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I wish to report here on a novel formalisation of Game Theory based on
higher order functionals. The starting point is the modelling of players via so-
called selection functions, i.e. functionals of type

(X → R)→ X.

Here X is the type of moves and R is the type of outcomes. If one thinks of
X → R as the type of possible game contexts, a selection function describes
the optimal moves in each given game context. Some of the main results so far
include:

– The type constructor JRX ≡ (X → R)→ X is a strong monad, and as such
supports an operation

JRX × JRY → JR(X × Y ).

This can be understood as a “merging” of players. The new selection function
JR(X × Y ) is a new single player that captures the goals of the two given
players JRX and JRY , see [3, 4].

– With an appropriate definition of equilibrium one can show that in sequen-
tial games the operation ⊗ calculates optimal strategies. Moreover, with
argmax: (X → Rn) → X as selection functions, as in standard Game The-
ory, this construction coincides with backward induction [6].

– The binary operation ⊗ can be iterated not only finitely many times, but
also a countable number of times, i.e.

Πi∈NJRXi → JRΠi∈NXi

is well-defined (assuming R a discrete type, and continuity of functionals)
and in fact has been shown to be equivalent to bar recursion, a proof-theoretic
construction used to give computational meaning to the countable axiom of
choice [3].

Selection functions were first introduced in [1, 2] with R = B, and later
generalised in [3–6].
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