Frames, topologies, and duality theory

Guram Bezhanishvili New Mexico State University

> TACL Summer School June 15–19, 2015

> > Lecture 3

• **Top** = The category of topological spaces and continuous maps.

- **Top** = The category of topological spaces and continuous maps.
- **Sob** = The category of sober spaces and continuous maps.

- Top = The category of topological spaces and continuous maps.
- **Sob** = The category of sober spaces and continuous maps.
- Spec = The category of spectral spaces and spectral maps.

- Top = The category of topological spaces and continuous maps.
- **Sob** = The category of sober spaces and continuous maps.
- Spec = The category of spectral spaces and spectral maps.
- Stone = The category of Stone spaces and continuous maps.

Categories of frames:

• **Frm** = The category of frames and frame homomorphisms.

- **• Frm** = The category of frames and frame homomorphisms.
- SFrm = The category of spatial frames and frame homomorphisms.

- **• Frm** = The category of frames and frame homomorphisms.
- SFrm = The category of spatial frames and frame homomorphisms.
- CohFrm = The category of coherent frames and frame homomorphisms that map compact elements to compact elements.

- **§** Frm = The category of frames and frame homomorphisms.
- SFrm = The category of spatial frames and frame homomorphisms.
- CohFrm = The category of coherent frames and frame homomorphisms that map compact elements to compact elements.
- **zKFrm** = The category of compact zero-dimensional frames and frame homomorphisms.

Categories of frames:

- **§** Frm = The category of frames and frame homomorphisms.
- SFrm = The category of spatial frames and frame homomorphisms.
- CohFrm = The category of coherent frames and frame homomorphisms that map compact elements to compact elements.
- **zKFrm** = The category of compact zero-dimensional frames and frame homomorphisms.

We also have:

Categories of frames:

- **§** Frm = The category of frames and frame homomorphisms.
- SFrm = The category of spatial frames and frame homomorphisms.
- CohFrm = The category of coherent frames and frame homomorphisms that map compact elements to compact elements.
- **zKFrm** = The category of compact zero-dimensional frames and frame homomorphisms.

We also have:

DL = The category of bounded distributive lattices and bounded lattice homomorphisms.

Categories of frames:

- **§** Frm = The category of frames and frame homomorphisms.
- SFrm = The category of spatial frames and frame homomorphisms.
- CohFrm = The category of coherent frames and frame homomorphisms that map compact elements to compact elements.
- **zKFrm** = The category of compact zero-dimensional frames and frame homomorphisms.

We also have:

- DL = The category of bounded distributive lattices and bounded lattice homomorphisms.
- BA = The category of Boolean algebras and Boolean homomorphisms.

$\textbf{Stone} \hookrightarrow \textbf{Spec} \hookrightarrow \textbf{Sob} \hookrightarrow \textbf{Top}$

$\textbf{Stone} \hookrightarrow \textbf{Spec} \hookrightarrow \textbf{Sob} \hookrightarrow \textbf{Top}$

$\mathbf{z}\mathbf{K}\mathbf{F}\mathbf{r}\mathbf{m} \hookrightarrow \mathbf{C}\mathbf{o}\mathbf{h}\mathbf{F}\mathbf{r}\mathbf{m} \hookrightarrow \mathbf{F}\mathbf{r}\mathbf{m}$

$\textbf{Stone} \hookrightarrow \textbf{Spec} \hookrightarrow \textbf{Sob} \hookrightarrow \textbf{Top}$

$\mathbf{z}\mathbf{K}\mathbf{F}\mathbf{r}\mathbf{m} \hookrightarrow \mathbf{C}\mathbf{o}\mathbf{h}\mathbf{F}\mathbf{r}\mathbf{m} \hookrightarrow \mathbf{F}\mathbf{r}\mathbf{m} \hookrightarrow \mathbf{F}\mathbf{r}\mathbf{m}$

An especially important class of spaces is that of compact Hausdorff spaces.

An especially important class of spaces is that of compact Hausdorff spaces.

KHaus: The full subcategory of **Top** consisting of compact Hausdorff spaces.

An especially important class of spaces is that of compact Hausdorff spaces.

KHaus: The full subcategory of **Top** consisting of compact Hausdorff spaces.

Since each Hausdorff space is sober,

An especially important class of spaces is that of compact Hausdorff spaces.

KHaus: The full subcategory of **Top** consisting of compact Hausdorff spaces.

Since each Hausdorff space is sober, **KHaus** is a full subcategory of **Sob**.

An especially important class of spaces is that of compact Hausdorff spaces.

KHaus: The full subcategory of **Top** consisting of compact Hausdorff spaces.

Since each Hausdorff space is sober, **KHaus** is a full subcategory of **Sob**. It is also clear that **Stone** is a full subcategory of **KHaus**.

An especially important class of spaces is that of compact Hausdorff spaces.

KHaus: The full subcategory of **Top** consisting of compact Hausdorff spaces.

Since each Hausdorff space is sober, **KHaus** is a full subcategory of **Sob**. It is also clear that **Stone** is a full subcategory of **KHaus**.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}$.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}$.

Proof:

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}$.

Proof: Suppose $x \in U$.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}.$

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since *X* is Hausdorff,

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}.$

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since *X* is Hausdorff, there exist disjoint open A_x , B_y .
Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}.$

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since *X* is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$,

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}.$

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since *X* is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed,

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}.$

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since *X* is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed, hence compact.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}.$

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since *X* is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed, hence compact. Therefore, there are B_1, \ldots, B_n covering $X \setminus U$.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}.$

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since *X* is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed, hence compact. Therefore, there are B_1, \ldots, B_n covering $X \setminus U$. Let A_1, \ldots, A_n be the corresponding open neighborhoods of *x*.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}.$

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed, hence compact. Therefore, there are B_1, \ldots, B_n covering $X \setminus U$. Let A_1, \ldots, A_n be the corresponding open neighborhoods of x. Set $V = A_1 \cap \cdots \cap A_n$ and $W = B_1 \cup \cdots \cup B_n$.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}.$

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed, hence compact. Therefore, there are B_1, \ldots, B_n covering $X \setminus U$. Let A_1, \ldots, A_n be the corresponding open neighborhoods of x. Set $V = A_1 \cap \cdots \cap A_n$ and $W = B_1 \cup \cdots \cup B_n$. Then V is an open neighborhood of x,

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}.$

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed, hence compact. Therefore, there are B_1, \ldots, B_n covering $X \setminus U$. Let A_1, \ldots, A_n be the corresponding open neighborhoods of x. Set $V = A_1 \cap \cdots \cap A_n$ and $W = B_1 \cup \cdots \cup B_n$. Then V is an open neighborhood of x, and V is disjoint from W.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}.$

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed, hence compact. Therefore, there are B_1, \ldots, B_n covering $X \setminus U$. Let A_1, \ldots, A_n be the corresponding open neighborhoods of x. Set $V = A_1 \cap \cdots \cap A_n$ and $W = B_1 \cup \cdots \cup B_n$. Then V is an open neighborhood of x, and V is disjoint from W. Since W is open,

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed, hence compact. Therefore, there are B_1, \ldots, B_n covering $X \setminus U$. Let A_1, \ldots, A_n be the corresponding open neighborhoods of x. Set $V = A_1 \cap \cdots \cap A_n$ and $W = B_1 \cup \cdots \cup B_n$. Then V is an open neighborhood of x, and V is disjoint from W. Since W is open, \overline{V} is also disjoint from W.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed, hence compact. Therefore, there are B_1, \ldots, B_n covering $X \setminus U$. Let A_1, \ldots, A_n be the corresponding open neighborhoods of x. Set $V = A_1 \cap \cdots \cap A_n$ and $W = B_1 \cup \cdots \cup B_n$. Then V is an open neighborhood of x, and V is disjoint from W. Since W is open, \overline{V} is also disjoint from W. Because $X \setminus U \subseteq W$,

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed, hence compact. Therefore, there are B_1, \ldots, B_n covering $X \setminus U$. Let A_1, \ldots, A_n be the corresponding open neighborhoods of x. Set $V = A_1 \cap \cdots \cap A_n$ and $W = B_1 \cup \cdots \cup B_n$. Then V is an open neighborhood of x, and V is disjoint from W. Since W is open, \overline{V} is also disjoint from W. Because $X \setminus U \subseteq W$, we see that $\overline{V} \subseteq U$.

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed, hence compact. Therefore, there are B_1, \ldots, B_n covering $X \setminus U$. Let A_1, \ldots, A_n be the corresponding open neighborhoods of x. Set $V = A_1 \cap \cdots \cap A_n$ and $W = B_1 \cup \cdots \cup B_n$. Then V is an open neighborhood of x, and V is disjoint from W. Since W is open, \overline{V} is also disjoint from W. Because $X \setminus U \subseteq W$, we see that $\overline{V} \subseteq U$. Thus, $V \prec U$,

Definition: We say that an open set *U* is well inside an open set *V* if $\overline{U} \subseteq V$. If *U* is well inside *V*, then we write $U \prec V$.

Lemma: If $X \in$ **KHaus**, then for each open set U, we have $U = \bigcup \{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \setminus U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_x , B_y . The B_y cover $X \setminus U$, which is closed, hence compact. Therefore, there are B_1, \ldots, B_n covering $X \setminus U$. Let A_1, \ldots, A_n be the corresponding open neighborhoods of x. Set $V = A_1 \cap \cdots \cap A_n$ and $W = B_1 \cup \cdots \cup B_n$. Then V is an open neighborhood of x, and V is disjoint from W. Since W is open, \overline{V} is also disjoint from W. Because $X \setminus U \subseteq W$, we see that $\overline{V} \subseteq U$. Thus, $V \prec U$, and hence $U = \bigcup \{V \mid V \prec U\}$.

How can we define the well inside relation pointfree?

How can we define the well inside relation pointfree?

 $U \prec V \Leftrightarrow \overline{U} \subseteq V$

How can we define the well inside relation pointfree?

 $U \prec V \Leftrightarrow \overline{U} \subseteq V \Leftrightarrow (X \setminus \overline{U}) \cup V = X$

How can we define the well inside relation pointfree?

 $U \prec V \Leftrightarrow \overline{U} \subseteq V \Leftrightarrow (X \setminus \overline{U}) \cup V = X \Leftrightarrow int(X \setminus U) \cup V = X.$

How can we define the well inside relation pointfree?

 $U \prec V \Leftrightarrow \overline{U} \subseteq V \Leftrightarrow (X \setminus \overline{U}) \cup V = X \Leftrightarrow int(X \setminus U) \cup V = X.$

But $int(X \setminus U)$ is the largest open set disjoint from U,

How can we define the well inside relation pointfree?

 $U \prec V \Leftrightarrow \overline{U} \subseteq V \Leftrightarrow (X \setminus \overline{U}) \cup V = X \Leftrightarrow int(X \setminus U) \cup V = X.$

But $int(X \setminus U)$ is the largest open set disjoint from U, so $int(X \setminus U) = \bigcup \{V \mid U \cap V = \emptyset\}.$

How can we define the well inside relation pointfree?

$$U \prec V \Leftrightarrow \overline{U} \subseteq V \Leftrightarrow (X \setminus \overline{U}) \cup V = X \Leftrightarrow int(X \setminus U) \cup V = X.$$

But $int(X \setminus U)$ is the largest open set disjoint from U, so $int(X \setminus U) = \bigcup \{V \mid U \cap V = \emptyset\}$. This open set is denoted by U^* or $\neg U$.

How can we define the well inside relation pointfree?

 $U \prec V \Leftrightarrow \overline{U} \subseteq V \Leftrightarrow (X \setminus \overline{U}) \cup V = X \Leftrightarrow int(X \setminus U) \cup V = X.$

But $int(X \setminus U)$ is the largest open set disjoint from U, so $int(X \setminus U) = \bigcup \{V \mid U \cap V = \emptyset\}$. This open set is denoted by U^* or $\neg U$. It is called the pseudo-complement of U.

How can we define the well inside relation pointfree?

 $U \prec V \Leftrightarrow \overline{U} \subseteq V \Leftrightarrow (X \setminus \overline{U}) \cup V = X \Leftrightarrow int(X \setminus U) \cup V = X.$

But $int(X \setminus U)$ is the largest open set disjoint from U, so $int(X \setminus U) = \bigcup \{V \mid U \cap V = \emptyset\}$. This open set is denoted by U^* or $\neg U$. It is called the pseudo-complement of U.

Thus, $U \prec V \Leftrightarrow U^* \cup V = X$.

How can we define the well inside relation pointfree?

 $U \prec V \Leftrightarrow \overline{U} \subseteq V \Leftrightarrow (X \setminus \overline{U}) \cup V = X \Leftrightarrow int(X \setminus U) \cup V = X.$

But $int(X \setminus U)$ is the largest open set disjoint from U, so $int(X \setminus U) = \bigcup \{V \mid U \cap V = \emptyset\}$. This open set is denoted by U^* or $\neg U$. It is called the pseudo-complement of U.

Thus, $U \prec V \Leftrightarrow U^* \cup V = X$.

This can be expressed pointfree as follows:

How can we define the well inside relation pointfree?

 $U \prec V \Leftrightarrow \overline{U} \subseteq V \Leftrightarrow (X \setminus \overline{U}) \cup V = X \Leftrightarrow int(X \setminus U) \cup V = X.$

But $int(X \setminus U)$ is the largest open set disjoint from U, so $int(X \setminus U) = \bigcup \{V \mid U \cap V = \emptyset\}$. This open set is denoted by U^* or $\neg U$. It is called the pseudo-complement of U.

Thus, $U \prec V \Leftrightarrow U^* \cup V = X$.

This can be expressed pointfree as follows:

 $a \prec b$ iff $a^* \lor b = 1$.

Definition: A frame *L* is regular if $a = \bigvee \{b \mid b \prec a\}$ for each $a \in L$.

Definition: A frame *L* is regular if $a = \bigvee \{b \mid b \prec a\}$ for each $a \in L$.

KRFrm = The full subcategory of **Frm** consisting of compact regular frames.

Definition: A frame *L* is regular if $a = \bigvee \{b \mid b \prec a\}$ for each $a \in L$.

KRFrm = The full subcategory of **Frm** consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leq b$,

Definition: A frame *L* is regular if $a = \bigvee \{b \mid b \prec a\}$ for each $a \in L$.

KRFrm = The full subcategory of **Frm** consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leq b$, but the converse is not true in general.

Definition: A frame *L* is regular if $a = \bigvee \{b \mid b \prec a\}$ for each $a \in L$.

KRFrm = The full subcategory of **Frm** consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leq b$, but the converse is not true in general. However, if $a \in Z(L)$,

Definition: A frame *L* is regular if $a = \bigvee \{b \mid b \prec a\}$ for each $a \in L$.

KRFrm = The full subcategory of **Frm** consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leq b$, but the converse is not true in general. However, if $a \in Z(L)$, then $a \prec b$ iff $a \leq b$.

Definition: A frame *L* is regular if $a = \bigvee \{b \mid b \prec a\}$ for each $a \in L$.

KRFrm = The full subcategory of **Frm** consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leq b$, but the converse is not true in general. However, if $a \in Z(L)$, then $a \prec b$ iff $a \leq b$.

This implies that **zKFrm** is a full subcategory of **KRFrm**.

Definition: A frame *L* is regular if $a = \bigvee \{b \mid b \prec a\}$ for each $a \in L$.

KRFrm = The full subcategory of **Frm** consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leq b$, but the converse is not true in general. However, if $a \in Z(L)$, then $a \prec b$ iff $a \leq b$.

This implies that **zKFrm** is a full subcategory of **KRFrm**.

Moreover, KRFrm is a full subcategory of SFrm.

Definition: A frame *L* is regular if $a = \bigvee \{b \mid b \prec a\}$ for each $a \in L$.

KRFrm = The full subcategory of **Frm** consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leq b$, but the converse is not true in general. However, if $a \in Z(L)$, then $a \prec b$ iff $a \leq b$.

This implies that **zKFrm** is a full subcategory of **KRFrm**.

Moreover, **KRFrm** is a full subcategory of **SFrm**. The idea of the proof is similar to that for the zero-dimensional case,
Compact regular frames

Definition: A frame *L* is regular if $a = \bigvee \{b \mid b \prec a\}$ for each $a \in L$.

KRFrm = The full subcategory of **Frm** consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leq b$, but the converse is not true in general. However, if $a \in Z(L)$, then $a \prec b$ iff $a \leq b$.

This implies that **zKFrm** is a full subcategory of **KRFrm**.

Moreover, **KRFrm** is a full subcategory of **SFrm**. The idea of the proof is similar to that for the zero-dimensional case, but the details are more involved,

Compact regular frames

Definition: A frame *L* is regular if $a = \bigvee \{b \mid b \prec a\}$ for each $a \in L$.

KRFrm = The full subcategory of **Frm** consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leq b$, but the converse is not true in general. However, if $a \in Z(L)$, then $a \prec b$ iff $a \leq b$.

This implies that **zKFrm** is a full subcategory of **KRFrm**.

Moreover, **KRFrm** is a full subcategory of **SFrm**. The idea of the proof is similar to that for the zero-dimensional case, but the details are more involved, so we skip them.

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch:

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and *pt* yield the desired duality.

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and *pt* yield the desired duality. As we already observed, if $X \in \mathbf{KHaus}$, then $\Omega(X) \in \mathbf{KRFrm}$.

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and *pt* yield the desired duality. As we already observed, if $X \in$ **KHaus**, then $\Omega(X) \in$ **KRFrm**.

Conversely, if $L \in \mathbf{KRFrm}$, then clearly pt(L) is compact.

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and *pt* yield the desired duality. As we already observed, if $X \in$ **KHaus**, then $\Omega(X) \in$ **KRFrm**.

Conversely, if $L \in \mathbf{KRFrm}$, then clearly pt(L) is compact. To see it is Hausdorff, let $p \neq q$.

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and *pt* yield the desired duality. As we already observed, if $X \in$ **KHaus**, then $\Omega(X) \in$ **KRFrm**.

Conversely, if $L \in \mathbf{KRFrm}$, then clearly pt(L) is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with p(a) = 1 and q(a) = 0.

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and *pt* yield the desired duality. As we already observed, if $X \in$ **KHaus**, then $\Omega(X) \in$ **KRFrm**.

Conversely, if $L \in \text{KRFrm}$, then clearly pt(L) is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with p(a) = 1 and q(a) = 0. Write $a = \bigvee \{b \mid b \prec a\}$.

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and *pt* yield the desired duality. As we already observed, if $X \in$ **KHaus**, then $\Omega(X) \in$ **KRFrm**.

Conversely, if $L \in \mathbf{KRFrm}$, then clearly pt(L) is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with p(a) = 1 and q(a) = 0. Write $a = \bigvee \{b \mid b \prec a\}$. Then there is $b \prec a$ with p(b) = 1.

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and *pt* yield the desired duality. As we already observed, if $X \in$ **KHaus**, then $\Omega(X) \in$ **KRFrm**.

Conversely, if $L \in \mathbf{KRFrm}$, then clearly pt(L) is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with p(a) = 1 and q(a) = 0. Write $a = \bigvee \{b \mid b \prec a\}$. Then there is $b \prec a$ with p(b) = 1. From $b \prec a$ it follows that $\overline{O(b)} \subseteq O(a)$.

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and *pt* yield the desired duality. As we already observed, if $X \in$ **KHaus**, then $\Omega(X) \in$ **KRFrm**.

Conversely, if $L \in \text{KRFrm}$, then clearly pt(L) is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with p(a) = 1 and q(a) = 0. Write $a = \bigvee \{b \mid b \prec a\}$. Then there is $b \prec a$ with p(b) = 1. From $b \prec a$ it follows that $\overline{O(b)} \subseteq O(a)$. Therefore, $p \in O(b)$ and $q \notin O(a)$,

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and *pt* yield the desired duality. As we already observed, if $X \in$ **KHaus**, then $\Omega(X) \in$ **KRFrm**.

Conversely, if $L \in \mathbf{KRFrm}$, then clearly pt(L) is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with p(a) = 1 and q(a) = 0. Write $a = \bigvee \{b \mid b \prec a\}$. Then there is $b \prec a$ with p(b) = 1. From $b \prec a$ it follows that $\overline{O(b)} \subseteq O(a)$. Therefore, $p \in O(b)$ and $q \notin O(a)$, so $q \in X \setminus \overline{O(b)}$.

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and *pt* yield the desired duality. As we already observed, if $X \in \mathbf{KHaus}$, then $\Omega(X) \in \mathbf{KRFrm}$.

Conversely, if $L \in \mathbf{KRFrm}$, then clearly pt(L) is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with p(a) = 1 and q(a) = 0. Write $a = \bigvee \{b \mid b \prec a\}$. Then there is $b \prec a$ with p(b) = 1. From $b \prec a$ it follows that $\overline{O(b)} \subseteq O(a)$. Therefore, $p \in O(b)$ and $q \notin O(a)$, so $q \in X \setminus \overline{O(b)}$. Thus, there are two open sets U := O(b) and $V := X \setminus \overline{O(b)}$

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and *pt* yield the desired duality. As we already observed, if $X \in \mathbf{KHaus}$, then $\Omega(X) \in \mathbf{KRFrm}$.

Conversely, if $L \in \mathbf{KRFrm}$, then clearly pt(L) is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with p(a) = 1 and q(a) = 0. Write $a = \bigvee \{b \mid b \prec a\}$. Then there is $b \prec a$ with p(b) = 1. From $b \prec a$ it follows that $\overline{O(b)} \subseteq O(a)$. Therefore, $p \in O(b)$ and $q \notin O(a)$, so $q \in X \setminus \overline{O(b)}$. Thus, there are two open sets U := O(b) and $V := X \setminus \overline{O(b)}$ such that $p \in U$, $q \in V$, and $U \cap V = \emptyset$.

An element *a* of a frame *L* is regular if $a^{**} = a$.

An element *a* of a frame *L* is regular if $a^{**} = a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of *L*.

An element *a* of a frame *L* is regular if $a^{**} = a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of *L*. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:

An element *a* of a frame *L* is regular if $a^{**} = a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of *L*. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:

 $a \wedge_{\mathfrak{B}(L)} b = a \wedge b$

An element *a* of a frame *L* is regular if $a^{**} = a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of *L*. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:

 $a \wedge_{\mathfrak{B}(L)} b = a \wedge b$ and $\bigvee_{\mathfrak{B}(L)} S = (\bigvee S)^{**}$.

An element *a* of a frame *L* is regular if $a^{**} = a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of *L*. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:

$$a \wedge_{\mathfrak{B}(L)} b = a \wedge b$$
 and $\bigvee_{\mathfrak{B}(L)} S = (\bigvee S)^{**}$.

It is straightforward to see that $\mathfrak{B}(L)$ is a frame.

An element *a* of a frame *L* is regular if $a^{**} = a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of *L*. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:

$$a \wedge_{\mathfrak{B}(L)} b = a \wedge b$$
 and $\bigvee_{\mathfrak{B}(L)} S = (\bigvee S)^{**}$.

It is straightforward to see that $\mathfrak{B}(L)$ is a frame. To see it is Boolean, observe that

An element *a* of a frame *L* is regular if $a^{**} = a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of *L*. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:

$$a \wedge_{\mathfrak{B}(L)} b = a \wedge b$$
 and $\bigvee_{\mathfrak{B}(L)} S = (\bigvee S)^{**}$.

It is straightforward to see that $\mathfrak{B}(L)$ is a frame. To see it is Boolean, observe that

 $a \vee_{\mathfrak{B}(L)} a^* = (a \vee a^*)^{**} = 1.$

An element *a* of a frame *L* is regular if $a^{**} = a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of *L*. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:

$$a \wedge_{\mathfrak{B}(L)} b = a \wedge b$$
 and $\bigvee_{\mathfrak{B}(L)} S = (\bigvee S)^{**}$.

It is straightforward to see that $\mathfrak{B}(L)$ is a frame. To see it is Boolean, observe that

 $a \vee_{\mathfrak{B}(L)} a^* = (a \vee a^*)^{**} = 1.$

 $\mathfrak{B}(L)$ is called the **Booleanization** of *L*.

Restriction of \prec to $\mathfrak{B}(L)$

Restriction of \prec to $\mathfrak{B}(L)$

If *L* is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:

Restriction of \prec to $\mathfrak{B}(L)$

If *L* is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:

If *L* is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:

1 ≺ 1. *a* ≺ *b* implies *a* < *b*.

If *L* is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:

- **2** $a \prec b$ implies $a \leq b$.
- $a \le b \prec c \le d \text{ implies } a \prec d.$

If *L* is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:

- **2** $a \prec b$ implies $a \leq b$.
- $a \le b \prec c \le d \text{ implies } a \prec d.$
- $a \prec b, c$ implies $a \prec b \land c$.

If *L* is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:

- **2** $a \prec b$ implies $a \leq b$.
- $a \le b \prec c \le d \text{ implies } a \prec d.$
- $a \prec b, c$ implies $a \prec b \land c$.
- \bigcirc $a \prec b$ implies $b^* \prec a^*$.

If *L* is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:

- **2** $a \prec b$ implies $a \leq b$.
- $a \leq b \prec c \leq d \text{ implies } a \prec d.$
- $a \prec b, c$ implies $a \prec b \land c$.
- \bigcirc $a \prec b$ implies $b^* \prec a^*$.
- $a \prec b$ implies there exists $c \in \mathfrak{B}(L)$ such that $a \prec c \prec b$.

If *L* is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:

- **2** $a \prec b$ implies $a \leq b$.
- 3 $a \leq b \prec c \leq d$ implies $a \prec d$.
- $a \prec b, c$ implies $a \prec b \land c$.
- \bigcirc $a \prec b$ implies $b^* \prec a^*$.
- $a \prec b$ implies there exists $c \in \mathfrak{B}(L)$ such that $a \prec c \prec b$.

$$a = \bigvee_{\mathfrak{B}(L)} \{ b \in \mathfrak{B}(L) \mid b \prec a \}.$$

To see (6), suppose $a \prec b$.

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{**} \prec y$,

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{**} \prec y$, we have $a^* = \bigvee \{x \in \mathfrak{B}(L) \mid x \prec a^*\}.$

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{**} \prec y$, we have $a^* = \bigvee \{x \in \mathfrak{B}(L) \mid x \prec a^*\}$. So $a^* \lor b = 1$ gives $\bigvee \{x \in \mathfrak{B}(L) \mid x \prec a^*\} \lor b = 1$.

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{**} \prec y$, we have $a^* = \bigvee \{x \in \mathfrak{B}(L) \mid x \prec a^*\}$. So $a^* \lor b = 1$ gives $\bigvee \{x \in \mathfrak{B}(L) \mid x \prec a^*\} \lor b = 1$. Because *L* is compact, $\exists x_1, \ldots, x_n \in \mathfrak{B}(L)$ such that $x_i \prec a^*$ and $x_1 \lor \cdots \lor x_n \lor b = 1$.

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{**} \prec y$, we have $a^* = \bigvee \{x \in \mathfrak{B}(L) \mid x \prec a^*\}$. So $a^* \lor b = 1$ gives $\bigvee \{x \in \mathfrak{B}(L) \mid x \prec a^*\} \lor b = 1$. Because *L* is compact, $\exists x_1, \ldots, x_n \in \mathfrak{B}(L)$ such that $x_i \prec a^*$ and $x_1 \lor \cdots \lor x_n \lor b = 1$. Setting $c = (x_1 \lor \cdots \lor x_n)^*$ produces an element of $\mathfrak{B}(L)$ such that $a \prec c \prec b$.

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{**} \prec y$, we have $a^* = \bigvee \{x \in \mathfrak{B}(L) \mid x \prec a^*\}$. So $a^* \lor b = 1$ gives $\bigvee \{x \in \mathfrak{B}(L) \mid x \prec a^*\} \lor b = 1$. Because *L* is compact, $\exists x_1, \ldots, x_n \in \mathfrak{B}(L)$ such that $x_i \prec a^*$ and $x_1 \lor \cdots \lor x_n \lor b = 1$. Setting $c = (x_1 \lor \cdots \lor x_n)^*$ produces an element of $\mathfrak{B}(L)$ such that $a \prec c \prec b$.

If $h : L \to M$ is a frame homomorphism, then h may not send regular elements to regular elements.

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{**} \prec y$, we have $a^* = \bigvee \{x \in \mathfrak{B}(L) \mid x \prec a^*\}$. So $a^* \lor b = 1$ gives $\bigvee \{x \in \mathfrak{B}(L) \mid x \prec a^*\} \lor b = 1$. Because *L* is compact, $\exists x_1, \ldots, x_n \in \mathfrak{B}(L)$ such that $x_i \prec a^*$ and $x_1 \lor \cdots \lor x_n \lor b = 1$. Setting $c = (x_1 \lor \cdots \lor x_n)^*$ produces an element of $\mathfrak{B}(L)$ such that $a \prec c \prec b$.

If $h: L \to M$ is a frame homomorphism, then h may not send regular elements to regular elements. So we define $\mathfrak{B}(h): \mathfrak{B}(L) \to \mathfrak{B}(M)$ by $\mathfrak{B}(h)(a) = h(a)^{**}$.

$$\mathfrak{B}(h)(0) = 0.$$

$$\mathfrak{B}(h)(a \wedge b) = \mathfrak{B}(h)(a) \wedge \mathfrak{B}(h)(b).$$

1
$$\mathfrak{B}(h)(0) = 0.$$

2
$$\mathfrak{B}(h)(a \wedge b) = \mathfrak{B}(h)(a) \wedge \mathfrak{B}(h)(b).$$

3
$$a \prec b$$
 implies $(\mathfrak{B}(h)(a^*))^* \prec \mathfrak{B}(h)(b)$.

1
$$\mathfrak{B}(h)(0) = 0.$$

2
$$\mathfrak{B}(h)(a \wedge b) = \mathfrak{B}(h)(a) \wedge \mathfrak{B}(h)(b).$$

③ *a* ≺ *b* implies
$$(\mathfrak{B}(h)(a^*))^* \prec \mathfrak{B}(h)(b)$$
.

 $\mathfrak{B}(h):\mathfrak{B}(L)\to\mathfrak{B}(M)$ satisfies the following properties:

1
$$\mathfrak{B}(h)(0) = 0.$$

2
$$\mathfrak{B}(h)(a \wedge b) = \mathfrak{B}(h)(a) \wedge \mathfrak{B}(h)(b).$$

③ *a* ≺ *b* implies
$$(\mathfrak{B}(h)(a^*))^* \prec \mathfrak{B}(h)(b)$$
.

To see (4),

$$\mathfrak{B}(h)(a \wedge b) = \mathfrak{B}(h)(a) \wedge \mathfrak{B}(h)(b).$$

③ *a* ≺ *b* implies
$$(\mathfrak{B}(h)(a^*))^* \prec \mathfrak{B}(h)(b)$$
.

$$\mathfrak{B}(h)(a) = \bigvee_{\mathfrak{B}(M)} \{\mathfrak{B}(h)(b) : b \prec a\}.$$

To see (4),
$$\mathfrak{B}(h)(a) = (\bigvee \{h(b) : b \prec a\})^{**} \leq (\bigvee \{\mathfrak{B}(h)(b) : b \prec a\})^{**} = \bigvee_{\mathfrak{B}(M)} \{\mathfrak{B}(h)(b) : b \prec a\} \leq \mathfrak{B}(h)(a).$$

Definition: A de Vries algebra is a pair (B, \prec) , where *B* is a Boolean frame and \prec is a binary relation on *B* satisfying the above six axioms.

Definition: A de Vries algebra is a pair (B, \prec) , where *B* is a Boolean frame and \prec is a binary relation on *B* satisfying the above six axioms.

A de Vries morphism between de Vries algebras (B, \prec) and (C, \prec) is a map $h : B \to C$ satisfying the above four axioms.

Definition: A de Vries algebra is a pair (B, \prec) , where *B* is a Boolean frame and \prec is a binary relation on *B* satisfying the above six axioms.

A de Vries morphism between de Vries algebras (B, \prec) and (C, \prec) is a map $h : B \to C$ satisfying the above four axioms.

DeV = The category of de Vries algebras and de Vries morphisms.

Definition: A de Vries algebra is a pair (B, \prec) , where *B* is a Boolean frame and \prec is a binary relation on *B* satisfying the above six axioms.

A de Vries morphism between de Vries algebras (B, \prec) and (C, \prec) is a map $h : B \to C$ satisfying the above four axioms.

DeV = The category of de Vries algebras and de Vries morphisms.

Warning: The composition $h_2 * h_1$ of two de Vries morphisms $h_1 : B_1 \rightarrow B_2$ and $h_2 : B_2 \rightarrow B_3$ is given by

Definition: A de Vries algebra is a pair (B, \prec) , where *B* is a Boolean frame and \prec is a binary relation on *B* satisfying the above six axioms.

A de Vries morphism between de Vries algebras (B, \prec) and (C, \prec) is a map $h : B \to C$ satisfying the above four axioms.

DeV = The category of de Vries algebras and de Vries morphisms.

Warning: The composition $h_2 * h_1$ of two de Vries morphisms $h_1 : B_1 \rightarrow B_2$ and $h_2 : B_2 \rightarrow B_3$ is given by

$$(h_2*h_1)(a) = \bigvee \{h_2h_1(b) : b \prec a\}.$$

Booleanization defines a functor $\mathfrak{B}: \textbf{KRFrm} \rightarrow \textbf{DeV}.$

Booleanization defines a functor $\mathfrak{B}: \textbf{KRFrm} \rightarrow \textbf{DeV}.$

Can we go back?

Booleanization defines a functor $\mathfrak{B}: \textbf{KRFrm} \rightarrow \textbf{DeV}.$

Can we go back?

An ideal *I* is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.

Booleanization defines a functor $\mathfrak{B}: \textbf{KRFrm} \rightarrow \textbf{DeV}.$

```
Can we go back?
```

```
An ideal I is round if a \in I implies \exists b \in I with a \prec b.
```

```
For a de Vries algebra (B, \prec),
```

Booleanization defines a functor $\mathfrak{B}: \textbf{KRFrm} \rightarrow \textbf{DeV}.$

Can we go back?

An ideal *I* is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.

For a de Vries algebra (B, \prec) , let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

Booleanization defines a functor $\mathfrak{B}: \textbf{KRFrm} \rightarrow \textbf{DeV}.$

Can we go back?

An ideal *I* is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.

For a de Vries algebra (B, \prec) , let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

A similar argument to the Boolean case shows that $\mathfrak{R}(B, \prec)$ is a compact frame.
Booleanization defines a functor $\mathfrak{B}: \textbf{KRFrm} \rightarrow \textbf{DeV}.$

Can we go back?

An ideal *I* is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.

For a de Vries algebra (B, \prec) , let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

A similar argument to the Boolean case shows that $\mathfrak{R}(B, \prec)$ is a compact frame.

To see that it is regular,

Booleanization defines a functor $\mathfrak{B}: \textbf{KRFrm} \rightarrow \textbf{DeV}.$

Can we go back?

An ideal *I* is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.

For a de Vries algebra (B, \prec) , let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

A similar argument to the Boolean case shows that $\mathfrak{R}(B, \prec)$ is a compact frame.

To see that it is regular, for $a \in B$, let $\Re_a = \{b \mid b \prec a\}$ be the round ideal generated by *a*.

Booleanization defines a functor $\mathfrak{B}: \textbf{KRFrm} \rightarrow \textbf{DeV}.$

Can we go back?

An ideal *I* is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.

For a de Vries algebra (B, \prec) , let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

A similar argument to the Boolean case shows that $\mathfrak{R}(B, \prec)$ is a compact frame.

To see that it is regular, for $a \in B$, let $\mathfrak{R}_a = \{b \mid b \prec a\}$ be the round ideal generated by a. Then for each $I \in \mathfrak{R}(B, \prec)$, we have $I = \bigvee \{\mathfrak{R}_a \mid a \in I\}$

Booleanization defines a functor $\mathfrak{B}: \textbf{KRFrm} \rightarrow \textbf{DeV}.$

Can we go back?

An ideal *I* is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.

For a de Vries algebra (B, \prec) , let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

A similar argument to the Boolean case shows that $\mathfrak{R}(B, \prec)$ is a compact frame.

To see that it is regular, for $a \in B$, let $\mathfrak{R}_a = \{b \mid b \prec a\}$ be the round ideal generated by a. Then for each $I \in \mathfrak{R}(B, \prec)$, we have $I = \bigvee \{\mathfrak{R}_a \mid a \in I\}$ and $\mathfrak{R}_a \prec I$.

Booleanization defines a functor $\mathfrak{B}: \textbf{KRFrm} \rightarrow \textbf{DeV}.$

Can we go back?

An ideal *I* is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.

For a de Vries algebra (B, \prec) , let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

A similar argument to the Boolean case shows that $\mathfrak{R}(B, \prec)$ is a compact frame.

To see that it is regular, for $a \in B$, let $\mathfrak{R}_a = \{b \mid b \prec a\}$ be the round ideal generated by a. Then for each $I \in \mathfrak{R}(B, \prec)$, we have $I = \bigvee \{\mathfrak{R}_a \mid a \in I\}$ and $\mathfrak{R}_a \prec I$. Thus, $\mathfrak{R}(B, \prec) \in \mathbf{KRFrm}$.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor \mathfrak{B} : **KRFrm** \rightarrow **DeV** and the round ideal functor \mathfrak{R} : **DeV** \rightarrow **KRFrm** yield the desired equivalence.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor \mathfrak{B} : **KRFrm** \rightarrow **DeV** and the round ideal functor \mathfrak{R} : **DeV** \rightarrow **KRFrm** yield the desired equivalence.

If $L \in \mathbf{KRFrm}$, then define $h : L \to \mathfrak{RB}(L)$ by $h(a) = \mathfrak{R}_a \cap \mathfrak{B}(L)$.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor \mathfrak{B} : **KRFrm** \rightarrow **DeV** and the round ideal functor \mathfrak{R} : **DeV** \rightarrow **KRFrm** yield the desired equivalence.

If $L \in \mathbf{KRFrm}$, then define $h : L \to \mathfrak{RB}(L)$ by $h(a) = \mathfrak{R}_a \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor \mathfrak{B} : **KRFrm** \rightarrow **DeV** and the round ideal functor \mathfrak{R} : **DeV** \rightarrow **KRFrm** yield the desired equivalence.

If $L \in \mathbf{KRFrm}$, then define $h : L \to \mathfrak{RB}(L)$ by $h(a) = \mathfrak{R}_a \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor \mathfrak{B} : **KRFrm** \rightarrow **DeV** and the round ideal functor \mathfrak{R} : **DeV** \rightarrow **KRFrm** yield the desired equivalence.

If $L \in \text{KRFrm}$, then define $h : L \to \mathfrak{RB}(L)$ by $h(a) = \mathfrak{R}_a \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since Lis compact, h is onto.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor \mathfrak{B} : **KRFrm** \rightarrow **DeV** and the round ideal functor \mathfrak{R} : **DeV** \rightarrow **KRFrm** yield the desired equivalence.

If $L \in \text{KRFrm}$, then define $h : L \to \mathfrak{RB}(L)$ by $h(a) = \mathfrak{R}_a \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since Lis compact, h is onto. Thus, h is a frame isomorphism.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor \mathfrak{B} : **KRFrm** \rightarrow **DeV** and the round ideal functor \mathfrak{R} : **DeV** \rightarrow **KRFrm** yield the desired equivalence.

If $L \in \mathbf{KRFrm}$, then define $h : L \to \mathfrak{RB}(L)$ by $h(a) = \mathfrak{R}_a \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since Lis compact, h is onto. Thus, h is a frame isomorphism.

If $(B, \prec) \in$ **DeV**, then define $g : B \to \mathfrak{BR}(B)$ by $g(a) = \mathfrak{R}_a$.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor \mathfrak{B} : **KRFrm** \rightarrow **DeV** and the round ideal functor \mathfrak{R} : **DeV** \rightarrow **KRFrm** yield the desired equivalence.

If $L \in \mathbf{KRFrm}$, then define $h : L \to \mathfrak{RB}(L)$ by $h(a) = \mathfrak{R}_a \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since Lis compact, h is onto. Thus, h is a frame isomorphism.

If $(B, \prec) \in$ **DeV**, then define $g : B \to \mathfrak{BR}(B)$ by $g(a) = \mathfrak{R}_a$. That g is well defined follows from $(\mathfrak{R}_a)^{**} = \mathfrak{R}_a$.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor \mathfrak{B} : **KRFrm** \rightarrow **DeV** and the round ideal functor \mathfrak{R} : **DeV** \rightarrow **KRFrm** yield the desired equivalence.

If $L \in \text{KRFrm}$, then define $h : L \to \mathfrak{RB}(L)$ by $h(a) = \mathfrak{R}_a \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since Lis compact, h is onto. Thus, h is a frame isomorphism.

If $(B, \prec) \in \mathbf{DeV}$, then define $g : B \to \mathfrak{BR}(B)$ by $g(a) = \mathfrak{R}_a$. That g is well defined follows from $(\mathfrak{R}_a)^{**} = \mathfrak{R}_a$. That g is a Boolean map follows from $\mathfrak{R}_{a \wedge b} = \mathfrak{R}_a \cap \mathfrak{R}_b$ and $\mathfrak{R}_{a^*} = (\mathfrak{R}_a)^*$.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor \mathfrak{B} : **KRFrm** \rightarrow **DeV** and the round ideal functor \mathfrak{R} : **DeV** \rightarrow **KRFrm** yield the desired equivalence.

If $L \in \mathbf{KRFrm}$, then define $h : L \to \mathfrak{RB}(L)$ by $h(a) = \mathfrak{R}_a \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since Lis compact, h is onto. Thus, h is a frame isomorphism.

If $(B, \prec) \in \mathbf{DeV}$, then define $g : B \to \mathfrak{BR}(B)$ by $g(a) = \mathfrak{R}_a$. That g is well defined follows from $(\mathfrak{R}_a)^{**} = \mathfrak{R}_a$. That g is a Boolean map follows from $\mathfrak{R}_{a \wedge b} = \mathfrak{R}_a \cap \mathfrak{R}_b$ and $\mathfrak{R}_{a^*} = (\mathfrak{R}_a)^*$. That g is 1-1 is clear.

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor \mathfrak{B} : **KRFrm** \rightarrow **DeV** and the round ideal functor \mathfrak{R} : **DeV** \rightarrow **KRFrm** yield the desired equivalence.

If $L \in \text{KRFrm}$, then define $h : L \to \mathfrak{RB}(L)$ by $h(a) = \mathfrak{R}_a \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since Lis compact, h is onto. Thus, h is a frame isomorphism.

If $(B, \prec) \in \mathbf{DeV}$, then define $g : B \to \mathfrak{BR}(B)$ by $g(a) = \mathfrak{R}_a$. That g is well defined follows from $(\mathfrak{R}_a)^{**} = \mathfrak{R}_a$. That g is a Boolean map follows from $\mathfrak{R}_{a \wedge b} = \mathfrak{R}_a \cap \mathfrak{R}_b$ and $\mathfrak{R}_{a^*} = (\mathfrak{R}_a)^*$. That g is 1-1 is clear. Finally, g is onto because for a round ideal I, we have $I^{**} = \mathfrak{R}_{\bigvee I}$,

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R} : \mathbf{DeV} \to \mathbf{KRFrm}$.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor \mathfrak{B} : **KRFrm** \rightarrow **DeV** and the round ideal functor \mathfrak{R} : **DeV** \rightarrow **KRFrm** yield the desired equivalence.

If $L \in \text{KRFrm}$, then define $h : L \to \mathfrak{RB}(L)$ by $h(a) = \mathfrak{R}_a \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since Lis compact, h is onto. Thus, h is a frame isomorphism.

If $(B, \prec) \in \mathbf{DeV}$, then define $g : B \to \mathfrak{BR}(B)$ by $g(a) = \mathfrak{R}_a$. That g is well defined follows from $(\mathfrak{R}_a)^{**} = \mathfrak{R}_a$. That g is a Boolean map follows from $\mathfrak{R}_{a \wedge b} = \mathfrak{R}_a \cap \mathfrak{R}_b$ and $\mathfrak{R}_{a^*} = (\mathfrak{R}_a)^*$. That g is 1-1 is clear. Finally, g is onto because for a round ideal I, we have $I^{**} = \mathfrak{R}_{\vee I}$, so I is regular iff $I = \mathfrak{R}_a$ for some $a \in B$.

Theorem (de Vries): KHaus is dually equivalent to DeV.

Theorem (de Vries): KHaus is dually equivalent to DeV. Note:

Theorem (de Vries): KHaus is dually equivalent to DeV.

Note: The de Vries functor \mathcal{RO} : **KHaus** \rightarrow **DeV** is the functor of taking regular open sets.

Theorem (de Vries): KHaus is dually equivalent to DeV.

Note: The de Vries functor \mathcal{RO} : **KHaus** \rightarrow **DeV** is the functor of taking regular open sets. It is exactly the composition $\mathfrak{B} \circ \Omega$.

Theorem (de Vries): KHaus is dually equivalent to DeV.

Note: The de Vries functor \mathcal{RO} : **KHaus** \rightarrow **DeV** is the functor of taking regular open sets. It is exactly the composition $\mathfrak{B} \circ \Omega$.

The other de Vries functor $\mathcal{E} : \mathbf{DeV} \to \mathbf{KHasu}$ is the functor of taking ends (maximal round filters).

Theorem (de Vries): KHaus is dually equivalent to DeV.

Note: The de Vries functor \mathcal{RO} : **KHaus** \rightarrow **DeV** is the functor of taking regular open sets. It is exactly the composition $\mathfrak{B} \circ \Omega$.

The other de Vries functor $\mathcal{E} : \mathbf{DeV} \to \mathbf{KHasu}$ is the functor of taking ends (maximal round filters). Since ends of a de Vries algebra correspond to the points of its round ideals, it is exactly the composition $pt \circ \mathfrak{R}$.

End of Lecture 3