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Introduction

Some of the most fascinating results in mathematics are
obtained when deep connections between different areas of
mathematics are discovered.

Some examples:

(1) Calculus (the Fundamental Theorem of Calculus shows that
calculating areas and velocities are inverse processes).

(2) Galois Theory (group theoretic techniques are used to study
roots of polynomials with coefficients in a given base field).

(3) Algebraic Topology (homotopy groups are used to classify
topological spaces).
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Introduction

More examples:

(4) Algebraic Geometry (one of the central objects of study,
schemes, are sheaves of rings, thus connecting geometry,
topology, and commutative algebra).

(5) Functional Analysis (commutative C∗-algebras are the
algebras of continuous complex-valued functions on
compact Hausdorff spaces).

(6) Logic (the study of Lindenbaum algebras of different logical
systems through their spectra provides connection between
logic, algebra, lattice theory, and topology).
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Topology

Topology emerged from the need to give a rigorous definition of
the concept of limit. Such a definition requires neighborhood
systems. Formalizing this concept led to the modern definition
of a topological space.

It was given by Felix Hausdorff in 1914.

Felix Hausdorff (1862–1942)
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Topological spaces

Definition: A topological space is a pair (X, τ), where τ is a
collection of subsets of X closed under arbitrary unions and
finite intersections.

Notes:
1 Elements of τ are referred to as open sets.
2 It is easy to see that ∅,X are open.
3 In general, an arbitrary intersection of opens may not be

open.
4 Nevertheless, there exists the largest open set contained in

the intersection.

A map f : X → Y between topological spaces is continuous if
f−1(U) is open in X for each open U in Y.

It is easy to verify that topological spaces and continuous maps
between them form a category, which we denote by Top.
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Lattice Theory

Lattice Theory has its origins in the work of Richard Dedekind
(1831-1916) on the structure of ideals of a ring. It became an
independ branch of mathematics thanks to the work of Garrett
Birkhoff.

Garrett Birkhoff (1911-1996)
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Lattices

Definition: A lattice is a partially ordered set P such that the
suprema and infima exist for all two-element subsets of P.

Notes:
1 For two elements a, b, we denote the supremum of {a, b} by

a ∨ b, and the infimum by a ∧ b.
2 A lattice is called bounded if it has a least element, denoted

0, and a greatest element, denoted 1.
3 A lattice is called complete if the suprema and infima exist

for all subsets. Each complete lattice is bounded.
4 For a subset S, we denote the supremum of S by

∨
S, and

the infimum by
∧

S.
5 For a lattice to be complete it is sufficient for

∨
S to exist

for all subsets S. Similarly, it is sufficient for
∧

S to exist for
all subsets S.
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Algebraic presentation of lattices

Lattices can alternatively be described as algebras (L,∨,∧),
where ∨,∧ : L2 → L are two binary operations on L satisfying

1 a ∨ b = b ∨ a and a ∧ b = b ∧ a (commutative).
2 a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c

(associative).
3 a ∨ a = a and a = a ∧ a (idempotent).
4 a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a (absorbtion).

The partial order on L is given by a 6 b iff a = a ∧ b
(equivalently, a 6 b iff a ∨ b = b), and a ∨ b is the supremum
and a ∧ b is the infimum of {a, b}.

Bounded lattices have two additional constants 0,1 satisfying

0 ∧ a = 0 and a ∨ 1 = 1.
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and a ∧ b is the infimum of {a, b}.

Bounded lattices have two additional constants 0,1 satisfying

0 ∧ a = 0 and a ∨ 1 = 1.



Distributive lattices

Definition: A lattice L is distributive if it satisfies the two
distributive laws:
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A basic fact in lattice theory is that the two distributive laws are
equivalent.
Birkhoff’s characterization of distributive lattices: A lattice L
is distributive iff the pentagon N5 and the diamond M3 are not
embeddable in L.
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Infinite distributive laws

Definition: Let L be a complete lattice.
1 L satisfies the join infinite distributive law (JID) if

a ∧
∨

S =
∨
{a ∧ s | s ∈ S}.

2 L satisfies the meet infinite distributive law (MID) if
a ∨

∧
S =

∧
{a ∨ s | s ∈ S}.

Unlike the finite distributive laws, JID and MID are not
equivalent!
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Frames

Definition: A frame is a complete lattice L satisfying the JID.

A frame homomorphism is a map h : L→ M between two
frames preserving arbitrary joins and finite meets.

Note: Each frame is a bounded lattice and each frame
homomorphism preserves the bounds.

It is easy to see that frames and frame homomorphisms between
them form a category, which we denote Frm.
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From Top to Frm

Typical examples of frames come from topologies. If (X, τ) is a
topological space, then (τ,∩,

⋃
) is a frame.

If f : X → Y is a continuous map, then f−1 : τY → τX is a frame
homomorphism.

This defines a contravariant functor Ω : Top→ Frm. The
functor sends a topological space X to the frame Ω(X) of opens
of X, and a continuous map f : X → Y to f−1 : Ω(Y)→ Ω(X).

But how do we go back? In other words, how do we associate a
topological space with a frame?
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Points

Let x ∈ X.

{x}

��

� � f // X

��
Ω({x}) Ω(X)

f−1
oo

But Ω({x}) ∼= 2, where 2 = {0,1} is the two-element frame.
Thus, a point of X can be identified with a frame
homomorphism Ω(X)→ 2.

Definition: A point of a frame L is a frame homomorphism
p : L→ 2.
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Completely prime filters

Suppose p : L→ 2 is a point. Set F = p−1(1).

a, b ∈ F ⇔ p(a) = 1, p(b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a ∧ b) = 1 ⇔ a ∧ b ∈ F

∨
S ∈ F ⇒ p(

∨
S) = 1⇒

∨
s∈S

p(s) = 1

⇒ p(s) = 1 some s ∈ S⇒ S ∩ F 6= ∅

Therefore, F is a completely prime filter. Conversely, if F is
completely prime, then sending F to 1 and L \ F to 0 defines a
point. It is easy to see that this establishes a 1-1 correspondence
between points and completely prime filters.
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Meet prime elements

For a point p : L→ 2, let m =
∨

p−1(0). Then m is the largest
element that p sends to 0.

a ∧ b 6 m ⇒ p(a ∧ b) = 0 ⇒ p(a) ∧ p(b) = 0

⇒ p(a) = 0 or p(b) = 0 ⇒ a 6 m or b 6 m

Therefore, m is meet prime. Conversely, if m is meet prime, then
sending ↓m to 0 and L \ ↓m to 1 defines a point, and it is easy to
see that this yields a 1-1 correspondence between points and
meet prime elements.

Thus, points⇔ completely prime filters⇔ meet prime elements
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Topology on pt(L)

Let pt(L) be the set of all points of L. For a ∈ L, set
O(a) = {p | p(a) = 1}. Let τ = {O(a) | a ∈ L}.

Theorem: τ is a topology on pt(L), and O : L→ τ is a frame
homomorphism.

Proof:

p ∈ O(a ∧ b) ⇔ p(a ∧ b) = 1 ⇔ p(a) ∧ p(b) = 1

⇔ p(a) = 1 and p(b) = 1

⇔ p ∈ O(a) and p ∈ O(b)

⇔ p ∈ O(a) ∩ O(b)

Thus, O(a ∧ b) = O(a) ∩ O(b).
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Topology on pt(L)

Proof (continued):

p ∈ O(
∨

S) ⇔ p(
∨

S) = 1 ⇔
∨
{p(s) | s ∈ S} = 1

⇔ p(s) = 1 some s ∈ S ⇔ p ∈ O(s) some s ∈ S

⇔ p ∈
⋃
{O(s) | s ∈ S}

Thus, O(
∨

S) =
⋃
{O(s) | s ∈ S}.

It follows that O : L→ τ is a frame homomorphism, and hence τ
is a topology on pt(L).
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Frame homomorphisms and continuous maps

Let h : L→ M be a frame homomorphism. Define
pt(h) : pt(M)→ pt(L) by pt(h)(q) = q ◦ h for each q ∈ pt(M).

L

��

h // M

��
pt(L) pt(M)

pt(h)oo

Claim: pt(h)−1O(a) = O(ha).

Proof:

q ∈ pt(h)−1O(a) ⇔ pt(h)(q) ∈ O(a) ⇔ q ◦ h ∈ O(a)

⇔ q(ha) = 1 ⇔ q ∈ O(ha)
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The functor pt : Frm→ Top

As a result, we obtain a contravariant functor pt : Frm→ Top,
sending each frame L to the space pt(L), and each frame
homomorphism h : L→ M to the continuous map
pt(h) : pt(M)→ pt(L).

Ω pt L

L

O

OO

pt
// pt L

Ω
gg X

ε
��

Ω // Ω X

ptvv
pt Ω X

O(a) = {p | p(a) = 1} and ε(x)(U) =

{
1 x ∈ U,
0 otherwise.

Note: ε is continuous because ε−1O(U) = U for all U ∈ ΩX.
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Contravariant adjunction

Theorem: The functors Ω : Top→ Frm and pt : Frm→ Top
form a contravariant adjunction.

Proof sketch: Sufficient to observe

homTop(X, pt L) ∼= homFrm(L,Ω X)

X
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pt L L
ptoo

OO

f 7→ f∗ where f∗(a) = f−1O(a)

h 7→ h∗ where h∗(x)(a) =

{
1 x ∈ h(a),
0 otherwise.
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Sober spaces

In general, ε : X → pt Ω X is not a bijection.

Definition: Call X sober if ε is a bijection.

A closed set F is (join) irreducible if F = G1 ∪ G2, with G1,G2
closed, implies F = G1 or F = G2.

Theorem: A space X is sober iff each closed irreducible set F is
the closure of a unique point (called the generic point of F).

Proof sketch: Points of Ω X correspond to meet prime elements
of Ω X. Meet primes of Ω X correspond to irreducible closed
sets. Thus, ε is a bijection iff each irreducible closed set has the
generic point.
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Spatial frames

Similarly, O : L→ Ω pt L is not a bijection in general.

Definition: Call L spatial if O is a bijection.

Theorem: L is spatial iff
(∀a, b ∈ L)(a 66 b⇒ ∃p ∈ pt L : p(a) = 1 and p(b) = 0).

Proof sketch: O is always onto. The above condition is
equivalent to O being 1-1.
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Dual equivalence

Sob = The full subcategory of Top consisting of sober spaces.

SFrm = The full subcategory of Frm consisting of spatial
frames.

Theorem: The contravariant adjunction Ω : Top→ Frm,
pt : Frm→ Top restricts to a dual equivalence of Sob and SFrm.

Proof sketch: For each X ∈ Top, the frame Ω X is spatial. For
each L ∈ Frm, the space pt L is sober. If X ∈ Sob, then
ε : X → pt Ω X is a bijection, hence a homeomorphism. If
L ∈ SFrm, then O : L→ Ω pt L is a bijection, hence an
isomorphism.
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Brief summary

We have built bridges connecting the world of topology with
that of frames.

The bridges establish perfect balance between sober spaces and
spatial frames.

How can we utilize this framework? In particular, how can it be
used in Logic?
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Boolean algebras

Let L be a bounded lattice. A complement of a ∈ L is b ∈ L
satisfying a ∧ b = 0 and a ∨ b = 1. If each a ∈ L has a
complement, then L is called complemented.

When L is distributive, then if a ∈ L has a complement, then it is
unique, and is denoted a∗ (or ¬a).

Definition: A Boolean algebra is a complemented distributive
lattice.

It is well known that Boolean algebras serve as algebraic models
of classical logic.

How are Boolean algebras related to frames?
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From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is
closed under finite joins.

For S ⊆ B, let I(S) be the ideal generated by S. Then a ∈ I(S) iff
∃s1, . . . , sn ∈ S such that a 6 s1 ∨ · · · ∨ sn.

Let I(B) be the poset of ideals of B ordered by inclusion.

Claim 1: I(B) is a complete lattice.

Proof: It is sufficient to observe that {Iα} ⊆ I(B) implies⋂
α Iα ∈ I(B).



From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is
closed under finite joins.

For S ⊆ B, let I(S) be the ideal generated by S. Then a ∈ I(S) iff
∃s1, . . . , sn ∈ S such that a 6 s1 ∨ · · · ∨ sn.

Let I(B) be the poset of ideals of B ordered by inclusion.

Claim 1: I(B) is a complete lattice.

Proof: It is sufficient to observe that {Iα} ⊆ I(B) implies⋂
α Iα ∈ I(B).



From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is
closed under finite joins.

For S ⊆ B, let I(S) be the ideal generated by S.

Then a ∈ I(S) iff
∃s1, . . . , sn ∈ S such that a 6 s1 ∨ · · · ∨ sn.

Let I(B) be the poset of ideals of B ordered by inclusion.

Claim 1: I(B) is a complete lattice.

Proof: It is sufficient to observe that {Iα} ⊆ I(B) implies⋂
α Iα ∈ I(B).



From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is
closed under finite joins.

For S ⊆ B, let I(S) be the ideal generated by S. Then a ∈ I(S) iff
∃s1, . . . , sn ∈ S such that a 6 s1 ∨ · · · ∨ sn.

Let I(B) be the poset of ideals of B ordered by inclusion.

Claim 1: I(B) is a complete lattice.

Proof: It is sufficient to observe that {Iα} ⊆ I(B) implies⋂
α Iα ∈ I(B).



From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is
closed under finite joins.

For S ⊆ B, let I(S) be the ideal generated by S. Then a ∈ I(S) iff
∃s1, . . . , sn ∈ S such that a 6 s1 ∨ · · · ∨ sn.

Let I(B) be the poset of ideals of B ordered by inclusion.

Claim 1: I(B) is a complete lattice.

Proof: It is sufficient to observe that {Iα} ⊆ I(B) implies⋂
α Iα ∈ I(B).



From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is
closed under finite joins.

For S ⊆ B, let I(S) be the ideal generated by S. Then a ∈ I(S) iff
∃s1, . . . , sn ∈ S such that a 6 s1 ∨ · · · ∨ sn.

Let I(B) be the poset of ideals of B ordered by inclusion.

Claim 1: I(B) is a complete lattice.

Proof: It is sufficient to observe that {Iα} ⊆ I(B) implies⋂
α Iα ∈ I(B).



From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is
closed under finite joins.

For S ⊆ B, let I(S) be the ideal generated by S. Then a ∈ I(S) iff
∃s1, . . . , sn ∈ S such that a 6 s1 ∨ · · · ∨ sn.

Let I(B) be the poset of ideals of B ordered by inclusion.

Claim 1: I(B) is a complete lattice.

Proof:

It is sufficient to observe that {Iα} ⊆ I(B) implies⋂
α Iα ∈ I(B).



From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is
closed under finite joins.

For S ⊆ B, let I(S) be the ideal generated by S. Then a ∈ I(S) iff
∃s1, . . . , sn ∈ S such that a 6 s1 ∨ · · · ∨ sn.

Let I(B) be the poset of ideals of B ordered by inclusion.

Claim 1: I(B) is a complete lattice.

Proof: It is sufficient to observe that {Iα} ⊆ I(B) implies⋂
α Iα ∈ I(B).



From Boolean algebras to frames

Claim 2: I(B) satisfies the JID.

Proof: Let I,Kα ∈ I(B) for α ∈ Γ. Since the inclusion∨
α(I ∩ Kα) ⊆ I ∩

∨
α Kα always holds, it is sufficient to show the

other inclusion.

Let a ∈ I ∩
∨
α Kα. Then a ∈ I and there exist si ∈ Kαi with

a 6 s1 ∨ · · · ∨ sn.

Therefore, a = a ∧ (s1 ∨ · · · ∨ sn) = (a ∧ s1) ∨ · · · ∨ (a ∧ sn).

But each a ∧ si ∈ I ∩ Kαi .

So a ∈
∨

i(I ∩ Kαi) ⊆
∨
α(I ∩ Kα).

Thus, I(B) is a frame.

Note: The proof above only uses that B is a bounded
distributive lattice. Therefore, the lattice of ideals of any
bounded distributive lattice is a frame!
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Compact frames

Not every frame is of the form I(B) for some Boolean algebra B.

An element a of a frame L is compact if a 6
∨

S implies a 6
∨

T
for some finite T ⊆ S.

Definition: A frame L is compact if 1 is compact in L.

Since ideal generation only requires finite joins, it is easy to see
that I(B) is compact.

What else can we say about I(B)?

Let us examine the principal ideal ↓a. Since B is a Boolean
algebra,

↓a ∩ ↓(a∗) = (0) and ↓a ∨ ↓(a∗) = B.

Therefore, principal ideals are complemented in I(B).
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Zero-dimensional frames

The converse is also true. If I ∈ I(B) is complemented, then
there is J ∈ I(B) with I ∩ J = (0) and I ∨ J = B.

From I ∨ J = B it follows that there exist a ∈ I and b ∈ J with
a ∨ b = 1. And from I ∩ J = (0) it follows that a ∧ b = 0.
Therefore, b = a∗. Thus, I = ↓a and J = ↓(a∗).

For a frame L, let Z(L) be the set of complemented elements of
L. It is easy to verify that Z(L) is a sublattice of L and that Z(L) is
a Boolean algebra. It is often referred to as the center of L.

Definition: A frame L is zero-dimensional if Z(L) generates L;
that is, each a ∈ L is a join of elements of Z(L).
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Zero-dimensional frames

Claim: I(B) is a zero-dimensional frame for each Boolean
algebra B.

Proof: As we observed, the principal ideals are the center of
I(B). Clearly each ideal is the join of principal ideals, hence the
result.

Consequently, I(B) is compact and zero-dimensional.

Theorem: A frame L is compact and zero-dimensional iff L is
isomorphic to I(B) for some Boolean algebra B.

Proof sketch: We already saw that I(B) is compact and
zero-dimensional.

Conversely, if L is compact and zero-dimensional, then take
B = Z(L). Then B is a Boolean algebra. Define h : L→ I(B) by
h(a) = ↓a ∩ Z(L). Since L is zero-dimensional, h is an order
embedding. Since L is also compact, each z ∈ Z(L) is compact.
Therefore, h is onto. Thus, h is a frame isomorphism.
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zKFrm and BA

zKFrm = The full subcategory of Frm consisting of compact
zero-dimensional frames.

BA = The category of Boolean algebras and Boolean
homomorphisms.

Theorem: zKFrm is equivalent to BA.

Proof sketch: The ideal functor I : BA→ zKFrm and the center
functor Z : zKFrm→ BA give the desired equivalence.
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