
Relational semantics via TiRS graphs

Willem Conradie and Andrew Craig

Department of Pure and Applied Mathematics, University of Johannesburg
wconradie@uj.ac.za and acraig@uj.ac.za

The availability of simple and intuitive relational semantics has made an important
contribution to the study of many non-classical logics. This has particularly been the
case for such logics with a classical or intuitionistic propositional base, for example
modal logic and intuitionistic modal logic. However, it has been more difficult to use
relational semantics to study logics whose algebraic semantics are given by lattices that
are not necessarily distributive. This is a result of the fact that the duality for algebras
whose underlying lattices are non-distributive is far more complicated than the existing
dualities for distributive lattices and Boolean algebras. This difficulty has resulted in
relational semantics that do not have the same nice intuition that has aided the study of
logics based on Boolean algebras or distributive lattices.

Some of the existing approaches have made use of Urquhart’s representation [10];
see for example [7]. The RS frame semantics described by Gehrke [8] are an attempt to
by-pass the problematic representation theorems and rather access the relational struc-
tures via the canonical extension. An RS frame is a two-sorted relational structure of the
form F = (X,Y,R) where X is a set of worlds, Y a set of co-worlds, and R a relation from
X to Y . These structures have been applied to linear logics [3], logics with negation [1],
as well as the Lambek-Grishin calculus [2].

We provide a general relational semantics for logics, the algebraic semantics of
which are based on bounded lattices with additional operators. This semantics takes the
form of TiRS graphs (a TiRS graph is a set X equipped with a binary relation E satis-
fying certain conditions) together with relations used to interpret the other connectives
of the language. In this way our semantics is similar to classical Kripke frames (where
E is the diagonal relation) and intuitionistic Kripke frames (where E is a partial order)
and indeed has these as special cases.

The idea of working with a graph (X, E) has its roots in the dual representation
theorem of Ploščica [9]. Recent work in [4,5] has shown how to construct the canonical
extension of a lattice from Ploščica’s representation. The untopologised graphs that
occur in Ploščica’s representation were characterised in [6] where they are called TiRS
graphs.

Urquhart’s dual representation for arbitrary bounded lattices [10] uses a particular
set of disjoint filter-ideal pairs as the underlying set of the dual space. These pairs are
“maximal” in the sense that neither the filter nor the ideal can be extended without there
being an element of the lattice in their intersection. This set of filter-ideal pairs is then
equipped with two quasi-orders.

Ploščica provided a variation on this representation by viewing the underlying set
as a set of maximal partial homomorphisms. Instead of maximal disjoint filter-ideal
pairs, the underlying set of the dual representation for a bounded lattice L is the set of
maximal partial homomorphisms from L into 2 (the two-element bounded lattice). Such
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a partial homomorphism is maximal in the sense that its domain cannot be extended
without it failing to be a lattice homomorphism. The set is denoted by Lmp(L, 2). (It is
easily shown that the set Lmp(L, 2) is in a one-to-one correspondence with Urquhart’s
maximal filter-ideal pairs.) The major change in Ploščica’s representation was to replace
the two quasi-orders with a binary relation E on the set Lmp(L, 2).

For f , g ∈ Lmp(L, 2), we have

f Eg ⇔ f −1(1) ∩ g−1(0).

Although we will consider abstract TiRS graphs as the setting for our relational seman-
tics, it is useful to remember the origin of these structures as the untopologised dual
spaces of bounded lattices. When f and g are thought of as worlds in our relational
structures, the above definition can be read as follows: “there is no proposition asserted
at f and denied at g”. We further interpret the E relation by thinking of it in the follow-
ing way

f Eg ⇔ “ f trusts g”.

When a relational structure (doubly-ordered set/RS frame/TiRS graph) is used to
model a lattice-based algebra with an additional n-ary operator, an extra (n + 1)-ary re-
lation is added to the relational structure. Some compatibility is then required between
the extra relation and the Galois-closed subsets of the relational structure. This com-
patibility can often be complicated to describe, but in our setting we have a relatively
simple description of the conditions. As an example, consider a TiRS graph X = (X, E)
equipped with an additional binary relation, R^. We require the following compatibility
condition between R^ and E:

∀x∀w
(
∀y(xEy⇒ ∃z(zEy ∧ zR^w))⇒ xR^w

)
(1)

Condition (1) can equivalently be written as

∀x∀w
(
xR^w ∨ ∃y(xEy ∧ ∀z(zEy⇒ ¬zR^w))

)
(2)

If we do not require condition (1), for a modal TiRS frame X^ = (X, E,R^) our
relational semantics for the assertion of the ^ operator is defined as follows:

x  ^ϕ iff ∀y
(
xEy⇒ ∃z(yR^z and z  ϕ)

)
The propositional formula ^ψ is denied at a world x if the following condition is satis-
fied:

x � ^ψ iff ∀y
(
xR^y⇒ ¬(y  ψ)

)
At a world x, certain propositional formulas might neither be asserted nor denied. This
is a result of the world x being (maximally) partial, which in turn is a result of the lack
of distributivity.

For a formula ϕ, let JϕK be the set of worlds at which ϕ is asserted. If we do require
condition (1) on X^ = (X, E,R^), we then have the conditions:

x  ^ϕ iff x ∈ R−1
^ (JϕK) and x � ^ψ iff ∀y

(
xR^y⇒ ¬(y  ψ)

)
We apply our new setting to other modal operators, as well as to the connectives of

substructural logics, and obtain intuitive relational semantics for these settings. Com-
pleteness results for certain examples can be obtained from the correspondence between
TiRS graphs and TiRS frames shown in [6].
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