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Recap

1 KHaus = The category of compact Hausdorff spaces and
continuous maps.

2 KRFrm = The category of compact regular frames and
frame homomorphisms.

3 DeV = The category of de Vries algebras and de Vries
morphisms.

KHaus oo // KRFrm oo // DeV

Stone oo //?�

OO

zKFrm
?�

OO

oo // BA
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OO
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How to embed BA into DeV?

For B ∈ BA, let B be the MacNeille completion of B. (That is, B is
the complete Boolean algebra of normal ideals of B, where an
ideal I ⊆ B is normal if Iul = I.) Then B embeds into B by
a 7→ ↓a, and WLOG we assume that B is a subalgebra of B.

Define ≺ on B by x ≺ y if there is a ∈ B with x 6 a 6 y. Then
(B,≺) is the de Vries algebra corresponding to the Boolean
algebra B.
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Way below relation

Observe that fixpoints of ≺ are exactly the elements of Z(L).
Thus, KRFrm generalizes zKFrm by looking at ≺ instead of its
fixpoints.

Similarly, to generalize CohFrm we must look at the relation
whose fixpoints are exactly the elements of K(L). But this is
exactly the way below relation�!

We say that a is way below b and write a� b if b 6
∨

S implies
a 6

∨
T for some finite T ⊆ S.
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Local compactness

Definition:
1 A frame L is locally compact if a =

∨
{b | b� a} for all

a ∈ L.
2 A space X is locally compact if x ∈ U ∈ τ implies there is

V ∈ τ and a compact K with x ∈ V ⊆ K ⊆ U.

Theorem: If X is a locally compact space, then Ω(X) is a locally
compact frame. Conversely, if L is a locally compact frame, then
pt(L) is a locally compact space.

Proof: Suppose x ∈ U. Since X is locally compact, there exist Vx
open and Kx compact such that x ∈ Vx ⊆ Kx ⊆ U. Therefore,
x ∈ Vx � U. Thus, U =

⋃
{V | V � U}.

Suppose p ∈ O(a). Since L is locally compact, there is b� a
such that p ∈ O(b). Let K =

⋂
{O(c) | b� c}. Then K is compact

(this requires the Hofmann–Mislove Theorem), and
p ∈ O(b) ⊆ K ⊆ O(a). Thus, pt(L) is locally compact.
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Stability

Definition: A frame L is stable if� is preserved by finite meets
(that is, a� bi implies a� b1 ∧ · · · ∧ bn).

Note: Each stable frame is compact.

Intersections of open sets are called saturated. Saturated sets
are exactly the upsets in the specialization order.

Definition: A space X is stable if finite intersections of compact
saturated sets are compact.

Note: Each stable space is compact.
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Stable compactness

Definition:
1 A frame is stably compact if it is locally compact and stable.
2 A space is stably compact if it is sober, locally compact, and

stable.

Theorem: If X is a stably compact space, then Ω(X) is a stably
compact frame. Conversely, if L is a stably compact frame, then
pt(L) is a stably compact space.

Proof: Suppose U � Vi for i = 1, . . . ,n. Since X is locally
compact, U � Vi implies there are compact saturated Ki with
U ⊆ Ki ⊆ Vi. As X is stable, K1 ∩ · · · ∩ Kn is compact saturated;
and U ⊆ K1 ∩ · · · ∩ Kn ⊆ V1 ∩ · · · ∩ Vn. Thus, U � V1 ∩ · · · ∩ Vn.

Suppose Ki are compact saturated for i = 1, . . . ,n. By the
Hoffman-Mislove Theorem,
K1 ∩ · · · ∩ Kn =

⋂
{O(a) : K1 ⊆ O(a)} ∩ · · · ∩

⋂
{O(b) : Kn ⊆

O(b)} =
⋂
{O(c) : K1 ∩ · · · ∩ Kn ⊆ O(c)} is compact.
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Hoffman-Mislove

Definition: A filter F in a frame L is Scott open if
∨

S ∈ F
implies

∨
T ∈ F for some finite T ⊆ S.

Hoffman-Mislove Theorem: Scott open filters of L correspond
to compact saturated subsets of pt(L).

The correspondence: F 7→
⋂
{O(a) | a ∈ F} and

K 7→ {a ∈ L | K ⊆ O(a)}.

A slightly different formulation: If X is sober, then Scott open
filters of Ω(X) correspond to compact saturated subsets of X.
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Dual equivalence

Definition:
1 A frame homomorphism h : L→ M is proper if it preserves

the way below relation (a� b implies h(a)� h(b)).
2 A continuous map f : X → Y is proper if the inverse image

of a compact saturated set is compact.

StKFrm = The category of stably compact frames and proper
frame homomorphisms.

StKSp = The category of stably compact spaces and proper
maps.

Theorem: StKFrm is dually equivalent to StKSp.

Proof: The restrictions of the contravariant functors Ω, pt to
StKSp and StKFrm, respectively, yield the desired dual
equivalence.
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General picture

If X is compact Hausdorff, then X is locally compact. Also, the
compact saturated sets are exactly the closed sets in X, so X is
stable. This also yields that each continuous map between
compact Hausdorff spaces is proper. Thus, KHaus is a full
subcategory of StKSp.

If X is spectral, then X is locally compact. Also, the compact
saturated sets are exactly the intersections of compact opens, so
X is stable. This also yields that for spectral spaces, spectral and
proper maps coincide. Thus, Spec is a full subcategory of StKSp.
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General picture

Lemma: If L is compact, then a ≺ b implies a� b; and if L is
regular, then a� b implies a ≺ b.

Proof: If a ≺ b and b ≤
∨

S, then a∗ ∨ b = 1, so a∗ ∨
∨

S = 1.
Since L is compact, a∗ ∨

∨
T = 1 for some finite T ⊆ S.

Therefore, a ≺
∨

T, so a 6
∨

T. Thus, a� b.

Suppose a� b. As L is regular, b =
∨
{x | x ≺ b}. Since a� b,

there exist x1, . . . , xn ∈ L with xi ≺ b and a 6 x1 ∨ · · · ∨ xn.
Therefore, x∗1 ∧ · · · ∧ x∗n = (x1 ∨ · · · ∨ xn)∗ 6 a∗. As xi ≺ b, we
have x∗i ∨ b = 1. Thus,
a∗ ∨ b > (x∗1 ∧ · · · ∧ x∗n) ∨ b = (x∗1 ∨ b) ∧ · · · ∧ (x∗n ∨ b) = 1, and so
a ≺ b.
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If L is compact regular, then a ≺ b iff a� b. Therefore, L is
stably compact. This also yields that frame homomorphisms
between compact regular frames are proper. Thus, KRFrm is a
full subcategory of StKFrm.

If L is coherent, then for a ∈ K(L) we have a� b iff a 6 b.
Therefore, L is locally compact. Also, a� b iff there is k ∈ K(L)
with a 6 k 6 b. Thus, L is stable. This also yields that for
coherent frames, coherent and proper frame homomorphisms
coincide. Consequently, CohFrm is a full subcategory of
StKFrm.
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What I don’t have time to discuss

Stably compact spaces correspond to Nachbin spaces (compact
ordered spaces, where the order is closed in the product).

This is a generalization of the correspondence between spectral
spaces and Priestley spaces.

Given a Nachbin space (X, τ,6), the upper topology τu and the
lower topology τl are both stably compact topologies.

Conversely, if (X, τ) is stably compact, then define the
cocompact topology τ k as the topology whose closed sets are
compact saturated sets. Then τ k is also a stably compact
topology, the patch topology π = τ ∨ τ k is compact, and the
specialization order of τ is closed in the product of π. Thus,
(X, π,6) is a Nachbin space.

This explains why stably compact spaces are the “right”
generalization of compact Hausdorff spaces.
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What I don’t have time to discuss

What should be the analogue of de Vries for StKFrm?

Booleanization is a nucleus (−)∗∗ : L→ B(L). The way below
relation on a stably compact frame L also gives rise to a nucleus
j : L→ L, whose fixpoints will serve as a generalization of de
Vries. The details can be found in:

G. Bezhanishvili, J. Harding. Proximity frames and
regularization, Applied Categorical Structures, 22 (2014), pp.
43–78.
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What I don’t have time to discuss

There is an important subcategory of Stone consisting of
extremally disconnected spaces (a space is extremally
disconnected if regular opens coincide with clopens). These are
exactly the projective objects of KHaus.

Each compact Hausdorff space admits a unique projective
resolution, called the Gleason cover. It is very instructive to
study their pointfree analogues:

P. T. Johnstone. Stone spaces, Cambridge University Press,
Cambridge, 1982.

G. Bezhanishvili. Stone duality and Gleason covers through de
Vries duality, Topology and Its Applications, 157 (2010), pp.
1064–1080.



What I don’t have time to discuss

There is an important subcategory of Stone consisting of
extremally disconnected spaces

(a space is extremally
disconnected if regular opens coincide with clopens). These are
exactly the projective objects of KHaus.

Each compact Hausdorff space admits a unique projective
resolution, called the Gleason cover. It is very instructive to
study their pointfree analogues:

P. T. Johnstone. Stone spaces, Cambridge University Press,
Cambridge, 1982.

G. Bezhanishvili. Stone duality and Gleason covers through de
Vries duality, Topology and Its Applications, 157 (2010), pp.
1064–1080.



What I don’t have time to discuss

There is an important subcategory of Stone consisting of
extremally disconnected spaces (a space is extremally
disconnected if regular opens coincide with clopens).

These are
exactly the projective objects of KHaus.

Each compact Hausdorff space admits a unique projective
resolution, called the Gleason cover. It is very instructive to
study their pointfree analogues:

P. T. Johnstone. Stone spaces, Cambridge University Press,
Cambridge, 1982.

G. Bezhanishvili. Stone duality and Gleason covers through de
Vries duality, Topology and Its Applications, 157 (2010), pp.
1064–1080.



What I don’t have time to discuss

There is an important subcategory of Stone consisting of
extremally disconnected spaces (a space is extremally
disconnected if regular opens coincide with clopens). These are
exactly the projective objects of KHaus.

Each compact Hausdorff space admits a unique projective
resolution, called the Gleason cover. It is very instructive to
study their pointfree analogues:

P. T. Johnstone. Stone spaces, Cambridge University Press,
Cambridge, 1982.

G. Bezhanishvili. Stone duality and Gleason covers through de
Vries duality, Topology and Its Applications, 157 (2010), pp.
1064–1080.



What I don’t have time to discuss

There is an important subcategory of Stone consisting of
extremally disconnected spaces (a space is extremally
disconnected if regular opens coincide with clopens). These are
exactly the projective objects of KHaus.

Each compact Hausdorff space admits a unique projective
resolution, called the Gleason cover.

It is very instructive to
study their pointfree analogues:

P. T. Johnstone. Stone spaces, Cambridge University Press,
Cambridge, 1982.

G. Bezhanishvili. Stone duality and Gleason covers through de
Vries duality, Topology and Its Applications, 157 (2010), pp.
1064–1080.



What I don’t have time to discuss

There is an important subcategory of Stone consisting of
extremally disconnected spaces (a space is extremally
disconnected if regular opens coincide with clopens). These are
exactly the projective objects of KHaus.

Each compact Hausdorff space admits a unique projective
resolution, called the Gleason cover. It is very instructive to
study their pointfree analogues:

P. T. Johnstone. Stone spaces, Cambridge University Press,
Cambridge, 1982.

G. Bezhanishvili. Stone duality and Gleason covers through de
Vries duality, Topology and Its Applications, 157 (2010), pp.
1064–1080.



What I don’t have time to discuss

There is an important subcategory of Stone consisting of
extremally disconnected spaces (a space is extremally
disconnected if regular opens coincide with clopens). These are
exactly the projective objects of KHaus.

Each compact Hausdorff space admits a unique projective
resolution, called the Gleason cover. It is very instructive to
study their pointfree analogues:

P. T. Johnstone. Stone spaces, Cambridge University Press,
Cambridge, 1982.

G. Bezhanishvili. Stone duality and Gleason covers through de
Vries duality, Topology and Its Applications, 157 (2010), pp.
1064–1080.



What I don’t have time to discuss

There is an important subcategory of Stone consisting of
extremally disconnected spaces (a space is extremally
disconnected if regular opens coincide with clopens). These are
exactly the projective objects of KHaus.

Each compact Hausdorff space admits a unique projective
resolution, called the Gleason cover. It is very instructive to
study their pointfree analogues:

P. T. Johnstone. Stone spaces, Cambridge University Press,
Cambridge, 1982.

G. Bezhanishvili. Stone duality and Gleason covers through de
Vries duality, Topology and Its Applications, 157 (2010), pp.
1064–1080.



What I don’t have time to discuss

Another important construction on KHaus is the Vietoris
hyperspace construction. Its pointfree analogue was developed
by Johnstone.

P. T. Johnstone, Vietoris locales and localic semilattices,
Continuous lattices and their applications (Bremen, 1982),
Lecture Notes in Pure and Appl. Math. (1985), pp. 155–180.

A version of it for de Vries algebras is discussed in

G. Bezhanishvili, N. Bezhanishvili, J. Harding. Modalities on
compact regular frames and de Vries algebras, Applied
Categorical Structures, 23 (2015), pp. 365–379.
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If we drop compactness, then ≺ is no longer interpolating, so
instead of regular frames, one works with completely regular
frames.

The theory of compactifications for completely regular frames
was developed by Banaschewski.

B. Banaschewski and C. J. Mulvey, Stone-Čech compactification of
locales. I, Houston J. Math., 6 (1980), pp. 301–312.

B. Banaschewski, Compactification of frames, Math. Nachr., 149
(1990), pp. 105–115.
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locales. I, Houston J. Math., 6 (1980), pp. 301–312.

B. Banaschewski, Compactification of frames, Math. Nachr., 149
(1990), pp. 105–115.



What I don’t have time to discuss

If we drop compactness, then ≺ is no longer interpolating, so
instead of regular frames, one works with completely regular
frames.

The theory of compactifications for completely regular frames
was developed by Banaschewski.

B. Banaschewski and C. J. Mulvey, Stone-Čech compactification of
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locales. I, Houston J. Math., 6 (1980), pp. 301–312.

B. Banaschewski, Compactification of frames, Math. Nachr., 149
(1990), pp. 105–115.



What I don’t have time to discuss

If we drop compactness, then ≺ is no longer interpolating, so
instead of regular frames, one works with completely regular
frames.

The theory of compactifications for completely regular frames
was developed by Banaschewski.

B. Banaschewski and C. J. Mulvey, Stone-Čech compactification of
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The duality for KHaus with more ring-theoretic flavor can be
developed by working with rings of continuous functions over
compact Hausdorff spaces with values in either R or C.

This approach yields such dualities as Gelfand-Neumark-Stone
duality and Yosida-Kakutani duality. Standard books discussing
these are:

L. Gillman and M. Jerison, Rings of continuous functions, D. Van
Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York,
1960.

W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I,
North-Holland Publishing Co., Amsterdam, 1971.
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What I don’t have time to discuss
Lastly, since frames are Heyting algebras, some of the discussed
dualities have applications in proving completeness results in
superintuitionistic logics.

That is, the logics that extend the
intuitionistic logic. Here are some standard completeness
results:

1 The intuitionistic propositional calculus IPC is the logic of
any dense-in-itself metric space.

2 The logic of weak excluded middle IPC + (¬p ∨ ¬¬p) is the
logic of βN, the Stone-Cech compactification of the natural
numbers.

3 The Dummett-Gödel logic LC = IPC + (p→ q) ∨ (q→ p) is
the logic of hereditarily extremally disconnected spaces.

4 etc.

Long-standing open problem: Is every superintuitionistic logic
topologically complete?
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