l+l}} \Big\} h,$$

where *l* is the length of the formula.

As well as for the logic S4, for a pretransitive logic we can define *formulas of finite depth*:

$$B_1 = p_1 \to \Box^* \Diamond^* p_1, \quad B_{h+1} = p_{h+1} \to \Box^* (\Diamond^* p_{h+1} \lor B_h).$$

Proposition 1. For a pretransitive logic L and an L-frame F, $F \vDash B_h$ iff the depth of F is no greater then h.

The extension of a pretransitive logic L with B_h is denoted by $L.B_h$. The following theorem is an analogue of known facts about such extensions of S4.

Theorem 1. Let L be a pretransitive logic. Then

 $1. \ \mathsf{L}.B_1 \supseteq \mathsf{L}.B_2 \supseteq \mathsf{L}.B_3 \supseteq \ldots \supseteq \mathsf{L}.$

- 2. If L is consistent then $L.B_1$ (and, consequently, each $L.B_h$) is consistent.
- 3. If L is canonical then each $L.B_h$ is canonical.

Corollary 1. For all $n > m \ge 1$, $h \ge 1$, logics $\mathsf{K}_n^m . B_h$ and $\mathsf{K}_{\le m} . B_h$ are canonical and, hence, Kripke complete.

In general, pretransitive logics of finite depth are much more complicated then their analogues above S4. For example, all logics S4. B_h are locally tabular, S4. $B_1 = S5$ is pretabular, while no local tabularity or pretabularity holds even for the "simplest" nontransitive pretransitive logic $K_{\leq 2}$. B_1 [7,4]. The same true for all logics K_n^m . B_h , $K_{\leq m}$. B_h $(n > m \ge 2)$, since they are smaller then $K_{\leq 2}$. B_1 .

However, all these logics have FMP. Even in the case of depth 1 (the case when we consider pretransitive analogues of S5, i.e., when R^* is an equivalence relation) the proof is not trivial (especially for logics $\mathsf{K}_n^m.B_1$ with n > m+1). FMP for logics $\mathsf{K}_{\leq \mathsf{m}} + p \to \Box^{\leq m} \Diamond^{\leq m} p = \mathsf{K}_{\leq \mathsf{m}}.B_1$ was proved in [3], and for pretransitive logics $\mathsf{K}_n^m.B_1 -$ in [6].

Our main result is the following.

Theorem 2. For all $n > m \ge 1$, $h \ge 1$, $\mathsf{K}_n^m . B_h$ and $\mathsf{K}_{\le m} . B_h$ have FMP.

Corollary 2. Let L be one of the logics K_n^m , $K_{\leq m}$, $n > m \ge 1$.

$$\mathsf{L}$$
 has FMP iff $\mathsf{L} = \bigcap_{h \ge 1} \mathsf{L}.B_h.$

References

- Chagrov, A., Zakharyaschev, M.: Modal Logic, Oxford Logic Guides, vol. 35. Oxford University Press (1997)
- Gabbay, D., Shehtman, V., Skvortsov, D.: Quantification in Nonclassical Logic. Elsevier (2009)
- Jansana, R.: Some logics related to von Wright's logic of place. Notre Dame J. Formal Logic 35(1), 88-98 (01 1994)
- 4. Kostrzycka, Z.: On non-compact logics in NEXT(KTB). Mathematical Logic Quarterly 54(6), 617–624 (2008)
- 5. Kracht, M.: Tools and Techniques in Modal Logic. Elsevier (1999)
- Kudinov, A., Shapirovsky, I.: Finite model property of pretransitive analogs of S5. In: Topology, Algebra and Categories in Logic (TACL 2011). pp. 261-264 (2011)
- 7. Miyazaki, Y.: Normal modal logics containing KTB with some finiteness conditions. AiML-2004: Advances in Modal Logic p. 264 (2004)