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1 Top = The category of topological spaces and continuous
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2 Sob = The category of sober spaces and continuous maps.
3 Spec = The category of spectral spaces and spectral maps.
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Recap

Categories of frames:

1 Frm = The category of frames and frame homomorphisms.
2 SFrm = The category of spatial frames and frame

homomorphisms.
3 CohFrm = The category of coherent frames and frame

homomorphisms that map compact elements to compact
elements.

4 zKFrm = The category of compact zero-dimensional frames
and frame homomorphisms.

We also have:

1 DL = The category of bounded distributive lattices and
bounded lattice homomorphisms.

2 BA = The category of Boolean algebras and Boolean
homomorphisms.
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Compact Hausdorff spaces

An especially important class of spaces is that of compact
Hausdorff spaces.

KHaus: The full subcategory of Top consisting of compact
Hausdorff spaces.

Since each Hausdorff space is sober, KHaus is a full subcategory
of Sob. It is also clear that Stone is a full subcategory of KHaus.
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The well inside relation

Definition: We say that an open set U is well inside an open set
V if U ⊆ V. If U is well inside V, then we write U ≺ V.

Lemma: If X ∈ KHaus, then for each open set U, we have
U =

⋃
{V | V ≺ U}.

Proof: Suppose x ∈ U. For each y ∈ X \ U, we have x 6= y. Since
X is Hausdorff, there exist disjoint open Ax, By. The By cover
X \ U, which is closed, hence compact. Therefore, there are
B1, . . . ,Bn covering X \ U. Let A1, . . . ,An be the corresponding
open neighborhoods of x. Set V = A1 ∩ · · · ∩ An and
W = B1 ∪ · · · ∪ Bn. Then V is an open neighborhood of x, and V
is disjoint from W. Since W is open, V is also disjoint from W.
Because X \ U ⊆ W, we see that V ⊆ U. Thus, V ≺ U, and hence
U =

⋃
{V | V ≺ U}.
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The well inside relation

How can we define the well inside relation pointfree?

U ≺ V ⇔ U ⊆ V ⇔ (X \ U) ∪ V = X ⇔ int(X \ U) ∪ V = X.

But int(X \ U) is the largest open set disjoint from U, so
int(X \ U) =

⋃
{V | U ∩ V = ∅}. This open set is denoted by U∗

or ¬U. It is called the pseudo-complement of U.

Thus, U ≺ V ⇔ U∗ ∪ V = X.

This can be expressed pointfree as follows:

a ≺ b iff a∗ ∨ b = 1.
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Compact regular frames

Definition: A frame L is regular if a =
∨
{b | b ≺ a} for each

a ∈ L.

KRFrm = The full subcategory of Frm consisting of compact
regular frames.

Clearly a ≺ b implies a 6 b, but the converse is not true in
general. However, if a ∈ Z(L), then a ≺ b iff a 6 b.

This implies that zKFrm is a full subcategory of KRFrm.

Moreover, KRFrm is a full subcategory of SFrm. The idea of the
proof is similar to that for the zero-dimensional case, but the
details are more involved, so we skip them.
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Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant
functors Ω and pt yield the desired duality. As we already
observed, if X ∈ KHaus, then Ω(X) ∈ KRFrm.

Conversely, if L ∈ KRFrm, then clearly pt(L) is compact. To see it
is Hausdorff, let p 6= q. WLOG ∃a ∈ L with p(a) = 1 and
q(a) = 0. Write a =

∨
{b | b ≺ a}. Then there is b ≺ a with

p(b) = 1. From b ≺ a it follows that O(b) ⊆ O(a). Therefore,
p ∈ O(b) and q /∈ O(a), so q ∈ X \ O(b). Thus, there are two
open sets U := O(b) and V := X \ O(b) such that p ∈ U, q ∈ V,
and U ∩ V = ∅.
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Booleanization

An element a of a frame L is regular if a∗∗ = a. Let B(L) be the
set of all regular elements of L. Then B(L) is a complete
Boolean algebra (Boolean frame) with respect to the following
operations:

a ∧B(L) b = a ∧ b and
∨

B(L) S = (
∨

S)∗∗.

It is straightforward to see that B(L) is a frame. To see it is
Boolean, observe that

a ∨B(L) a∗ = (a ∨ a∗)∗∗ = 1.

B(L) is called the Booleanization of L.
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Restriction of ≺ to B(L)

If L is compact regular, then the restriction of ≺ to B(L) satisfies
the following properties:

1 1 ≺ 1.
2 a ≺ b implies a ≤ b.
3 a ≤ b ≺ c ≤ d implies a ≺ d.
4 a ≺ b, c implies a ≺ b ∧ c.
5 a ≺ b implies b∗ ≺ a∗.
6 a ≺ b implies there exists c ∈ B(L) such that a ≺ c ≺ b.
7 a =

∨
B(L){b ∈ B(L) | b ≺ a}.



Restriction of ≺ to B(L)

If L is compact regular, then the restriction of ≺ to B(L) satisfies
the following properties:

1 1 ≺ 1.
2 a ≺ b implies a ≤ b.
3 a ≤ b ≺ c ≤ d implies a ≺ d.
4 a ≺ b, c implies a ≺ b ∧ c.
5 a ≺ b implies b∗ ≺ a∗.
6 a ≺ b implies there exists c ∈ B(L) such that a ≺ c ≺ b.
7 a =

∨
B(L){b ∈ B(L) | b ≺ a}.



Restriction of ≺ to B(L)

If L is compact regular, then the restriction of ≺ to B(L) satisfies
the following properties:

1 1 ≺ 1.

2 a ≺ b implies a ≤ b.
3 a ≤ b ≺ c ≤ d implies a ≺ d.
4 a ≺ b, c implies a ≺ b ∧ c.
5 a ≺ b implies b∗ ≺ a∗.
6 a ≺ b implies there exists c ∈ B(L) such that a ≺ c ≺ b.
7 a =

∨
B(L){b ∈ B(L) | b ≺ a}.



Restriction of ≺ to B(L)

If L is compact regular, then the restriction of ≺ to B(L) satisfies
the following properties:

1 1 ≺ 1.
2 a ≺ b implies a ≤ b.

3 a ≤ b ≺ c ≤ d implies a ≺ d.
4 a ≺ b, c implies a ≺ b ∧ c.
5 a ≺ b implies b∗ ≺ a∗.
6 a ≺ b implies there exists c ∈ B(L) such that a ≺ c ≺ b.
7 a =

∨
B(L){b ∈ B(L) | b ≺ a}.



Restriction of ≺ to B(L)

If L is compact regular, then the restriction of ≺ to B(L) satisfies
the following properties:

1 1 ≺ 1.
2 a ≺ b implies a ≤ b.
3 a ≤ b ≺ c ≤ d implies a ≺ d.

4 a ≺ b, c implies a ≺ b ∧ c.
5 a ≺ b implies b∗ ≺ a∗.
6 a ≺ b implies there exists c ∈ B(L) such that a ≺ c ≺ b.
7 a =

∨
B(L){b ∈ B(L) | b ≺ a}.



Restriction of ≺ to B(L)

If L is compact regular, then the restriction of ≺ to B(L) satisfies
the following properties:

1 1 ≺ 1.
2 a ≺ b implies a ≤ b.
3 a ≤ b ≺ c ≤ d implies a ≺ d.
4 a ≺ b, c implies a ≺ b ∧ c.

5 a ≺ b implies b∗ ≺ a∗.
6 a ≺ b implies there exists c ∈ B(L) such that a ≺ c ≺ b.
7 a =

∨
B(L){b ∈ B(L) | b ≺ a}.



Restriction of ≺ to B(L)

If L is compact regular, then the restriction of ≺ to B(L) satisfies
the following properties:

1 1 ≺ 1.
2 a ≺ b implies a ≤ b.
3 a ≤ b ≺ c ≤ d implies a ≺ d.
4 a ≺ b, c implies a ≺ b ∧ c.
5 a ≺ b implies b∗ ≺ a∗.

6 a ≺ b implies there exists c ∈ B(L) such that a ≺ c ≺ b.
7 a =

∨
B(L){b ∈ B(L) | b ≺ a}.



Restriction of ≺ to B(L)

If L is compact regular, then the restriction of ≺ to B(L) satisfies
the following properties:

1 1 ≺ 1.
2 a ≺ b implies a ≤ b.
3 a ≤ b ≺ c ≤ d implies a ≺ d.
4 a ≺ b, c implies a ≺ b ∧ c.
5 a ≺ b implies b∗ ≺ a∗.
6 a ≺ b implies there exists c ∈ B(L) such that a ≺ c ≺ b.

7 a =
∨

B(L){b ∈ B(L) | b ≺ a}.



Restriction of ≺ to B(L)

If L is compact regular, then the restriction of ≺ to B(L) satisfies
the following properties:

1 1 ≺ 1.
2 a ≺ b implies a ≤ b.
3 a ≤ b ≺ c ≤ d implies a ≺ d.
4 a ≺ b, c implies a ≺ b ∧ c.
5 a ≺ b implies b∗ ≺ a∗.
6 a ≺ b implies there exists c ∈ B(L) such that a ≺ c ≺ b.
7 a =

∨
B(L){b ∈ B(L) | b ≺ a}.



Restriction of ≺ to B(L)

To see (6), suppose a ≺ b. Since x ≺ y implies x∗∗ ≺ y, we have
a∗ =

∨
{x ∈ B(L) | x ≺ a∗}. So a∗ ∨ b = 1 gives∨

{x ∈ B(L) | x ≺ a∗} ∨ b = 1. Because L is compact,
∃x1, . . . , xn ∈ B(L) such that xi ≺ a∗ and x1 ∨ · · · ∨ xn ∨ b = 1.
Setting c = (x1 ∨ · · · ∨ xn)∗ produces an element of B(L) such
that a ≺ c ≺ b.

If h : L→ M is a frame homomorphism, then h may not send
regular elements to regular elements. So we define
B(h) : B(L)→ B(M) by B(h)(a) = h(a)∗∗.
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Restriction of ≺ to B(L)

B(h) : B(L)→ B(M) satisfies the following properties:

1 B(h)(0) = 0.
2 B(h)(a ∧ b) = B(h)(a) ∧B(h)(b).
3 a ≺ b implies (B(h)(a∗))∗ ≺ B(h)(b).
4 B(h)(a) =

∨
B(M){B(h)(b) : b ≺ a}.

To see (4), B(h)(a) = (
∨
{h(b) : b ≺ a})∗∗ 6

(
∨
{B(h)(b) : b ≺ a})∗∗ =

∨
B(M){B(h)(b) : b ≺ a} 6 B(h)(a).
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De Vries algebras

Definition: A de Vries algebra is a pair (B,≺), where B is a
Boolean frame and ≺ is a binary relation on B satisfying the
above six axioms.

A de Vries morphism between de Vries algebras (B,≺) and
(C,≺) is a map h : B→ C satisfying the above four axioms.

DeV = The category of de Vries algebras and de Vries
morphisms.

Warning: The composition h2 ∗ h1 of two de Vries morphisms
h1 : B1 → B2 and h2 : B2 → B3 is given by

(h2 ∗ h1)(a) =
∨
{h2h1(b) : b ≺ a}.
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From KRFrm to DeV

Booleanization defines a functor B : KRFrm→ DeV.

Can we go back?

An ideal I is round if a ∈ I implies ∃b ∈ I with a ≺ b.

For a de Vries algebra (B,≺), let R(B,≺) be the poset of round
ideals of (B,≺) ordered by inclusion.

A similar argument to the Boolean case shows that R(B,≺) is a
compact frame.

To see that it is regular, for a ∈ B, let Ra = {b | b ≺ a} be the
round ideal generated by a. Then for each I ∈ R(B,≺), we have
I =

∨
{Ra | a ∈ I} and Ra ≺ I. Thus, R(B,≺) ∈ KRFrm.
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From DeV to KRFrm

The correspondence (B,≺) 7→ R(B,≺) lifts to a functor
R : DeV→ KRFrm.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor B : KRFrm→ DeV
and the round ideal functor R : DeV→ KRFrm yield the desired
equivalence.

If L ∈ KRFrm, then define h : L→ RB(L) by h(a) = Ra ∩B(L).
That h is a well-defined order preserving map is
straightforward. Since L is regular, h is order reflecting. Since L
is compact, h is onto. Thus, h is a frame isomorphism.

If (B,≺) ∈ DeV, then define g : B→ BR(B) by g(a) = Ra. That
g is well defined follows from (Ra)∗∗ = Ra. That g is a Boolean
map follows from Ra∧b = Ra ∩Rb and Ra∗ = (Ra)∗. That g is
1-1 is clear. Finally, g is onto because for a round ideal I, we
have I∗∗ = R∨

I, so I is regular iff I = Ra for some a ∈ B.
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g is well defined follows from (Ra)∗∗ = Ra. That g is a Boolean
map follows from Ra∧b = Ra ∩Rb and Ra∗ = (Ra)∗.

That g is
1-1 is clear. Finally, g is onto because for a round ideal I, we
have I∗∗ = R∨

I, so I is regular iff I = Ra for some a ∈ B.



From DeV to KRFrm

The correspondence (B,≺) 7→ R(B,≺) lifts to a functor
R : DeV→ KRFrm.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor B : KRFrm→ DeV
and the round ideal functor R : DeV→ KRFrm yield the desired
equivalence.

If L ∈ KRFrm, then define h : L→ RB(L) by h(a) = Ra ∩B(L).
That h is a well-defined order preserving map is
straightforward. Since L is regular, h is order reflecting. Since L
is compact, h is onto. Thus, h is a frame isomorphism.

If (B,≺) ∈ DeV, then define g : B→ BR(B) by g(a) = Ra. That
g is well defined follows from (Ra)∗∗ = Ra. That g is a Boolean
map follows from Ra∧b = Ra ∩Rb and Ra∗ = (Ra)∗. That g is
1-1 is clear.

Finally, g is onto because for a round ideal I, we
have I∗∗ = R∨

I, so I is regular iff I = Ra for some a ∈ B.



From DeV to KRFrm

The correspondence (B,≺) 7→ R(B,≺) lifts to a functor
R : DeV→ KRFrm.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor B : KRFrm→ DeV
and the round ideal functor R : DeV→ KRFrm yield the desired
equivalence.

If L ∈ KRFrm, then define h : L→ RB(L) by h(a) = Ra ∩B(L).
That h is a well-defined order preserving map is
straightforward. Since L is regular, h is order reflecting. Since L
is compact, h is onto. Thus, h is a frame isomorphism.

If (B,≺) ∈ DeV, then define g : B→ BR(B) by g(a) = Ra. That
g is well defined follows from (Ra)∗∗ = Ra. That g is a Boolean
map follows from Ra∧b = Ra ∩Rb and Ra∗ = (Ra)∗. That g is
1-1 is clear. Finally, g is onto because for a round ideal I, we
have I∗∗ = R∨

I,

so I is regular iff I = Ra for some a ∈ B.



From DeV to KRFrm

The correspondence (B,≺) 7→ R(B,≺) lifts to a functor
R : DeV→ KRFrm.

Theorem: KRFrm is equivalent to DeV.

Proof sketch: The Booleanization functor B : KRFrm→ DeV
and the round ideal functor R : DeV→ KRFrm yield the desired
equivalence.

If L ∈ KRFrm, then define h : L→ RB(L) by h(a) = Ra ∩B(L).
That h is a well-defined order preserving map is
straightforward. Since L is regular, h is order reflecting. Since L
is compact, h is onto. Thus, h is a frame isomorphism.

If (B,≺) ∈ DeV, then define g : B→ BR(B) by g(a) = Ra. That
g is well defined follows from (Ra)∗∗ = Ra. That g is a Boolean
map follows from Ra∧b = Ra ∩Rb and Ra∗ = (Ra)∗. That g is
1-1 is clear. Finally, g is onto because for a round ideal I, we
have I∗∗ = R∨

I, so I is regular iff I = Ra for some a ∈ B.



De Vries duality

Sob oo // SFrm

KHaus
?�

OO

oo // KRFrm
?�

OO

oo // DeV

Stone oo //?�

OO

zKFrm
?�

OO

oo // BA
?�

OO

Theorem (de Vries): KHaus is dually equivalent to DeV.

Note: The de Vries functor RO : KHaus→ DeV is the functor of
taking regular open sets. It is exactly the composition B ◦ Ω.

The other de Vries functor E : DeV→ KHasu is the functor of
taking ends (maximal round filters). Since ends of a de Vries
algebra correspond to the points of its round ideals, it is exactly
the composition pt ◦R.
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End of Lecture 3


