Frames, topologies, and duality theory

Guram Bezhanishvili
New Mexico State University

TACL Summer School June 15-19, 2015

Lecture 3

Recap

Recap

Categories of spaces:

Recap

Categories of spaces:
(1) Top $=$ The category of topological spaces and continuous maps.

Recap

Categories of spaces:
(1) Top $=$ The category of topological spaces and continuous maps.
(2) Sob $=$ The category of sober spaces and continuous maps.

Recap

Categories of spaces:
(1) Top $=$ The category of topological spaces and continuous maps.
(2) Sob = The category of sober spaces and continuous maps.
(0) Spec $=$ The category of spectral spaces and spectral maps.

Recap

Categories of spaces:
(1) Top $=$ The category of topological spaces and continuous maps.
(2) Sob $=$ The category of sober spaces and continuous maps.
(0) Spec $=$ The category of spectral spaces and spectral maps.

- Stone = The category of Stone spaces and continuous maps.

Recap

Recap

Categories of frames:

Recap

Categories of frames:
(1) Frm $=$ The category of frames and frame homomorphisms.

Recap

Categories of frames:

(1) Frm $=$ The category of frames and frame homomorphisms.
(2) SFrm $=$ The category of spatial frames and frame homomorphisms.

Recap

Categories of frames:

(1) Frm $=$ The category of frames and frame homomorphisms.
(2) $\mathrm{SFrm}=$ The category of spatial frames and frame homomorphisms.
(3) CohFrm $=$ The category of coherent frames and frame homomorphisms that map compact elements to compact elements.

Recap

Categories of frames:

(1) Frm $=$ The category of frames and frame homomorphisms.
(2) SFrm $=$ The category of spatial frames and frame homomorphisms.
(3) CohFrm $=$ The category of coherent frames and frame homomorphisms that map compact elements to compact elements.
(4) $\mathbf{z K F r m}=$ The category of compact zero-dimensional frames and frame homomorphisms.

Recap

Categories of frames:

(1) Frm $=$ The category of frames and frame homomorphisms.
(2) SFrm $=$ The category of spatial frames and frame homomorphisms.
(3) CohFrm $=$ The category of coherent frames and frame homomorphisms that map compact elements to compact elements.
(4) $\mathbf{z K F r m}=$ The category of compact zero-dimensional frames and frame homomorphisms.

We also have:

Recap

Categories of frames:

(1) Frm $=$ The category of frames and frame homomorphisms.
(2) SFrm $=$ The category of spatial frames and frame homomorphisms.
(3) CohFrm $=$ The category of coherent frames and frame homomorphisms that map compact elements to compact elements.
(4) $\mathbf{z K F r m}=$ The category of compact zero-dimensional frames and frame homomorphisms.

We also have:
(1) $\mathrm{DL}=$ The category of bounded distributive lattices and bounded lattice homomorphisms.

Recap

Categories of frames:

(1) Frm = The category of frames and frame homomorphisms.
(2) SFrm $=$ The category of spatial frames and frame homomorphisms.
(3) CohFrm $=$ The category of coherent frames and frame homomorphisms that map compact elements to compact elements.
(4) $\mathbf{z K F r m}=$ The category of compact zero-dimensional frames and frame homomorphisms.

We also have:
(1) $\mathrm{DL}=$ The category of bounded distributive lattices and bounded lattice homomorphisms.
(2) $\mathrm{BA}=$ The category of Boolean algebras and Boolean homomorphisms.

Recap

Recap

Stone \hookrightarrow Spec \hookrightarrow Sob \hookrightarrow Top

Recap

$$
\text { Stone } \hookrightarrow \text { Spec } \hookrightarrow \text { Sob } \hookrightarrow \text { Top }
$$

zKFrm \hookrightarrow CohFrm \hookrightarrow SFrm \hookrightarrow Frm

Recap

Stone \hookrightarrow Spec \hookrightarrow Sob \hookrightarrow Top

zKFrm \hookrightarrow CohFrm \hookrightarrow SFrm \hookrightarrow Frm

Compact Hausdorff spaces

Compact Hausdorff spaces

An especially important class of spaces is that of compact Hausdorff spaces.

Compact Hausdorff spaces

An especially important class of spaces is that of compact Hausdorff spaces.

KHaus: The full subcategory of Top consisting of compact Hausdorff spaces.

Compact Hausdorff spaces

An especially important class of spaces is that of compact Hausdorff spaces.

KHaus: The full subcategory of Top consisting of compact Hausdorff spaces.

Since each Hausdorff space is sober,

Compact Hausdorff spaces

An especially important class of spaces is that of compact Hausdorff spaces.

KHaus: The full subcategory of Top consisting of compact Hausdorff spaces.

Since each Hausdorff space is sober, KHaus is a full subcategory of Sob.

Compact Hausdorff spaces

An especially important class of spaces is that of compact Hausdorff spaces.

KHaus: The full subcategory of Top consisting of compact Hausdorff spaces.

Since each Hausdorff space is sober, KHaus is a full subcategory of Sob. It is also clear that Stone is a full subcategory of KHaus.

Compact Hausdorff spaces

An especially important class of spaces is that of compact Hausdorff spaces.

KHaus: The full subcategory of Top consisting of compact Hausdorff spaces.

Since each Hausdorff space is sober, KHaus is a full subcategory of Sob. It is also clear that Stone is a full subcategory of KHaus.

The well inside relation

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof:

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff,

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$,

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed,

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed, hence compact.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed, hence compact. Therefore, there are B_{1}, \ldots, B_{n} covering $X \backslash U$.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed, hence compact. Therefore, there are B_{1}, \ldots, B_{n} covering $X \backslash U$. Let A_{1}, \ldots, A_{n} be the corresponding open neighborhoods of x.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed, hence compact. Therefore, there are B_{1}, \ldots, B_{n} covering $X \backslash U$. Let A_{1}, \ldots, A_{n} be the corresponding open neighborhoods of x. Set $V=A_{1} \cap \cdots \cap A_{n}$ and $W=B_{1} \cup \cdots \cup B_{n}$.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed, hence compact. Therefore, there are B_{1}, \ldots, B_{n} covering $X \backslash U$. Let A_{1}, \ldots, A_{n} be the corresponding open neighborhoods of x. Set $V=A_{1} \cap \cdots \cap A_{n}$ and $W=B_{1} \cup \cdots \cup B_{n}$. Then V is an open neighborhood of x,

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed, hence compact. Therefore, there are B_{1}, \ldots, B_{n} covering $X \backslash U$. Let A_{1}, \ldots, A_{n} be the corresponding open neighborhoods of x. Set $V=A_{1} \cap \cdots \cap A_{n}$ and $W=B_{1} \cup \cdots \cup B_{n}$. Then V is an open neighborhood of x, and V is disjoint from W.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed, hence compact. Therefore, there are B_{1}, \ldots, B_{n} covering $X \backslash U$. Let A_{1}, \ldots, A_{n} be the corresponding open neighborhoods of x. Set $V=A_{1} \cap \cdots \cap A_{n}$ and $W=B_{1} \cup \cdots \cup B_{n}$. Then V is an open neighborhood of x, and V is disjoint from W. Since W is open,

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed, hence compact. Therefore, there are B_{1}, \ldots, B_{n} covering $X \backslash U$. Let A_{1}, \ldots, A_{n} be the corresponding open neighborhoods of x. Set $V=A_{1} \cap \cdots \cap A_{n}$ and $W=B_{1} \cup \cdots \cup B_{n}$. Then V is an open neighborhood of x, and V is disjoint from W. Since W is open, \bar{V} is also disjoint from W.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed, hence compact. Therefore, there are B_{1}, \ldots, B_{n} covering $X \backslash U$. Let A_{1}, \ldots, A_{n} be the corresponding open neighborhoods of x. Set $V=A_{1} \cap \cdots \cap A_{n}$ and $W=B_{1} \cup \cdots \cup B_{n}$. Then V is an open neighborhood of x, and V is disjoint from W. Since W is open, \bar{V} is also disjoint from W. Because $X \backslash U \subseteq W$,

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed, hence compact. Therefore, there are B_{1}, \ldots, B_{n} covering $X \backslash U$. Let A_{1}, \ldots, A_{n} be the corresponding open neighborhoods of x. Set $V=A_{1} \cap \cdots \cap A_{n}$ and $W=B_{1} \cup \cdots \cup B_{n}$. Then V is an open neighborhood of x, and V is disjoint from W. Since W is open, \bar{V} is also disjoint from W. Because $X \backslash U \subseteq W$, we see that $\bar{V} \subseteq U$.

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed, hence compact. Therefore, there are B_{1}, \ldots, B_{n} covering $X \backslash U$. Let A_{1}, \ldots, A_{n} be the corresponding open neighborhoods of x. Set $V=A_{1} \cap \cdots \cap A_{n}$ and $W=B_{1} \cup \cdots \cup B_{n}$. Then V is an open neighborhood of x, and V is disjoint from W. Since W is open, \bar{V} is also disjoint from W. Because $X \backslash U \subseteq W$, we see that $\bar{V} \subseteq U$. Thus, $V \prec U$,

The well inside relation

Definition: We say that an open set U is well inside an open set V if $\bar{U} \subseteq V$. If U is well inside V, then we write $U \prec V$.

Lemma: If $X \in$ KHaus, then for each open set U, we have $U=\bigcup\{V \mid V \prec U\}$.

Proof: Suppose $x \in U$. For each $y \in X \backslash U$, we have $x \neq y$. Since X is Hausdorff, there exist disjoint open A_{x}, B_{y}. The B_{y} cover $X \backslash U$, which is closed, hence compact. Therefore, there are B_{1}, \ldots, B_{n} covering $X \backslash U$. Let A_{1}, \ldots, A_{n} be the corresponding open neighborhoods of x. Set $V=A_{1} \cap \cdots \cap A_{n}$ and $W=B_{1} \cup \cdots \cup B_{n}$. Then V is an open neighborhood of x, and V is disjoint from W. Since W is open, \bar{V} is also disjoint from W. Because $X \backslash U \subseteq W$, we see that $\bar{V} \subseteq U$. Thus, $V \prec U$, and hence $U=\bigcup\{V \mid V \prec U\}$.

The well inside relation

The well inside relation

How can we define the well inside relation pointfree?

The well inside relation

How can we define the well inside relation pointfree?
$U \prec V \Leftrightarrow \bar{U} \subseteq V$

The well inside relation

How can we define the well inside relation pointfree?
$U \prec V \Leftrightarrow \bar{U} \subseteq V \Leftrightarrow(X \backslash \bar{U}) \cup V=X$

The well inside relation

How can we define the well inside relation pointfree?
$U \prec V \Leftrightarrow \bar{U} \subseteq V \Leftrightarrow(X \backslash \bar{U}) \cup V=X \Leftrightarrow \operatorname{int}(X \backslash U) \cup V=X$.

The well inside relation

How can we define the well inside relation pointfree?
$U \prec V \Leftrightarrow \bar{U} \subseteq V \Leftrightarrow(X \backslash \bar{U}) \cup V=X \Leftrightarrow \operatorname{int}(X \backslash U) \cup V=X$.

But $\operatorname{int}(X \backslash U)$ is the largest open set disjoint from U,

The well inside relation

How can we define the well inside relation pointfree?
$U \prec V \Leftrightarrow \bar{U} \subseteq V \Leftrightarrow(X \backslash \bar{U}) \cup V=X \Leftrightarrow \operatorname{int}(X \backslash U) \cup V=X$.

But $\operatorname{int}(X \backslash U)$ is the largest open set disjoint from U, so $\operatorname{int}(X \backslash U)=\bigcup\{V \mid U \cap V=\varnothing\}$.

The well inside relation

How can we define the well inside relation pointfree?
$U \prec V \Leftrightarrow \bar{U} \subseteq V \Leftrightarrow(X \backslash \bar{U}) \cup V=X \Leftrightarrow \operatorname{int}(X \backslash U) \cup V=X$.

But $\operatorname{int}(X \backslash U)$ is the largest open set disjoint from U, so $\operatorname{int}(X \backslash U)=\bigcup\{V \mid U \cap V=\varnothing\}$. This open set is denoted by U^{*} or $\neg U$.

The well inside relation

How can we define the well inside relation pointfree?
$U \prec V \Leftrightarrow \bar{U} \subseteq V \Leftrightarrow(X \backslash \bar{U}) \cup V=X \Leftrightarrow \operatorname{int}(X \backslash U) \cup V=X$.

But $\operatorname{int}(X \backslash U)$ is the largest open set disjoint from U, so $\operatorname{int}(X \backslash U)=\bigcup\{V \mid U \cap V=\varnothing\}$. This open set is denoted by U^{*} or $\neg U$. It is called the pseudo-complement of U.

The well inside relation

How can we define the well inside relation pointfree?
$U \prec V \Leftrightarrow \bar{U} \subseteq V \Leftrightarrow(X \backslash \bar{U}) \cup V=X \Leftrightarrow \operatorname{int}(X \backslash U) \cup V=X$.

But $\operatorname{int}(X \backslash U)$ is the largest open set disjoint from U, so $\operatorname{int}(X \backslash U)=\bigcup\{V \mid U \cap V=\varnothing\}$. This open set is denoted by U^{*} or $\neg U$. It is called the pseudo-complement of U.

Thus, $U \prec V \Leftrightarrow U^{*} \cup V=X$.

The well inside relation

How can we define the well inside relation pointfree?
$U \prec V \Leftrightarrow \bar{U} \subseteq V \Leftrightarrow(X \backslash \bar{U}) \cup V=X \Leftrightarrow \operatorname{int}(X \backslash U) \cup V=X$.

But $\operatorname{int}(X \backslash U)$ is the largest open set disjoint from U, so $\operatorname{int}(X \backslash U)=\bigcup\{V \mid U \cap V=\varnothing\}$. This open set is denoted by U^{*} or $\neg U$. It is called the pseudo-complement of U.

Thus, $U \prec V \Leftrightarrow U^{*} \cup V=X$.
This can be expressed pointfree as follows:

The well inside relation

How can we define the well inside relation pointfree?
$U \prec V \Leftrightarrow \bar{U} \subseteq V \Leftrightarrow(X \backslash \bar{U}) \cup V=X \Leftrightarrow \operatorname{int}(X \backslash U) \cup V=X$.

But $\operatorname{int}(X \backslash U)$ is the largest open set disjoint from U, so $\operatorname{int}(X \backslash U)=\bigcup\{V \mid U \cap V=\varnothing\}$. This open set is denoted by U^{*} or $\neg U$. It is called the pseudo-complement of U.

Thus, $U \prec V \Leftrightarrow U^{*} \cup V=X$.
This can be expressed pointfree as follows:
$a \prec b$ iff $a^{*} \vee b=1$.

Compact regular frames

Compact regular frames

Definition: A frame L is regular if $a=\bigvee\{b \mid b \prec a\}$ for each $a \in L$.

Compact regular frames

Definition: A frame L is regular if $a=\bigvee\{b \mid b \prec a\}$ for each $a \in L$.

KRFrm = The full subcategory of Frm consisting of compact regular frames.

Compact regular frames

Definition: A frame L is regular if $a=\bigvee\{b \mid b \prec a\}$ for each $a \in L$.

KRFrm = The full subcategory of Frm consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leqslant b$,

Compact regular frames

Definition: A frame L is regular if $a=\bigvee\{b \mid b \prec a\}$ for each $a \in L$.

KRFrm $=$ The full subcategory of Frm consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leqslant b$, but the converse is not true in general.

Compact regular frames

Definition: A frame L is regular if $a=\bigvee\{b \mid b \prec a\}$ for each $a \in L$.

KRFrm $=$ The full subcategory of Frm consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leqslant b$, but the converse is not true in general. However, if $a \in Z(L)$,

Compact regular frames

Definition: A frame L is regular if $a=\bigvee\{b \mid b \prec a\}$ for each $a \in L$.

KRFrm $=$ The full subcategory of Frm consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leqslant b$, but the converse is not true in general. However, if $a \in Z(L)$, then $a \prec b$ iff $a \leqslant b$.

Compact regular frames

Definition: A frame L is regular if $a=\bigvee\{b \mid b \prec a\}$ for each $a \in L$.

KRFrm $=$ The full subcategory of Frm consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leqslant b$, but the converse is not true in general. However, if $a \in Z(L)$, then $a \prec b$ iff $a \leqslant b$.

This implies that zKFrm is a full subcategory of KRFrm.

Compact regular frames

Definition: A frame L is regular if $a=\bigvee\{b \mid b \prec a\}$ for each $a \in L$.

KRFrm $=$ The full subcategory of Frm consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leqslant b$, but the converse is not true in general. However, if $a \in Z(L)$, then $a \prec b$ iff $a \leqslant b$.

This implies that zKFrm is a full subcategory of KRFrm.
Moreover, KRFrm is a full subcategory of SFrm.

Compact regular frames

Definition: A frame L is regular if $a=\bigvee\{b \mid b \prec a\}$ for each $a \in L$.

KRFrm $=$ The full subcategory of Frm consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leqslant b$, but the converse is not true in general. However, if $a \in Z(L)$, then $a \prec b$ iff $a \leqslant b$.

This implies that zKFrm is a full subcategory of KRFrm.
Moreover, KRFrm is a full subcategory of SFrm. The idea of the proof is similar to that for the zero-dimensional case,

Compact regular frames

Definition: A frame L is regular if $a=\bigvee\{b \mid b \prec a\}$ for each $a \in L$.

KRFrm $=$ The full subcategory of Frm consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leqslant b$, but the converse is not true in general. However, if $a \in Z(L)$, then $a \prec b$ iff $a \leqslant b$.

This implies that zKFrm is a full subcategory of KRFrm.
Moreover, KRFrm is a full subcategory of SFrm. The idea of the proof is similar to that for the zero-dimensional case, but the details are more involved,

Compact regular frames

Definition: A frame L is regular if $a=\bigvee\{b \mid b \prec a\}$ for each $a \in L$.

KRFrm $=$ The full subcategory of Frm consisting of compact regular frames.

Clearly $a \prec b$ implies $a \leqslant b$, but the converse is not true in general. However, if $a \in Z(L)$, then $a \prec b$ iff $a \leqslant b$.

This implies that zKFrm is a full subcategory of KRFrm.
Moreover, KRFrm is a full subcategory of SFrm. The idea of the proof is similar to that for the zero-dimensional case, but the details are more involved, so we skip them.

Isbell duality

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch:

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.
Proof sketch: In fact, the restrictions of the contravariant functors Ω and pt yield the desired duality.

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.
Proof sketch: In fact, the restrictions of the contravariant functors Ω and pt yield the desired duality. As we already observed, if $X \in$ KHaus, then $\Omega(X) \in$ KRFrm.

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.
Proof sketch: In fact, the restrictions of the contravariant functors Ω and pt yield the desired duality. As we already observed, if $X \in$ KHaus, then $\Omega(X) \in$ KRFrm.

Conversely, if $L \in \operatorname{KRFrm}$, then clearly $p t(L)$ is compact.

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and pt yield the desired duality. As we already observed, if $X \in$ KHaus, then $\Omega(X) \in$ KRFrm.

Conversely, if $L \in \operatorname{KRFrm}$, then clearly $p t(L)$ is compact. To see it is Hausdorff, let $p \neq q$.

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.
Proof sketch: In fact, the restrictions of the contravariant functors Ω and pt yield the desired duality. As we already observed, if $X \in$ KHaus, then $\Omega(X) \in$ KRFrm.

Conversely, if $L \in \operatorname{KRFrm}$, then clearly $p t(L)$ is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with $p(a)=1$ and $q(a)=0$.

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.
Proof sketch: In fact, the restrictions of the contravariant functors Ω and pt yield the desired duality. As we already observed, if $X \in$ KHaus, then $\Omega(X) \in$ KRFrm.

Conversely, if $L \in \operatorname{KRFrm}$, then clearly $p t(L)$ is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with $p(a)=1$ and $q(a)=0$. Write $a=\bigvee\{b \mid b \prec a\}$.

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and pt yield the desired duality. As we already observed, if $X \in$ KHaus, then $\Omega(X) \in$ KRFrm.

Conversely, if $L \in \operatorname{KRFrm}$, then clearly $p t(L)$ is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with $p(a)=1$ and $q(a)=0$. Write $a=\bigvee\{b \mid b \prec a\}$. Then there is $b \prec a$ with $p(b)=1$.

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and pt yield the desired duality. As we already observed, if $X \in$ KHaus, then $\Omega(X) \in$ KRFrm.

Conversely, if $L \in \operatorname{KRFrm}$, then clearly $p t(L)$ is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with $p(a)=1$ and $q(a)=0$. Write $a=\bigvee\{b \mid b \prec a\}$. Then there is $b \prec a$ with $p(b)=1$. From $b \prec a$ it follows that $\overline{O(b)} \subseteq O(a)$.

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and pt yield the desired duality. As we already observed, if $X \in$ KHaus, then $\Omega(X) \in$ KRFrm.

Conversely, if $L \in \operatorname{KRFrm}$, then clearly $p t(L)$ is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with $p(a)=1$ and $q(a)=0$. Write $a=\bigvee\{b \mid b \prec a\}$. Then there is $b \prec a$ with $p(b)=1$. From $b \prec a$ it follows that $\overline{O(b)} \subseteq O(a)$. Therefore, $p \in O(b)$ and $q \notin O(a)$,

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and pt yield the desired duality. As we already observed, if $X \in$ KHaus, then $\Omega(X) \in$ KRFrm.

Conversely, if $L \in \operatorname{KRFrm}$, then clearly $p t(L)$ is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with $p(a)=1$ and $q(a)=0$. Write $a=\bigvee\{b \mid b \prec a\}$. Then there is $b \prec a$ with $p(b)=1$. From $b \prec a$ it follows that $\overline{O(b)} \subseteq O(a)$. Therefore, $p \in O(b)$ and $q \notin O(a)$, so $q \in X \backslash \overline{O(b)}$.

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and pt yield the desired duality. As we already observed, if $X \in$ KHaus, then $\Omega(X) \in$ KRFrm.

Conversely, if $L \in \operatorname{KRFrm}$, then clearly $p t(L)$ is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with $p(a)=1$ and $q(a)=0$. Write $a=\bigvee\{b \mid b \prec a\}$. Then there is $b \prec a$ with $p(b)=1$. From $b \prec a$ it follows that $\overline{O(b)} \subseteq O(a)$. Therefore, $p \in O(b)$ and $q \notin O(a)$, so $q \in X \backslash \overline{O(b)}$. Thus, there are two open sets $U:=O(b)$ and $V:=X \backslash \overline{O(b)}$

Isbell duality

Theorem (Isbell): KHaus is dually equivalent to KRFrm.

Proof sketch: In fact, the restrictions of the contravariant functors Ω and pt yield the desired duality. As we already observed, if $X \in$ KHaus, then $\Omega(X) \in$ KRFrm.

Conversely, if $L \in \operatorname{KRFrm}$, then clearly $p t(L)$ is compact. To see it is Hausdorff, let $p \neq q$. WLOG $\exists a \in L$ with $p(a)=1$ and $q(a)=0$. Write $a=\bigvee\{b \mid b \prec a\}$. Then there is $b \prec a$ with $p(b)=1$. From $b \prec a$ it follows that $\overline{O(b)} \subseteq O(a)$. Therefore, $p \in O(b)$ and $q \notin O(a)$, so $q \in X \backslash \overline{O(b)}$. Thus, there are two open sets $U:=O(b)$ and $V:=X \backslash \overline{O(b)}$ such that $p \in U, q \in V$, and $U \cap V=\varnothing$.

Isbell duality

Isbell duality

Isbell duality

Isbell duality

Isbell duality

Isbell duality

Booleanization

Booleanization

An element a of a frame L is regular if $a^{* *}=a$.

Booleanization

An element a of a frame L is regular if $a^{* *}=a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of L.

Booleanization

An element a of a frame L is regular if $a^{* *}=a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of L. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:

Booleanization

An element a of a frame L is regular if $a^{* *}=a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of L. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:

$$
a \wedge_{\mathfrak{B}(L)} b=a \wedge b
$$

Booleanization

An element a of a frame L is regular if $a^{* *}=a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of L. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:

$$
a \wedge_{\mathfrak{B}(L)} b=a \wedge b \quad \text { and } \quad \bigvee_{\mathfrak{B}(L)} S=(\bigvee S)^{* *}
$$

Booleanization

An element a of a frame L is regular if $a^{* *}=a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of L. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:
$a \wedge_{\mathfrak{B}(L)} b=a \wedge b$ and $\bigvee_{\mathfrak{B}(L)} S=(\bigvee S)^{* *}$.
It is straightforward to see that $\mathfrak{B}(L)$ is a frame.

Booleanization

An element a of a frame L is regular if $a^{* *}=a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of L. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:
$a \wedge_{\mathfrak{B}(L)} b=a \wedge b$ and $\bigvee_{\mathfrak{B}(L)} S=(\bigvee S)^{* *}$.
It is straightforward to see that $\mathfrak{B}(L)$ is a frame. To see it is Boolean, observe that

Booleanization

An element a of a frame L is regular if $a^{* *}=a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of L. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:
$a \wedge_{\mathfrak{B}(L)} b=a \wedge b$ and $\bigvee_{\mathfrak{B}(L)} S=(\bigvee S)^{* *}$.
It is straightforward to see that $\mathfrak{B}(L)$ is a frame. To see it is Boolean, observe that
$a \vee_{\mathfrak{B}(L)} a^{*}=\left(a \vee a^{*}\right)^{* *}=1$.

Booleanization

An element a of a frame L is regular if $a^{* *}=a$. Let $\mathfrak{B}(L)$ be the set of all regular elements of L. Then $\mathfrak{B}(L)$ is a complete Boolean algebra (Boolean frame) with respect to the following operations:
$a \wedge_{\mathfrak{B}(L)} b=a \wedge b$ and $\bigvee_{\mathfrak{B}(L)} S=(\bigvee S)^{* *}$.
It is straightforward to see that $\mathfrak{B}(L)$ is a frame. To see it is Boolean, observe that
$a \vee_{\mathfrak{B}(L)} a^{*}=\left(a \vee a^{*}\right)^{* *}=1$.
$\mathfrak{B}(L)$ is called the Booleanization of L.

Restriction of \prec to $\mathfrak{B}(L)$

Restriction of \prec to $\mathfrak{B}(L)$

If L is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:

Restriction of \prec to $\mathfrak{B}(L)$

If L is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:
(1) $1 \prec 1$.

Restriction of \prec to $\mathfrak{B}(L)$

If L is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:
(1) $1 \prec 1$.
(2) $a \prec b$ implies $a \leq b$.

Restriction of \prec to $\mathfrak{B}(L)$

If L is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:
(1) $1 \prec 1$.
(2) $a \prec b$ implies $a \leq b$.
(8) $a \leq b \prec c \leq d$ implies $a \prec d$.

Restriction of \prec to $\mathfrak{B}(L)$

If L is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:
(1) $1 \prec 1$.
(2) $a \prec b$ implies $a \leq b$.
(3) $a \leq b \prec c \leq d$ implies $a \prec d$.
(4) $a \prec b, c$ implies $a \prec b \wedge c$.

Restriction of \prec to $\mathfrak{B}(L)$

If L is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:
(1) $1 \prec 1$.
(2) $a \prec b$ implies $a \leq b$.
(3) $a \leq b \prec c \leq d$ implies $a \prec d$.
(4) $a \prec b, c$ implies $a \prec b \wedge c$.
(5) $a \prec b$ implies $b^{*} \prec a^{*}$.

Restriction of \prec to $\mathfrak{B}(L)$

If L is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:
(1) $1 \prec 1$.
(2) $a \prec b$ implies $a \leq b$.
(3) $a \leq b \prec c \leq d$ implies $a \prec d$.
(4) $a \prec b, c$ implies $a \prec b \wedge c$.
(5) $a \prec b$ implies $b^{*} \prec a^{*}$.
(6) $a \prec b$ implies there exists $c \in \mathfrak{B}(L)$ such that $a \prec c \prec b$.

Restriction of \prec to $\mathfrak{B}(L)$

If L is compact regular, then the restriction of \prec to $\mathfrak{B}(L)$ satisfies the following properties:
(1) $1 \prec 1$.
(2) $a \prec b$ implies $a \leq b$.
(3) $a \leq b \prec c \leq d$ implies $a \prec d$.
(4) $a \prec b, c$ implies $a \prec b \wedge c$.
(5) $a \prec b$ implies $b^{*} \prec a^{*}$.
(6) $a \prec b$ implies there exists $c \in \mathfrak{B}(L)$ such that $a \prec c \prec b$.
(2) $a=\bigvee_{\mathfrak{B}(L)}\{b \in \mathfrak{B}(L) \mid b \prec a\}$.

Restriction of \prec to $\mathfrak{B}(L)$

Restriction of \prec to $\mathfrak{B}(L)$

To see (6), suppose $a \prec b$.

Restriction of \prec to $\mathfrak{B}(L)$

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{* *} \prec y$,

Restriction of \prec to $\mathfrak{B}(L)$

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{* *} \prec y$, we have $a^{*}=\bigvee\left\{x \in \mathfrak{B}(L) \mid x \prec a^{*}\right\}$.

Restriction of \prec to $\mathfrak{B}(L)$

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{* *} \prec y$, we have $a^{*}=\bigvee\left\{x \in \mathfrak{B}(L) \mid x \prec a^{*}\right\}$. So $a^{*} \vee b=1$ gives
$\bigvee\left\{x \in \mathfrak{B}(L) \mid x \prec a^{*}\right\} \vee b=1$.

Restriction of \prec to $\mathfrak{B}(L)$

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{* *} \prec y$, we have $a^{*}=\bigvee\left\{x \in \mathfrak{B}(L) \mid x \prec a^{*}\right\}$. So $a^{*} \vee b=1$ gives
$\bigvee\left\{x \in \mathfrak{B}(L) \mid x \prec a^{*}\right\} \vee b=1$. Because L is compact, $\exists x_{1}, \ldots, x_{n} \in \mathfrak{B}(L)$ such that $x_{i} \prec a^{*}$ and $x_{1} \vee \cdots \vee x_{n} \vee b=1$.

Restriction of \prec to $\mathfrak{B}(L)$

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{* *} \prec y$, we have $a^{*}=\bigvee\left\{x \in \mathfrak{B}(L) \mid x \prec a^{*}\right\}$. So $a^{*} \vee b=1$ gives
$\bigvee\left\{x \in \mathfrak{B}(L) \mid x \prec a^{*}\right\} \vee b=1$. Because L is compact, $\exists x_{1}, \ldots, x_{n} \in \mathfrak{B}(L)$ such that $x_{i} \prec a^{*}$ and $x_{1} \vee \cdots \vee x_{n} \vee b=1$. Setting $c=\left(x_{1} \vee \cdots \vee x_{n}\right)^{*}$ produces an element of $\mathfrak{B}(L)$ such that $a \prec c \prec b$.

Restriction of \prec to $\mathfrak{B}(L)$

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{* *} \prec y$, we have $a^{*}=\bigvee\left\{x \in \mathfrak{B}(L) \mid x \prec a^{*}\right\}$. So $a^{*} \vee b=1$ gives
$\bigvee\left\{x \in \mathfrak{B}(L) \mid x \prec a^{*}\right\} \vee b=1$. Because L is compact, $\exists x_{1}, \ldots, x_{n} \in \mathfrak{B}(L)$ such that $x_{i} \prec a^{*}$ and $x_{1} \vee \cdots \vee x_{n} \vee b=1$. Setting $c=\left(x_{1} \vee \cdots \vee x_{n}\right)^{*}$ produces an element of $\mathfrak{B}(L)$ such that $a \prec c \prec b$.

If $h: L \rightarrow M$ is a frame homomorphism, then h may not send regular elements to regular elements.

Restriction of \prec to $\mathfrak{B}(L)$

To see (6), suppose $a \prec b$. Since $x \prec y$ implies $x^{* *} \prec y$, we have $a^{*}=\bigvee\left\{x \in \mathfrak{B}(L) \mid x \prec a^{*}\right\}$. So $a^{*} \vee b=1$ gives
$\bigvee\left\{x \in \mathfrak{B}(L) \mid x \prec a^{*}\right\} \vee b=1$. Because L is compact, $\exists x_{1}, \ldots, x_{n} \in \mathfrak{B}(L)$ such that $x_{i} \prec a^{*}$ and $x_{1} \vee \cdots \vee x_{n} \vee b=1$. Setting $c=\left(x_{1} \vee \cdots \vee x_{n}\right)^{*}$ produces an element of $\mathfrak{B}(L)$ such that $a \prec c \prec b$.

If $h: L \rightarrow M$ is a frame homomorphism, then h may not send regular elements to regular elements. So we define $\mathfrak{B}(h): \mathfrak{B}(L) \rightarrow \mathfrak{B}(M)$ by $\mathfrak{B}(h)(a)=h(a)^{* *}$.

Restriction of \prec to $\mathfrak{B}(L)$

Restriction of \prec to $\mathfrak{B}(L)$

$\mathfrak{B}(h): \mathfrak{B}(L) \rightarrow \mathfrak{B}(M)$ satisfies the following properties:

Restriction of \prec to $\mathfrak{B}(L)$

$\mathfrak{B}(h): \mathfrak{B}(L) \rightarrow \mathfrak{B}(M)$ satisfies the following properties:
(1) $\mathfrak{B}(h)(0)=0$.

Restriction of \prec to $\mathfrak{B}(L)$

$\mathfrak{B}(h): \mathfrak{B}(L) \rightarrow \mathfrak{B}(M)$ satisfies the following properties:
(1) $\mathfrak{B}(h)(0)=0$.
(2) $\mathfrak{B}(h)(a \wedge b)=\mathfrak{B}(h)(a) \wedge \mathfrak{B}(h)(b)$.

Restriction of \prec to $\mathfrak{B}(L)$

$\mathfrak{B}(h): \mathfrak{B}(L) \rightarrow \mathfrak{B}(M)$ satisfies the following properties:
(1) $\mathfrak{B}(h)(0)=0$.
(2) $\mathfrak{B}(h)(a \wedge b)=\mathfrak{B}(h)(a) \wedge \mathfrak{B}(h)(b)$.
(3) $a \prec b$ implies $\left(\mathfrak{B}(h)\left(a^{*}\right)\right)^{*} \prec \mathfrak{B}(h)(b)$.

Restriction of \prec to $\mathfrak{B}(L)$

$\mathfrak{B}(h): \mathfrak{B}(L) \rightarrow \mathfrak{B}(M)$ satisfies the following properties:
(1) $\mathfrak{B}(h)(0)=0$.
(2) $\mathfrak{B}(h)(a \wedge b)=\mathfrak{B}(h)(a) \wedge \mathfrak{B}(h)(b)$.
(3) $a \prec b$ implies $\left(\mathfrak{B}(h)\left(a^{*}\right)\right)^{*} \prec \mathfrak{B}(h)(b)$.
(4) $\mathfrak{B}(h)(a)=\bigvee_{\mathfrak{B}(M)}\{\mathfrak{B}(h)(b): b \prec a\}$.

Restriction of \prec to $\mathfrak{B}(L)$

$\mathfrak{B}(h): \mathfrak{B}(L) \rightarrow \mathfrak{B}(M)$ satisfies the following properties:
(1) $\mathfrak{B}(h)(0)=0$.
(2) $\mathfrak{B}(h)(a \wedge b)=\mathfrak{B}(h)(a) \wedge \mathfrak{B}(h)(b)$.
(3) $a \prec b$ implies $\left(\mathfrak{B}(h)\left(a^{*}\right)\right)^{*} \prec \mathfrak{B}(h)(b)$.
(9) $\mathfrak{B}(h)(a)=\bigvee_{\mathfrak{B}(M)}\{\mathfrak{B}(h)(b): b \prec a\}$.

To see (4),

Restriction of \prec to $\mathfrak{B}(L)$

$\mathfrak{B}(h): \mathfrak{B}(L) \rightarrow \mathfrak{B}(M)$ satisfies the following properties:
(1) $\mathfrak{B}(h)(0)=0$.
(2) $\mathfrak{B}(h)(a \wedge b)=\mathfrak{B}(h)(a) \wedge \mathfrak{B}(h)(b)$.
(3) $a \prec b$ implies $\left(\mathfrak{B}(h)\left(a^{*}\right)\right)^{*} \prec \mathfrak{B}(h)(b)$.
(9) $\mathfrak{B}(h)(a)=\bigvee_{\mathfrak{B}(M)}\{\mathfrak{B}(h)(b): b \prec a\}$.

> To see $(4), \mathfrak{B}(h)(a)=(\bigvee\{h(b): b \prec a\})^{* *} \leqslant$ $(\bigvee\{\mathfrak{B}(h)(b): b \prec a\})^{* *}=\bigvee_{\mathfrak{B}(M)}\{\mathfrak{B}(h)(b): b \prec a\} \leqslant \mathfrak{B}(h)(a)$

De Vries algebras

De Vries algebras

Definition: A de Vries algebra is a pair (B, \prec), where B is a Boolean frame and \prec is a binary relation on B satisfying the above six axioms.

De Vries algebras

Definition: A de Vries algebra is a pair (B, \prec), where B is a Boolean frame and \prec is a binary relation on B satisfying the above six axioms.

A de Vries morphism between de Vries algebras (B, \prec) and (C, \prec) is a map $h: B \rightarrow C$ satisfying the above four axioms.

De Vries algebras

Definition: A de Vries algebra is a pair (B, \prec), where B is a Boolean frame and \prec is a binary relation on B satisfying the above six axioms.

A de Vries morphism between de Vries algebras (B, \prec) and (C, \prec) is a map $h: B \rightarrow C$ satisfying the above four axioms.
$\mathrm{DeV}=$ The category of de Vries algebras and de Vries morphisms.

De Vries algebras

Definition: A de Vries algebra is a pair (B, \prec), where B is a Boolean frame and \prec is a binary relation on B satisfying the above six axioms.

A de Vries morphism between de Vries algebras (B, \prec) and (C, \prec) is a map $h: B \rightarrow C$ satisfying the above four axioms.
$\mathrm{DeV}=$ The category of de Vries algebras and de Vries morphisms.

Warning: The composition $h_{2} * h_{1}$ of two de Vries morphisms $h_{1}: B_{1} \rightarrow B_{2}$ and $h_{2}: B_{2} \rightarrow B_{3}$ is given by

De Vries algebras

Definition: A de Vries algebra is a pair (B, \prec), where B is a Boolean frame and \prec is a binary relation on B satisfying the above six axioms.

A de Vries morphism between de Vries algebras (B, \prec) and (C, \prec) is a map $h: B \rightarrow C$ satisfying the above four axioms.
$\mathrm{DeV}=$ The category of de Vries algebras and de Vries morphisms.

Warning: The composition $h_{2} * h_{1}$ of two de Vries morphisms $h_{1}: B_{1} \rightarrow B_{2}$ and $h_{2}: B_{2} \rightarrow B_{3}$ is given by
$\left(h_{2} * h_{1}\right)(a)=\bigvee\left\{h_{2} h_{1}(b): b \prec a\right\}$.

From KRFrm to DeV

From KRFrm to DeV

Booleanization defines a functor $\mathfrak{B}: \mathbf{K R F r m} \rightarrow \mathbf{D e V}$.

From KRFrm to DeV

Booleanization defines a functor $\mathfrak{B}: \mathbf{K R F r m} \rightarrow \mathbf{D e V}$.
Can we go back?

From KRFrm to DeV

Booleanization defines a functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$.
Can we go back?
An ideal I is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.

From KRFrm to DeV

Booleanization defines a functor $\mathfrak{B}: \mathbf{K R F r m} \rightarrow \mathbf{D e V}$.
Can we go back?
An ideal I is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.
For a de Vries algebra (B, \prec),

From KRFrm to DeV

Booleanization defines a functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$.
Can we go back?
An ideal I is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.
For a de Vries algebra (B, \prec), let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

From KRFrm to DeV

Booleanization defines a functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$.
Can we go back?
An ideal I is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.
For a de Vries algebra (B, \prec), let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

A similar argument to the Boolean case shows that $\mathfrak{R}(B, \prec)$ is a compact frame.

From KRFrm to DeV

Booleanization defines a functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$.
Can we go back?
An ideal I is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.
For a de Vries algebra (B, \prec), let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

A similar argument to the Boolean case shows that $\mathfrak{R}(B, \prec)$ is a compact frame.

To see that it is regular,

From KRFrm to DeV

Booleanization defines a functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$.
Can we go back?
An ideal I is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.
For a de Vries algebra (B, \prec), let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

A similar argument to the Boolean case shows that $\mathfrak{R}(B, \prec)$ is a compact frame.

To see that it is regular, for $a \in B$, let $\Re_{a}=\{b \mid b \prec a\}$ be the round ideal generated by a.

From KRFrm to DeV

Booleanization defines a functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$.
Can we go back?
An ideal I is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.
For a de Vries algebra (B, \prec), let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

A similar argument to the Boolean case shows that $\mathfrak{R}(B, \prec)$ is a compact frame.

To see that it is regular, for $a \in B$, let $\Re_{a}=\{b \mid b \prec a\}$ be the round ideal generated by a. Then for each $I \in \mathfrak{R}(B, \prec)$, we have $I=\bigvee\left\{\Re_{a} \mid a \in I\right\}$

From KRFrm to DeV

Booleanization defines a functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$.
Can we go back?
An ideal I is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.
For a de Vries algebra (B, \prec), let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

A similar argument to the Boolean case shows that $\mathfrak{R}(B, \prec)$ is a compact frame.

To see that it is regular, for $a \in B$, let $\Re_{a}=\{b \mid b \prec a\}$ be the round ideal generated by a. Then for each $I \in \mathfrak{R}(B, \prec)$, we have $I=\bigvee\left\{\Re_{a} \mid a \in I\right\}$ and $\Re_{a} \prec I$.

From KRFrm to DeV

Booleanization defines a functor $\mathfrak{B}: \mathbf{K R F r m} \rightarrow \mathbf{D e V}$.
Can we go back?
An ideal I is round if $a \in I$ implies $\exists b \in I$ with $a \prec b$.
For a de Vries algebra (B, \prec), let $\mathfrak{R}(B, \prec)$ be the poset of round ideals of (B, \prec) ordered by inclusion.

A similar argument to the Boolean case shows that $\mathfrak{R}(B, \prec)$ is a compact frame.

To see that it is regular, for $a \in B$, let $\Re_{a}=\{b \mid b \prec a\}$ be the round ideal generated by a. Then for each $I \in \mathfrak{R}(B, \prec)$, we have $I=\bigvee\left\{\Re_{a} \mid a \in I\right\}$ and $\Re_{a} \prec I$. Thus, $\mathfrak{R}(B, \prec) \in$ KRFrm.

From DeV to KRFrm

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}: \mathbf{D e V} \rightarrow$ KRFrm.

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}: \mathrm{DeV} \rightarrow$ KRFrm.

Theorem: KRFrm is equivalent to DeV .

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}: \mathrm{DeV} \rightarrow$ KRFrm.

Theorem: KRFrm is equivalent to DeV .
Proof sketch: The Booleanization functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$ and the round ideal functor $\mathfrak{R}: \mathbf{D e V} \rightarrow$ KRFrm yield the desired equivalence.

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}: \mathrm{DeV} \rightarrow$ KRFrm.

Theorem: KRFrm is equivalent to DeV .
Proof sketch: The Booleanization functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$ and the round ideal functor $\mathfrak{R}: \mathbf{D e V} \rightarrow$ KRFrm yield the desired equivalence.
If $L \in \operatorname{KRFrm}$, then define $h: L \rightarrow \mathfrak{R} \mathfrak{B}(L)$ by $h(a)=\mathfrak{R}_{a} \cap \mathfrak{B}(L)$.

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}: \mathrm{DeV} \rightarrow$ KRFrm.

Theorem: KRFrm is equivalent to DeV .
Proof sketch: The Booleanization functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$ and the round ideal functor $\mathfrak{R}: \mathbf{D e V} \rightarrow$ KRFrm yield the desired equivalence.
If $L \in \mathbf{K R F r m}$, then define $h: L \rightarrow \mathfrak{R} \mathfrak{B}(L)$ by $h(a)=\mathfrak{R}_{a} \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward.

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}: \mathrm{DeV} \rightarrow$ KRFrm.

Theorem: KRFrm is equivalent to DeV.
Proof sketch: The Booleanization functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$ and the round ideal functor $\mathfrak{R}: \mathbf{D e V} \rightarrow$ KRFrm yield the desired equivalence.
If $L \in \mathbf{K R F r m}$, then define $h: L \rightarrow \mathfrak{R B}(L)$ by $h(a)=\mathfrak{R}_{a} \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting.

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}: \mathrm{DeV} \rightarrow$ KRFrm.

Theorem: KRFrm is equivalent to DeV.
Proof sketch: The Booleanization functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$ and the round ideal functor $\mathfrak{R}: \mathbf{D e V} \rightarrow$ KRFrm yield the desired equivalence.
If $L \in \mathbf{K R F r m}$, then define $h: L \rightarrow \mathfrak{R B}(L)$ by $h(a)=\mathfrak{R}_{a} \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since L is compact, h is onto.

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}: \mathrm{DeV} \rightarrow$ KRFrm.

Theorem: KRFrm is equivalent to DeV .
Proof sketch: The Booleanization functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$ and the round ideal functor $\mathfrak{R}: \mathbf{D e V} \rightarrow$ KRFrm yield the desired equivalence.
If $L \in \mathbf{K R F r m}$, then define $h: L \rightarrow \mathfrak{R B}(L)$ by $h(a)=\mathfrak{R}_{a} \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since L is compact, h is onto. Thus, h is a frame isomorphism.

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}: \mathrm{DeV} \rightarrow$ KRFrm.

Theorem: KRFrm is equivalent to DeV .
Proof sketch: The Booleanization functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$ and the round ideal functor $\mathfrak{R}: \mathbf{D e V} \rightarrow$ KRFrm yield the desired equivalence.
If $L \in \mathbf{K R F r m}$, then define $h: L \rightarrow \mathfrak{R} \mathfrak{B}(L)$ by $h(a)=\mathfrak{R}_{a} \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since L is compact, h is onto. Thus, h is a frame isomorphism.
If $(B, \prec) \in \mathrm{DeV}$, then define $g: B \rightarrow \mathfrak{B} \mathfrak{R}(B)$ by $g(a)=\mathfrak{R}_{a}$.

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}: \mathrm{DeV} \rightarrow$ KRFrm.

Theorem: KRFrm is equivalent to DeV .
Proof sketch: The Booleanization functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$ and the round ideal functor $\mathfrak{R}: \mathbf{D e V} \rightarrow$ KRFrm yield the desired equivalence.
If $L \in \mathbf{K R F r m}$, then define $h: L \rightarrow \mathfrak{R} \mathfrak{B}(L)$ by $h(a)=\mathfrak{R}_{a} \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since L is compact, h is onto. Thus, h is a frame isomorphism.
If $(B, \prec) \in \operatorname{DeV}$, then define $g: B \rightarrow \mathfrak{B R}(B)$ by $g(a)=\mathfrak{R}_{a}$. That g is well defined follows from $\left(\mathfrak{R}_{a}\right)^{* *}=\mathfrak{R}_{a}$.

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}:$ DeV \rightarrow KRFrm.
Theorem: KRFrm is equivalent to DeV.
Proof sketch: The Booleanization functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$ and the round ideal functor $\mathfrak{R}: \mathbf{D e V} \rightarrow$ KRFrm yield the desired equivalence.
If $L \in \mathbf{K R F r m}$, then define $h: L \rightarrow \mathfrak{R} \mathfrak{B}(L)$ by $h(a)=\mathfrak{R}_{a} \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since L is compact, h is onto. Thus, h is a frame isomorphism.
If $(B, \prec) \in \mathrm{DeV}$, then define $g: B \rightarrow \mathfrak{B R}(B)$ by $g(a)=\mathfrak{R}_{a}$. That g is well defined follows from $\left(\mathfrak{R}_{a}\right)^{* *}=\mathfrak{R}_{a}$. That g is a Boolean map follows from $\mathfrak{R}_{a \wedge b}=\Re_{a} \cap \Re_{b}$ and $\Re_{a^{*}}=\left(\Re_{a}\right)^{*}$.

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}:$ DeV \rightarrow KRFrm.
Theorem: KRFrm is equivalent to DeV.
Proof sketch: The Booleanization functor $\mathfrak{B}:$ KRFrm \rightarrow DeV and the round ideal functor $\mathfrak{R}: \operatorname{DeV} \rightarrow$ KRFrm yield the desired equivalence.
If $L \in \operatorname{KRFrm}$, then define $h: L \rightarrow \mathfrak{R B}(L)$ by $h(a)=\mathfrak{R}_{a} \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since L is compact, h is onto. Thus, h is a frame isomorphism.
If $(B, \prec) \in \operatorname{DeV}$, then define $g: B \rightarrow \mathfrak{B R}(B)$ by $g(a)=\mathfrak{R}_{a}$. That g is well defined follows from $\left(\mathfrak{R}_{a}\right)^{* *}=\mathfrak{R}_{a}$. That g is a Boolean map follows from $\mathfrak{\Re}_{a \wedge b}=\mathfrak{R}_{a} \cap \mathfrak{R}_{b}$ and $\mathfrak{R}_{a^{*}}=\left(\mathfrak{R}_{a}\right)^{*}$. That g is $1-1$ is clear.

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}:$ DeV \rightarrow KRFrm.
Theorem: KRFrm is equivalent to DeV.
Proof sketch: The Booleanization functor $\mathfrak{B}:$ KRFrm \rightarrow DeV and the round ideal functor $\mathfrak{R}: \operatorname{DeV} \rightarrow$ KRFrm yield the desired equivalence.
If $L \in \operatorname{KRFrm}$, then define $h: L \rightarrow \mathfrak{R B}(L)$ by $h(a)=\mathfrak{R}_{a} \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since L is compact, h is onto. Thus, h is a frame isomorphism.
If $(B, \prec) \in \operatorname{DeV}$, then define $g: B \rightarrow \mathfrak{B R}(B)$ by $g(a)=\mathfrak{R}_{a}$. That g is well defined follows from $\left(\mathfrak{R}_{a}\right)^{* *}=\mathfrak{R}_{a}$. That g is a Boolean map follows from $\mathfrak{\Re}_{a \wedge b}=\mathfrak{R}_{a} \cap \mathfrak{\Re}_{b}$ and $\mathfrak{R}_{a^{*}}=\left(\mathfrak{R}_{a}\right)^{*}$. That g is $1-1$ is clear. Finally, g is onto because for a round ideal I, we have $I^{* *}=\Re_{V_{I}}$,

From DeV to KRFrm

The correspondence $(B, \prec) \mapsto \mathfrak{R}(B, \prec)$ lifts to a functor $\mathfrak{R}: \mathrm{DeV} \rightarrow$ KRFrm.
Theorem: KRFrm is equivalent to DeV.
Proof sketch: The Booleanization functor $\mathfrak{B}:$ KRFrm $\rightarrow \mathbf{D e V}$ and the round ideal functor $\mathfrak{R}: \operatorname{DeV} \rightarrow$ KRFrm yield the desired equivalence.
If $L \in \operatorname{KRFrm}$, then define $h: L \rightarrow \mathfrak{R B}(L)$ by $h(a)=\mathfrak{R}_{a} \cap \mathfrak{B}(L)$. That h is a well-defined order preserving map is straightforward. Since L is regular, h is order reflecting. Since L is compact, h is onto. Thus, h is a frame isomorphism.
If $(B, \prec) \in \operatorname{DeV}$, then define $g: B \rightarrow \mathfrak{B R}(B)$ by $g(a)=\mathfrak{R}_{a}$. That g is well defined follows from $\left(\mathfrak{R}_{a}\right)^{* *}=\mathfrak{R}_{a}$. That g is a Boolean map follows from $\mathfrak{\Re}_{a \wedge b}=\mathfrak{R}_{a} \cap \mathfrak{R}_{b}$ and $\mathfrak{R}_{a^{*}}=\left(\mathfrak{R}_{a}\right)^{*}$. That g is $1-1$ is clear. Finally, g is onto because for a round ideal I, we have $I^{* *}=\mathfrak{R}_{V_{I}}$, so I is regular iff $I=\mathfrak{R}_{a}$ for some $a \in B$.

De Vries duality

De Vries duality

De Vries duality

Theorem (de Vries): KHaus is dually equivalent to $\mathbf{D e V}$.

De Vries duality

Theorem (de Vries): KHaus is dually equivalent to $\mathbf{D e V}$.
Note:

De Vries duality

Theorem (de Vries): KHaus is dually equivalent to $\mathbf{D e V}$.
Note: The de Vries functor $\mathcal{R O}:$ KHaus $\rightarrow \mathbf{D e V}$ is the functor of taking regular open sets.

De Vries duality

Theorem (de Vries): KHaus is dually equivalent to $\mathbf{D e V}$.
Note: The de Vries functor $\mathcal{R O}:$ KHaus $\rightarrow \mathrm{DeV}$ is the functor of taking regular open sets. It is exactly the composition $\mathfrak{B} \circ \Omega$.

De Vries duality

Theorem (de Vries): KHaus is dually equivalent to DeV.
Note: The de Vries functor $\mathcal{R O}:$ KHaus $\rightarrow \mathbf{D e V}$ is the functor of taking regular open sets. It is exactly the composition $\mathfrak{B} \circ \Omega$.

The other de Vries functor $\mathcal{E}: \mathbf{D e V} \rightarrow \mathbf{K H a s u}$ is the functor of taking ends (maximal round filters).

De Vries duality

Theorem (de Vries): KHaus is dually equivalent to DeV.
Note: The de Vries functor $\mathcal{R O}:$ KHaus $\rightarrow \mathbf{D e V}$ is the functor of taking regular open sets. It is exactly the composition $\mathfrak{B} \circ \Omega$.

The other de Vries functor $\mathcal{E}: \mathbf{D e V} \rightarrow \mathbf{K H a s u}$ is the functor of taking ends (maximal round filters). Since ends of a de Vries algebra correspond to the points of its round ideals, it is exactly the composition $p t \circ \Re$.

End of Lecture 3

