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Recap

Top = The category of topological spaces and continuous maps

Frm = The category of frames and frame homomorphisms

There is a contravariant adjunction Ω : Top→ Frm,
pt : Frm→ Top.

Ω sends X to the frame of opens, and a continuous map f to f−1;
while pt sends L to the space of points of L, and h to pt(h), given
by pt(h)(q) = q ◦ h, where q is a point of L.
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Recap

The contravariant adjunction Ω : Top→ Frm, pt : Frm→ Top
restricts to the dual equivalence between the full subcategory
Sob of Top consisting of sober spaces and the full subcategory
SFrm of Frm consisting of spatial frames.

Recall that a space is sober if each irreducible closed set has a
unique generic point, and a frame is spatial if its different
elements can be separated by points.
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More about sober spaces

Let L be a lattice.
1 a ∈ L is join-irreducible (JI) if a = b ∨ c implies a = b or

a = c.
2 a ∈ L is join-prime (JP) if a 6 b ∨ c implies a 6 b or a 6 c.

JP⊆JI but JI6⊆JP

•

• • •
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More about sober spaces

If L is distributive, then JI=JP.

a 6 b ∨ c ⇒ a = a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
⇒ a = a ∧ b or a = a ∧ c
⇒ a 6 b or a 6 c

Similarly, MP ⊆ MI and MP = MI if L is distributive.

In the complete case, CJP ⊆ CJI and if L satisfies JID, then
CJP = CJI.

Similarly, CMP ⊆ CMI and if L satisfies MID, then CMP = CMI.
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More about sober spaces

For a topological space X, let τ be the lattice of open sets and δ
the lattice of closed sets.

F ∈ δ is irreducible iff X \ F is meet-prime in τ .

So irreducible closed sets correspond to points of Ω(X).

In particular, {x} is always irreducible.

{x} ⊆ F∪G⇒ x ∈ F∪G⇒ x ∈ F or x ∈ G⇒ {x} ⊆ F or {x} ⊆ G

But in general there could exist irreducible closed sets that are
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Claim 1: If X is sober, then X is T0.
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Claim 2: If X is Hausdorff, then X is sober.

If X is Hausdorff, then the only irreducible closed sets are
singletons, so X is sober.

But there exist T1-spaces that are not sober.
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Ω, pt yield dual equivalence of Sob and SFrm.

We also showed that there is an equivalence between the
category BA of Boolean algebras and the category zKFrm of
compact zero-dimensional frames, where a frame is
zero-dimensional if each element is a join of complemented
elements.

The equivalence is established by taking the ideal functor
I : BA→ zKFrm and the center functor Z : zKFrm→ BA,
associating with each L ∈ zKFrm the center Z(L) of L.
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Continuing

We next show that zKFrm is a full subcategory of SFrm.

Let L ∈ zKFrm. Suppose a 66 b in L. Since L is zero-dimensional,
there is z ∈ ↓a ∩ Z(L) such that z /∈ ↓b ∩ Z(L). Therefore, there is
a maximal ideal M of Z(L) such that z /∈ M and ↓b ∩ Z(L) ⊆ M.
Since z is compact, z 66

∨
M.

Define p : L→ 2 by p(x) =

{
0 x 6

∨
M,

1 otherwise.

Then p ∈ pt L, p(a) = 1, and p(b) = 0. Thus, L is spatial.
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Stone spaces

A subset U of a topological space X is clopen if it is both closed
and open. A topological space X is zero-dimensional if clopens
form a basis.

Definition: A topological space is a Stone space if it is compact,
Hausdorff, and zero-dimensional.

Stone = The full subcategory of Top consisting of Stone spaces.

Each Stone space is sober. This is because each Hausdorff space
is sober. Indeed, irreducible closed sets in a Hausdorff space are
singletons.

Thus, Stone is a full subcategory of Sob.
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Stone spaces

Theorem: If X ∈ Stone, then Ω(X) ∈ zKFrm. Conversely, if
L ∈ zKFrm, then pt(L) ∈ Stone.

Proof sketch: Clearly if X is a compact space, then Ω(X) is a
compact frame. An open set U is complemented iff U is clopen.
Therefore, Z(Ω X) is exactly the clopens of X. Thus, if X is a
zero-dimensional space, then Ω(X) is a zero-dimensional frame.
So X ∈ Stone implies Ω(X) ∈ zKFrm.

Since L is spatial, O : L→ Ω(ptL) is a frame isomorphism.
Therefore, it is clear that if L is a compact frame, then pt(L) is a
compact space. Moreover, a ∈ Z(L) iff O(a) is clopen in pt(L).
Therefore, if L is a zero-dimensional frame, then pt(L) is a
zero-dimensional space. Finally, since pt(L) is sober, it is T0. And
for zero-dimensional spaces, being Hausdorff is equivalent to
being T0. Thus, if L ∈ zKFrm, then pt(L) ∈ Stone.
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Adding distributive lattices to the picture

DL = The category of bounded distributive lattices and bounded
lattice homomorphisms.

Clearly BA is a subcategory of DL. So the above diagram
becomes
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First we describe the category of frames that is equivalent to DL.

The idea is the same as in the case of BA; that is, for a bounded
distributive lattice D, we look at the poset I(D) of ideals of D.
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Coherent frames

As we already have pointed out, I(D) is a frame. Moreover, the
same reasoning as in the case of Boolean algebras yields that
I(D) is a compact frame. Furthermore, principal ideals are
compact in I(D). Since ↓a ∨ ↓b = ↓(a ∨ b), an ideal in I(D) is
compact iff it is principal. As ↓a ∩ ↓b = ↓(a ∧ b), the compact
elements form a bounded sublattice of I(D). Clearly each ideal
is the join of principal ideals. Thus, compact elements form a
bounded sublattice which generates I(D).

For a frame L, let K(L) be the set of compact elements of L.

Definition: A frame L is coherent if K(L) is a bounded sublattice
of L and each a ∈ L is a join of compact elements.

CohFrm = The category of coherent frames and frame
homomorphisms that send compact elements to compact
elements.
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Coherent frames

Notes:
1 Each coherent frame is compact.
2 The same idea as in the case of zero-dimensional frames

yields that each coherent frame is spatial.
3 For L ∈ zKFrm we have Z(L) = K(L). Therefore, zKFrm is a

full subcategory of CohFrm.

Theorem: A frame L is coherent iff L is isomorphic to I(D) for
some D ∈ DL.

Proof sketch: We already saw that if D ∈ DL, then I(D) is
coherent.

Conversely, for coherent L, set D = K(L). Then D ∈ DL and
h : L→ I(D) given by h(a) = ↓a ∩ K(L) is a frame isomorphism.
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Coherent frames

Corollary: CohFrm is equivalent to DL.

Proof: The ideal functor I : DL→ CohFrm and the compact
element functor K : CohFrm→ DL yield the desired
equivalence.
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Spectral spaces

A space (X, τ) is coherent if compact opens form a basis that is a
bounded sublattice of τ .

Definition: A space is spectral if it is coherent and sober.

Notes:
1 Since a coherent space is compact, a spectral space is

compact.
2 Since a sober space is T0, a spectral space is T0.
3 A spectral space is Hausdorff iff it is a Stone space.

A continuous map f : X → Y between spectral spaces is spectral
if the inverse image of compact open in Y is compact open in X.

Spec = The category of spectral spaces and spectral maps.
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Spectral spaces

Clearly Spec is a subcategory of Sob. Moreover, Stone is a full
subcategory of Spec.

This is because compact opens in Stone spaces coincide with
clopens, so they form a basis that is a sublattice of the frame of
opens. Thus, each Stone space is spectral. Moreover, given a
continuous map between Stone spaces, the inverse image of
clopen is clopen. Therefore, each such map is spectral.

Theorem: Spec is dually equivalent to CohFrm.

Proof sketch: Restricting Ω to Spec and pt to CohFrm yields
the desired dual equivalence.
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Stone duality for distributive lattices

Sob oo // SFrm

Spec
?�
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oo // CohFrm oo //
?�
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Corollary (Stone): DL is dually equivalent to Spec.

Note: Stone’s functors are the compositions K ◦ Ω and pt ◦ I.
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Priestley duality for distributive lattices

There is another duality for bounded distributive lattices,
developed by Hilary Priestley in the 1970s.

A topological space equipped with a partial order 6 is called an
ordered space.

A subset U of an ordered space X is an upset if x ∈ U and x 6 y
imply y ∈ U. The concept of a downset is dual to that of an
upset.

An ordered space X satisfies the Priestley separation axiom if
x 66 y implies there is a clopen upset U containing x and missing
y.

Definition: A Priestley space is a compact ordered space
satisfying the Priestley separation axiom.
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From Priestley spaces to spectral spaces

Suppose (X, τ,6) is a Priestley space.

There are two more obvious topologies on X, the upper topology
τu of open upsets, and the lower topology τl of open downsets.

Each of these topologies is a spectral topology. For example, to
see that τu is spectral, it is sufficient to observe that clopen
upsets are compact opens in (X, τu) that form a basis and are a
sublattice of τu.
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From spectral spaces to Priestley spaces

Suppose (X, τ) is a spectral space.

Define a new topology on X, called the patch topology, π, by
letting compact opens of (X, τ) and their complements to be a
subbasis for π.

Let also 6 be the specialization order of τ . That is, x 6 y iff x
belongs to the closure of y. Then (X, π,6) is a Priestley space
and each Priestley space arises this way.
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Priestley duality

Pries = The category of Priestley spaces and order preserving
maps.

Theorem: Spec is isomorphic to Pries.

Proof sketch: Associate with each spectral space (X, τ) the
Priestley space (X, π,6), and with each Priestley space (X, τ,6)
the spectral space (X, τu). This correspondence is 1-1.

Moreover, a map f : X → Y is continuous wrt the patch topology
and order preserving wrt the specialization order iff it is spectral
wrt τu.

Corollary (Priestley): DL is dually equivalent to Pries.

Pries oo // Spec oo // CohFrm oo // DL

Note: Priestley functors are the compositions.
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