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The main use of ∗-autonomous categories is in the semantic study of Linear
Logic. For this reason, it is thus natural to look for a ∗-autonomous category
of locally convex topological vector spaces (tvs). On one hand, Linear Logic
inherits its semantics from Linear Algebra, and it is thus natural to build models
of Linear Logic from vector spaces [3,5,6,4]. On the other hand, denotational
semantics has sought continuous models of computation through Scott domains
[9]. Moreover, the infinite nature of the exponential of Linear Logic calls for
infinite dimensional spaces, for which topology becomes necessary.

One of the first intuitions that comes to mind when thinking about objects
in a ∗-autonomous category is the notion of reflexive vector space, i.e. a a tvs
which equals its double dual. When A is a vector space, the transpose dA : A→
(A → ⊥) → ⊥ of the evaluation map evA : (A → ⊥) × A → ⊥ is exactly the
canonical injection of a vector space in its bidual. Then, requiring dA to be an
isomorphism amounts to requiring A to be reflexive. However, the category of
reflexive topological vector spaces is not ∗-autonomous, as it is not closed.

Barr [2] constructs two closed subcategories of the category of tvs by re-
stricting to tvs endowed with their weak topology (wtvs) or with their Mackey
topology (mtvs), which are both polar topologies. Indeed, if E is a tvs, one can
define its dual E′ as the space of all continuous linear form on E. Enforcing E
with its weak or with its Mackey topology doesn’t change E′. The weak topology
is exactly the coarsest among the polar topologies, while the Mackey topology
is the finest.

Theorem 1 ([2]). The full subcategories wtvs and mtvs are ∗-autonomous1.

However, these are not categories of reflexive spaces, since the exact definition
of reflexivity in functional analysis requires the dual to be endowed with the
bounded-open topology.. Indeed, reflexivity is obtained thanks to the use of
polar topologies, which are nothing but an internalization of the notion of dual
pair, and the dual here is considered with its weak or its Mackey topology.

We showed that one can build a model of Linear Logic [8], one top of the
∗-autonomous category of wtvs. The additive connectives of Linear Logic are
interpreted as the cartesian product and coproduct, and the multiplicative con-
junction is interpreted as the algebraic tensor product endowed with a well-
chosen topology. Non-linear proofs are interpreted as a sequences of monomials.

1 This result is straightforward for any polar topology, but Barr obtain this categories
as the image of the left adjoint and right adjoint of the functor from the category
tvs to the category of pairs



This model offers a semantic interpretation of non-reversibility: positive con-
nectives are interpreted by those constructions on tvs which are not naturally
endowed with their weak topology.

Theorem 2 ([8]). The category of wtvs yields a model of Linear Logic.

One should be able likewise to form a model of Linear Logic made of Mackey
spaces, or of any spaces endowed with a specific polar topology.

When constructing the model, one is faced with a choice, as the tensor prod-
ucts could be endowed with several distinct topologies: the inductive topology,
the projective topology and the injective topology. See Grothendieck’s thesis for
their definition [7]. The choice of this topology determines the internal hom-set
of the ∗-autonomous category, through the formula L(E,F ) = (E ⊗ F ′)′. The
hom-set obtained when considering the inductive tensor product, as in the model
described above [8], is the usual space of all linear continuous map between E
and F .

The study of tensor products led Grothendieck to the notion of nuclear spaces
[7], which are tvs for which the injective and the projective tensor products
correspond. However, every nuclear space which is either Fréchet or (DF)2 is
reflexive, and we obtain in a non-trivial ?-autonomous category of tvs. They
enjoy moreover remarkable stability properties :

Theorem 3. There is a full subcategory of the category of Nuclear spaces which
is a model Multiplicative Additive Linear Logic.

Besides, such spaces are very common in functional analysis3. Examples of
Nuclear and Fréchet include spaces of test functions, spaces of distributions,
spaces of differentiable maps on smooth manifold, or spaces of holomorphic maps
on analytic manifold. Those functions spaces F(V ) verify kernel theorems, alike
the exponential isomorphisms in Seely categories [10] :

F(V )⊗̂F(U) = F(U × V )
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