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Categories of frames:

@ Frm = The category of frames and frame homomorphisms.

© SFrm = The category of spatial frames and frame
homomorphisms.

© CohFrm = The category of coherent frames and frame
homomorphisms that map compact elements to compact
elements.

© zKFrm = The category of compact zero-dimensional frames
and frame homomorphisms.

We also have:

© DL = The category of bounded distributive lattices and
bounded lattice homomorphisms.

© BA = The category of Boolean algebras and Boolean
homomorphisms.
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An especially important class of spaces is that of compact
Hausdorff spaces.

KHaus: The full subcategory of Top consisting of compact
Hausdorff spaces.

Since each Hausdorff space is sober, KHaus is a full subcategory

of Sob. It is also clear that Stone is a full subcategory of KHaus.

Sob<——— - SFrm
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Because X \ U C W, we see that V C U. Thus, V < U, and hence
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How can we define the well inside relation pointfree?
U<xVeUCVe X\U)UV=Xsint(X\U)UuV=X.

But int(X \ U) is the largest open set disjoint from U, so
int(X\U) =U{V | UNV = o}. This open set is denoted by U*
or —U. It is called the pseudo-complement of U.

Thus, U<V < U UV =X.

This can be expressed pointfree as follows:

a<biffa*vb=1.
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Compact regular frames
Definition: A frame L is regular if a = \/{b | b < a} for each
aclL.

KRFrm = The full subcategory of Frm consisting of compact
regular frames.

Clearly a < b implies a < b, but the converse is not true in
general. However, if a € Z(L), thena < b iff a < b.

This implies that zKFrm is a full subcategory of KRFrm.
Moreover, KRFrm is a full subcategory of SFrm. The idea of the

proof is similar to that for the zero-dimensional case, but the
details are more involved, so we skip them.
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observed, if X € KHaus, then Q(X) € KRFrm.

Conversely, if L € KRFrm, then clearly pt(L) is compact. To see it
is Hausdorff, let p # q. WLOG da € L with p(a) = 1 and
q(a) = 0. Write a = \/{b | b < a}. Then there is b < a with

p(b) = 1. From b < a it follows that O(b) C O(a). Therefore,

p € O(b) and q ¢ O(a), so q € X \ O(b). Thus, there are two

open sets U := O(b) and V:=X \ O(b) such thatp e U,q € V,
andUNV =o.
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Booleanization

An element a of a frame L is regular if a** = a. Let B(L) be the
set of all regular elements of L. Then *B(L) is a complete
Boolean algebra (Boolean frame) with respect to the following
operations:

angmyb=anb and Vg S=(VS)™

It is straightforward to see that B(L) is a frame. To see it is
Boolean, observe that

aVegp a* = (ava)™ =1

B(L) is called the Booleanization of L.
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If L is compact regular, then the restriction of < to B(L) satisfies
the following properties:

Q1<1.

© a < bimpliesa <b.

© a<b<c<dimpliesa < d.

© a<b,cimpliesa <bAc.

@ a < b implies b* < a*.

O a < b implies there exists ¢ € B(L) such thata < ¢ < b.
@ a=Vy{beB(L)[b=<a}
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Restriction of < to B(L)

To see (6), suppose a < b. Since x < y implies x** < y, we have
a*=\{xeB([L)|x=<a}. Soa*Vvb=1gives

V{x € B(L) |x < a*} vb=1. Because L is compact,

Iy, ..., xp € B(L) such thatx; < a*andx; V---Vx, Vb =1.
Setting ¢ = (x1 V - - - V xp)* produces an element of *B(L) such
thata < c <b.

If h: L — M is a frame homomorphism, then h may not send
regular elements to regular elements. So we define
B(h) : B(L) — B(M) by B(h)(a) = h(a)**.
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Restriction of < to B(L)

B(h) : B(L) — B(M) satisfies the following properties:

Q@ B(h)(0) = 0.
Q@ B(h)(ab) =B(h)(a) AB(h)(D).
@ a < b implies (B(h)(a*))* < B(h)(b).
Q B(h)(a) = Vyun{B(h)(D):b<a}.

To see (4), B(h)(a) = (\/{h(b) : b < a})™ <
(V{B(R)(B) : b < a})™ = Vayap {B(R)(b) : b < a} < B(h)(a).
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De Vries algebras

Definition: A de Vries algebra is a pair (B, <), where B is a
Boolean frame and < is a binary relation on B satisfying the
above six axioms.

A de Vries morphism between de Vries algebras (B, <) and
(C,=<) is amap h : B — C satisfying the above four axioms.

DeV = The category of de Vries algebras and de Vries
morphisms.

Warning: The composition hj * h1 of two de Vries morphisms
hy : By — By and hy : By — Bj is given by

(hy * hy)(a) = \/{hoh1(b) : b < al.
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From KRFrm to DeV

Booleanization defines a functor B : KRFrm — DeV.
Can we go back?
An ideal I is round if a € I implies 3b € I with a < b.

For a de Vries algebra (B, <), let R(B, <) be the poset of round
ideals of (B, <) ordered by inclusion.

A similar argument to the Boolean case shows that Ji(B, <) is a
compact frame.

To see that it is regular, for a € B, let R = {b | b < a} be the
round ideal generated by a. Then for each I € %i(B, <), we have
I=\/{R, | a €I} and R, < I. Thus, R(B, <) € KRFrm.
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From DeV to KRFrm

The correspondence (B, <) — 2R(B, <) lifts to a functor
R : DeV — KRFrm.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor 8 : KRFrm — DeV
and the round ideal functor R : DeV — KRFrm yield the desired
equivalence.

If L € KRFrm, then define h : L — RB(L) by h(a) = Rqa NB(L).
That h is a well-defined order preserving map is
straightforward. Since L is regular, h is order reflecting. Since L
is compact, h is onto. Thus, h is a frame isomorphism.

If (B, <) € DeV, then define g : B — BNR(B) by g(a) = R,. That
g is well defined follows from (9R,)** = PR,. That g is a Boolean
map follows from R, = Rq N Ry and Re- = (R,)*. That g is
1-1 is clear. Finally, g is onto because for a round ideal I, we
have I"* = Ry, so I is regular iff [ = R, for some a € B.
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De Vries duality

Sob<—— - SFrm
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KHaus <—— = KRFrm DeV

] )

zKFrm BA

Stone

Theorem (de Vries): KHaus is dually equivalent to DeV.

Note: The de Vries functor RO : KHaus — DeV is the functor of
taking regular open sets. It is exactly the composition B o ).

The other de Vries functor £ : DeV — KHasu is the functor of
taking ends (maximal round filters). Since ends of a de Vries
algebra correspond to the points of its round ideals, it is exactly
the composition pt o fR.
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