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Euclidean magnitudes can be summed, 
subtracted and compared. The unit has 
the archimedean property 



since Hölder’s times, addition, subtraction and comparison of 
magnitudes are carried on in  totally ordered abelian groups  

lattice ordered abelian groups (l-groups) describe magnitude-
valued functions defined on compact spaces 

THEOREM (Beynon’s PhD thesis, 1973) Rational polyhedra with rational 
PL-maps are dually equivalent to finitely presented l-groups.  	
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since Hölder’s times, addition, subtraction and comparison of 
magnitudes are carried on in  totally ordered abelian groups  

lattice ordered abelian groups (l-groups) describe magnitude-
valued functions defined on compact spaces 

THEOREM (Beynon’s PhD thesis, 1973) Rational polyhedra with rational 
PL-maps are dually equivalent to finitely presented l-groups.  	



Since the archimedean property of the unit is undefinable even 
in first-order logic, unital l-groups have been largely neglected  

what about the unit? 





these equations contain nice topological, algebraic, 
geometric, arithmetic, logic-algorithmic structure 

       (x ! y) ! z = x ! (y ! z)  
                x ! y = y ! x  
               x ! 0 = x  
                ¬¬x = x  
            x ! ¬0 = ¬0  

   ¬( y !¬x) ! y = ¬( x !¬y) ! x  

these axioms are a reformulation of the time-honored  
Lukasiewicz axioms for his infinite-valued calculus 

(Actually, the commutativity axiom follows from the others) 
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MV-algebras ≈ unital l-groups 
THEOREM (D.M., 1986, J.Functional Analysis)   There is a 

categorical equivalence Γ between unital l-groups and MV-algebras.	



EXPORT 1:  Since MV-algebras are defined by equations,  via Γ we can 
speak of  free objects and finitely presented unital l-groups, as the 
correspondents of free and finitely presented MV-algebras	



EXPORT 2:  Since MV-algebras are the Lindenbaum algebras the 
Lukasiewicz infinite-valued calculus,  they export to unital  l-groups 
their own natural built-in deductive algorithmic structure    



the category  K   of finitely presented 
unital l-groups makes perfect sense  

THEOREM For a unital l–group  (G,u)  the following are 
equivalent:	



Γ(G,u)=A  for some  finitely presented MV-algebra A   	



(G,u) is finitely presentable as a pointed l-group	



The covariant hom-functor hom((G,u), — ) : K    Set  preserves 
directed colimits	



[V. Marra, L.Spada, Two isomorphism criteria for directed colimits, arXiv 
1312.0432]  



THEOREM (Baker-Beynon)   An l-group G  is finitely 
generated projective iff it is finitely presented 	
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THEOREM (Baker-Beynon)   An l-group G  is finitely 
generated projective iff it is finitely presented 	



the unit makes the difference  

Actually, the characterization of finitely generated projective 
unital l-groups is a nice tour de force in algebraic topology.      	



FACT (Folklore)   Every finitely generated projective  unital 
l-group G is finitely presented—but the converse fails	



L.M.Cabrer, D.M., Communications in Contemporary Mathematics 14.3 (2012)	


D.M., Combinatorics, Probability and Computing, 23 (2014)	


L.M.Cabrer, arXiv 1405.7118 (where the characterization is finally achieved) 	







duality in action: 
a Lukasiewicz formula φ (says very little) 

(x & (x V y)) V ((xy) & (yx))  

legenda:    a&b=¬(¬a⊕¬b),  ab=¬a⊕b,  aVb=¬(¬a⊕b)⊕b 



the MV-term φ codes a McNaughton 
map  fφ  in the free MV-algebra FREEn 

(x & (x V y)) V ((xy) & (yx))  

legenda:    a&b=¬(¬a⊕¬b),  ab=¬a⊕b,  aVb=¬(¬a⊕b)⊕b 



the model-set  Mod(φ) = fφ-1(1) is a rational 
polyhedron   

(x & (x V y)) V ((xy) & (yx))  

legenda:    a&b=¬(¬a⊕¬b),  ab=¬a⊕b,  aVb=¬(¬a⊕b)⊕b 



the Lindenbaum algebra Lφ  is  
finitely presented by  φ  

Mod(φ) 

(x & (x V y)) V ((xy) & (yx))  

Lφ is obtained by restricting to  Mod(φ) all maps of FREEn 
Lφ= M(Mod(φ)) = the McNaughton functions over Mod(φ)  



C.C.CHANG:  MV= HSP[0,1]     

DEFINITION   An MV-algebra Q is finitely presented 
if it is the quotient Q = FREEMVn/〈q〉 by some 
principal ideal J=〈q〉, where q∈FREEMVn 
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invertible arrows in P are known as       
Z-homeomorphisms 

Z-homeomorphisms preserve the amount of 
information needed to specify rational points    

the category P of  resource-aware polyhedra 



G. Panti’s famous  Z-homeomorphism  A  of the unit square onto itself   
(answering a problem of G-C. Rota) 

by definition, a  Z-homeomorphism is a 
PL-homeomorphism that preserves least common 
denominators of the coordinates of rational points. 

90° 



Z-homeomorphisms generate a new geometry of rational 
polyhedra, as isometries do in Euclidean geometry 

Since Z-homeomorphisms preserve the lattice Zn of integer 
points in Rn, then a linear Z-homeomorphism is a member of 
the n-dimensional affine group over the integers  An   

Z-homeomorphism = continuous An-equidissection 

Z-homeomorphism and the affine group on Z 



   Z-homeomorphism h of rational polyhedra P,Q in n-space  
=denominator preserving rational PL-homeomorphism h 
=invertible Z-map  h   whose inverse is also a Z-map 
=continuous An-equidissection h, An=n-dimensional affine group on Z  

h 

P Q 

arrows in this duality:  Z-maps 

DEFINITION  A  Z-map is a PL-map with integer coefficients  



OBJECTS:  The  map  PM(P)  sending each rational  
polyhedron  P ⊆ [0,1]n to the MV-algebra of McNaughton 
functions over P,  yields a duality  between  rational polyhedra 
and  finitely presented MV-algebras (≈unital l-groups).	



ARROWS:  Every   Z-map  f:QP  determines the homomorphism  
f’:M(P) M(Q) that transforms each  McNaughton  function  g  
of M(P)  into the composite function   gof   of    M(Q).  Every 
homomorphism of  M(P) into M(Q) arises in this way.	



the folklore duality between   
finitely presented algebras and rational 

polyhedra with Z-maps 





the homogeneous integer coordinates of a rational 
point in Qn yield its homogeneous correspondent in Zn 

•  let  A = (a1,...,an) be a 
rational point  in Rn 

•  the denominator of  A is 
the least common 
denominator  d  of the 
coordinates of  A 

•  then d.(a1,...,an,1) is an 
integer vector   A’  in Zn+1 

•  A’  is said to be  the 
homogeneous 
correspondent of  A 

A 

a1/d 

a2/d 

A’ 

a1 

a2 

d 



the homogeneous correspondent of a simplex 
 the cone  T’ is the positive 

span  pos(A’,B’,C’) in R3 of 
the homogeneous 
correspondents  A’B’C’ of 
the vertices of a simplex  T     

 A’B’C’ are the generating 
vectors of T’ 

simplex T          cone T’  

T = conv(V0,V1,...,Vk), a k-simplex with rational vertices 

T’ = pos(V’0,V’1,,...V’k), a k-dimensional cone with generators V’i 



the homogeneous correspondent of a simplicial complex 

A simplicial complex  C  with rational 
vertices in R2  (any two faces 
intersect in a common face)  

Its corresponding fan in R3, 
a complex of cones with rational 
vertices given by the homogeneous 
correspondents of the vertices of C  



the homogeneous correspondent of a simplicial complex 

Fans classify toric varieties 

A simplicial complex  C  with rational 
vertices in R2  (any two faces 
intersect in a common face)  

Its corresponding fan in R3, 
a complex of cones with rational 
vertices given by the homogeneous 
correspondents of the vertices of C  





regular simplex 

DEFINITION   A simplex T  is 

regular 
nonsingular, or   
unimodular, or 

if the set of homogeneous 
correspondents  of its vertices 
can be completed to a matrix 
with determinant ± 1 

A B 

C 

C’ A’ 
B’ 

det(A’,B’,C’) = ±1 



equivalent reformulations of regularity 

   (from algebra) the homogeneous 
correspondents are part of a basis in 
the free abelian group  Zn+1 

    (from the geometry of numbers) 
the half-open parallelepiped 
determined by the homogeneous 
correspondents does not contain any  
nonzero integer point 

    (from measure theory) the half-
open parallelepiped determined by 
the homogeneous correspondents 
has unit volume 

det(A’,B’,C’) = ±1 



similarly,  every simplex in 
this triangulation  is regular 

the homogeneous 
coordinates of this triangle 
give the unimodular  matrix    
M = ((1,1,2),(1,1,1),(0,1,1))  

(0,0,1) (1,0,1)

(1,1,1)(0,1,1)

(1,1,2)

(1,0,2)

(0,1,2)
(1,1,3)

Hironaka’s regular triangulation of   [0,1]2   
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regular simplexes have found recent applications in the 
classification of orbits under the affine groups over the integers  

[see L.Cabrer, D.Mundici, Ergodic Theory and Dynamical Systems,  
to appear,  arXiv 1403.3827]  



affine/homogeneous  (at the end of the day) 

rational point ⇔ integer vector 

rational simplex ⇔ rational cone 

regular simplex ⇔ regular cone 

vertices of simplex ⇔ generators of cone 

simplicial complex ⇔ simplicial fan 

regular complex ⇔ nonsingular fan 
                         ⇔ smooth toric variety 





strong regularity 
A rational polyhedron P is strongly 
regular if for some (equivalently, for 
every)  regular triangulation  Ω of P 
the affine hull of every maximal 
simplex of Ω contains an integer point 

Equivalently:  the denominators of  
the vertices of every maximal simplex 
in Ω  are relatively prime 

This notion was independently 
introduced by Jerabek in his analysis 
of admissibility in the proof-theory of 
Lukasiewicz logic 

Ω 

x ∈ Zn 



three classes of algebras 

finitely presented 

finitely generated 
subalgebra of a 
free algebra 

finitely  
generated 
projective 



three classes of polyhedra 

rational polyhedra 

exact polyhedra 

Z-retracts 

a rational polyhedron in [0,1]n is exact if it contains a vertex of [0,1]n, is strongly  
regular and connected  (L.M.Cabrer, Forum Math. 2015)  



A is finitely presented 
homomorphism 

isomorphism 
A is indecomposable 
A is free n-generated  

A is n-generated 
dim(maxspec(A)) = d 

A is a finitely generated 
subalgebra of a free algebra 

A=M(P), P a rational polyhedron 
Z-map 
Z-homeomorphism 
P is connected 
P is the unit cube [0,1]n  
P lies in [0,1]n  
dim(P) = d 
P is exact (connected, with a 
boolean point, strongly regular) 

algebra geometry+arithmetic  

A = M(P) is projective how does P look like ? 





Z-retract = dual of finitely generated projective 

•  As we have seen, every n-generated projective algebra A is finitely 
presented, whence by duality we can write A=M(P) for some 
polyhedron P lying in the n-cube  [0,1]n.	



•  DEFINITION   P is said to be a Z-retract (of the n-cube)  if there 
is  a  Z-map      µ: [0,1]nP such that, letting  j : P[0,1]n be 
inclusion map, the composition   µoj   is the identity map on P.	



•    
•  COROLLARY   A=M(P)  is projective   iff   P is a Z-retract. 



Proof.  By definition,  there 
is a piecewise linear 
retraction µ: [0,1]n P, each 
linear piece having integer 
coefficients. Thus µ sends 
each rational x of [0,1]n  into 
a rational point y of P whose 
denominator divides the 
denominator of x. In 
particular, every vertex of 
[0,1]n is sent into some 
vertex of [0,1]n.  QED 	
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P 



THEOREM  
(L.Cabrer, D.M., 
Communications in 
Contemporary Math. 
2012, op.cit.)   	


 If  P is a Z-
retract,  then  
P is strongly 
regular.	



a second property of Z-retracts 
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P is strongly 
regular.	
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OBSERVATION    If  P is a Z-
retract, then, a fortiori,   P is a 
retract of some n-cube. 	



a third property of Z-retracts 

THEOREM.   For any 
polyhedron P in [0,1]n the 
following conditions are 
equivalent:	



(a) P is a retract of [0,1]n 	


(b) P is connected and all 

homotopy groups πi(P) 
are trivial	



(c) P is contractible.	



Proof.    (a)(b) by the functorial properties of the 
homotopy groups πi .  The implications (b)(a)  and 
(b)(c)  follow from Whitehead theorem in 
algebraic topology.   (c)(b) is a routine exercise in 
algebraic topology.  QED	
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 This completes the geometric algebraic topological excursion needed to 
characterize finitely generated projective MV-algebras and unital l-groups	



the geometry of projective MV-algebras  

THEOREM  (L. CABRER, D.M.,  Comm. Contemporary Math. 2012)         
If  A  is a finitely generated projective MV-algebra or a unital 
abelian l-group,  writing without loss of generality   A=M(P)   for 
some rational polyhedron  P in [0,1]n it follows that   	



(i)  P contains some vertex of [0,1]n,    	



(ii)  P is contractible, and   	


(iii)  P is strongly regular.	



	

 For the converse of this theorem see L.M.CABRER’s paper in  
arXiv  1405.7118  (a tour de force in algebraic topology)  	







Idempotent endomorphisms 

X 

We all know what a retraction  r : XY is.  The map  r  acts 
identically on its range,  r2=r.   We are seldom interested in the 
behavior of   r  over the domain  X\Y. For  instance, there might 
be a region Y’≠Y where  r  acts isomorphically onto Y.   

r 
Y 

Y’ r 

And yet, the behavior of r outside its range may be decisive 
for the construction of new invariants for projective objects  



Think of your favorite (quasi)variety  
Let  F be the free n-generator Q-algebra 

Let  A  be a retract of  F 

•  Thus there is at least one retraction  r = r2 of  F  onto  A 
•  Problem 1.  Under which conditions the number of  retractions  

of   F   onto   A   is finite ? 
•  Problem 2. Give a sequence  Ai of retracts of  of  F  such that 

the number of retractions of F onto Ai is finite and > i   



Think of your favorite (quasi)variety  
Let  F be the free n-generator Q-algebra 

Let  A  be a retract of  F 

•  Thus there is at least one retraction  r = r2 of  F  onto  A 
•  Problem 1.  Under which conditions the number of  retractions  

of   F   onto   A   is finite ? 
•  Problem 2. Give a sequence  Ai of retracts of  of  F  such that 

the number of retractions of F onto Ai is finite and > i   

Answer to Problem 1 for MV-algebras (L.Cabrer, D.M. 2015):  
The number of retractions onto A is finite iff  the maximal space 
R   of   A = M(R) is a closed domain.   
(i.e., R is equal to the closure of its interior in [0,1]n) 



ρ	

L 

A = M(L) = the MV-algebra of all restrictions to L 
of the McNaughton functions of the free 2-generator 
MV-algebra  M([0,1]2).  A dually corresponds to the 

Z-retraction  ρ  of the unit square onto L  

Example of a retract  A  of  FREE2 such that 
infinitely many retractions exist of FREE2 onto A 



Problem 2.  For every i=1,2,...,  construct  a retract  
Ai  of  F such that there are  > i  (but finitely many)  

retractions of FREE2 onto Ai 

Ai = M(Ui)   
where Ui , Ui+1 are the coloured triangles in the 

next picture,  Fi= the ith Fibonacci number, 
and the red points are given by Farey 

mediants. Points are specified in 
homogeneous coordinates   

Answer (n=2): 



Un-1 

Un 

[n–1,1,Fn] 

[1,0,Fn–1] [0,0,1] 

[n,1,Fn+1] 

[1,0,Fn–1+1 

[1,0, Fn–1] [1,0,Fn] 



closing a circle of ideas 

+ = 

       (x ! y) ! z = x ! (y ! z)  
                x ! y = y ! x  
               x ! 0 = x  
                ¬¬x = x  
            x ! ¬0 = ¬0  

   ¬( y !¬x) ! y = ¬( x !¬y) ! x  



THANK YOU 



THANK YOU 
MV and l-groups: of course	


MV and Riesz spaces:  Cabrer, Di Nola. Lapenta, Leustean, Pedrini 	


MV and Differential geometry:  Busaniche, Cabrer, D.M.   	


MV and Semirings, tropical mathematics: Belluce, Di Nola, Ferraioli, Russo	


MV and Probability:  Flaminio, Keimel, Montagna†, Rieçan   	


MV and Games: Kroupa, Teheux	


MV and Multisets: Cignoli, Marra, Nganou 	


MV and Semantics of Lukasiewicz logic:   Picardi, D.M.	


MV and Proof-theory of Lukasiewicz  logic: Cabrer, Ciabattoni, Jeràbek, Metcalfe	


MV and Modal logic, Belief:  Flaminio,  Godo, Kroupa,  Teheux	


MV and Quantum structures:  Dvureçenskij, Pulmannovà	


MV and AF C*-algebras: Lawson, Scott, D.M.	


MV and Discrete Dynamical Systems: Cabrer, D.M.  	


MV and Categories, Morita equivalence, coordinatization, duality, sheafs: 	


Caramello, Gehrke, Lawson, Marra, Russo, Scott, Spada	




