Frames, topologies, and duality theory

Guram Bezhanishvili
New Mexico State University

TACL Summer School June 15-19, 2015

Lecture 1

Introduction

Introduction

Some of the most fascinating results in mathematics are obtained when deep connections between different areas of mathematics are discovered.

Introduction

Some of the most fascinating results in mathematics are obtained when deep connections between different areas of mathematics are discovered.

Some examples:

Introduction

Some of the most fascinating results in mathematics are obtained when deep connections between different areas of mathematics are discovered.

Some examples:
(1) Calculus (the Fundamental Theorem of Calculus shows that calculating areas and velocities are inverse processes).

Introduction

Some of the most fascinating results in mathematics are obtained when deep connections between different areas of mathematics are discovered.

Some examples:
(1) Calculus (the Fundamental Theorem of Calculus shows that calculating areas and velocities are inverse processes).
(2) Galois Theory (group theoretic techniques are used to study roots of polynomials with coefficients in a given base field).

Introduction

Some of the most fascinating results in mathematics are obtained when deep connections between different areas of mathematics are discovered.

Some examples:
(1) Calculus (the Fundamental Theorem of Calculus shows that calculating areas and velocities are inverse processes).
(2) Galois Theory (group theoretic techniques are used to study roots of polynomials with coefficients in a given base field).
(3) Algebraic Topology (homotopy groups are used to classify topological spaces).

Introduction

Introduction

More examples:

Introduction

More examples:

(4) Algebraic Geometry (one of the central objects of study, schemes, are sheaves of rings, thus connecting geometry, topology, and commutative algebra).

Introduction

More examples:

(4) Algebraic Geometry (one of the central objects of study, schemes, are sheaves of rings, thus connecting geometry, topology, and commutative algebra).
(5) Functional Analysis (commutative C^{*}-algebras are the algebras of continuous complex-valued functions on compact Hausdorff spaces).

Introduction

More examples:

(4) Algebraic Geometry (one of the central objects of study, schemes, are sheaves of rings, thus connecting geometry, topology, and commutative algebra).
(5) Functional Analysis (commutative C^{*}-algebras are the algebras of continuous complex-valued functions on compact Hausdorff spaces).
(6) Logic (the study of Lindenbaum algebras of different logical systems through their spectra provides connection between logic, algebra, lattice theory, and topology).

Topology

Topology

Topology emerged from the need to give a rigorous definition of the concept of limit.

Topology

Topology emerged from the need to give a rigorous definition of the concept of limit. Such a definition requires neighborhood systems.

Topology

Topology emerged from the need to give a rigorous definition of the concept of limit. Such a definition requires neighborhood systems. Formalizing this concept led to the modern definition of a topological space.

Topology

Topology emerged from the need to give a rigorous definition of the concept of limit. Such a definition requires neighborhood systems. Formalizing this concept led to the modern definition of a topological space.

It was given by Felix Hausdorff in 1914.

Topology

Topology emerged from the need to give a rigorous definition of the concept of limit. Such a definition requires neighborhood systems. Formalizing this concept led to the modern definition of a topological space.

It was given by Felix Hausdorff in 1914.

Felix Hausdorff (1862-1942)

Topological spaces

Topological spaces

Definition: A topological space is a pair (X, τ), where τ is a collection of subsets of X closed under arbitrary unions and finite intersections.

Topological spaces

Definition: A topological space is a pair (X, τ), where τ is a collection of subsets of X closed under arbitrary unions and finite intersections.

Notes:

Topological spaces

Definition: A topological space is a pair (X, τ), where τ is a collection of subsets of X closed under arbitrary unions and finite intersections.

Notes:

(1) Elements of τ are referred to as open sets.

Topological spaces

Definition: A topological space is a pair (X, τ), where τ is a collection of subsets of X closed under arbitrary unions and finite intersections.

Notes:

(1) Elements of τ are referred to as open sets.
(2) It is easy to see that \varnothing, X are open.

Topological spaces

Definition: A topological space is a pair (X, τ), where τ is a collection of subsets of X closed under arbitrary unions and finite intersections.

Notes:

(1) Elements of τ are referred to as open sets.
(2) It is easy to see that \varnothing, X are open.
(3) In general, an arbitrary intersection of opens may not be open.

Topological spaces

Definition: A topological space is a pair (X, τ), where τ is a collection of subsets of X closed under arbitrary unions and finite intersections.

Notes:

(1) Elements of τ are referred to as open sets.
(2) It is easy to see that \varnothing, X are open.
(3) In general, an arbitrary intersection of opens may not be open.
(3) Nevertheless, there exists the largest open set contained in the intersection.

Topological spaces

Definition: A topological space is a pair (X, τ), where τ is a collection of subsets of X closed under arbitrary unions and finite intersections.

Notes:

(1) Elements of τ are referred to as open sets.
(2) It is easy to see that \varnothing, X are open.
(3) In general, an arbitrary intersection of opens may not be open.
(3) Nevertheless, there exists the largest open set contained in the intersection.

A map $f: X \rightarrow Y$ between topological spaces is continuous if $f^{-1}(U)$ is open in X for each open U in Y.

Topological spaces

Definition: A topological space is a pair (X, τ), where τ is a collection of subsets of X closed under arbitrary unions and finite intersections.

Notes:

(1) Elements of τ are referred to as open sets.
(2) It is easy to see that \varnothing, X are open.
(3) In general, an arbitrary intersection of opens may not be open.
(4) Nevertheless, there exists the largest open set contained in the intersection.

A map $f: X \rightarrow Y$ between topological spaces is continuous if $f^{-1}(U)$ is open in X for each open U in Y.

It is easy to verify that topological spaces and continuous maps between them form a category, which we denote by Top.

Lattice Theory

Lattice Theory

Lattice Theory has its origins in the work of Richard Dedekind (1831-1916) on the structure of ideals of a ring.

Lattice Theory

Lattice Theory has its origins in the work of Richard Dedekind (1831-1916) on the structure of ideals of a ring. It became an independ branch of mathematics thanks to the work of Garrett Birkhoff.

Lattice Theory

Lattice Theory has its origins in the work of Richard Dedekind (1831-1916) on the structure of ideals of a ring. It became an independ branch of mathematics thanks to the work of Garrett Birkhoff.

Garrett Birkhoff (1911-1996)

Lattices

Lattices

Definition: A lattice is a partially ordered set P such that the suprema and infima exist for all two-element subsets of P.

Lattices

Definition: A lattice is a partially ordered set P such that the suprema and infima exist for all two-element subsets of P.

Notes:

Lattices

Definition: A lattice is a partially ordered set P such that the suprema and infima exist for all two-element subsets of P.

Notes:

(1) For two elements a, b, we denote the supremum of $\{a, b\}$ by $a \vee b$, and the infimum by $a \wedge b$.

Lattices

Definition: A lattice is a partially ordered set P such that the suprema and infima exist for all two-element subsets of P.

Notes:

(1) For two elements a, b, we denote the supremum of $\{a, b\}$ by $a \vee b$, and the infimum by $a \wedge b$.
(2) A lattice is called bounded if it has a least element, denoted 0 , and a greatest element, denoted 1.

Lattices

Definition: A lattice is a partially ordered set P such that the suprema and infima exist for all two-element subsets of P.

Notes:

(1) For two elements a, b, we denote the supremum of $\{a, b\}$ by $a \vee b$, and the infimum by $a \wedge b$.
(2) A lattice is called bounded if it has a least element, denoted 0 , and a greatest element, denoted 1.
(3) A lattice is called complete if the suprema and infima exist for all subsets.

Lattices

Definition: A lattice is a partially ordered set P such that the suprema and infima exist for all two-element subsets of P.

Notes:

(1) For two elements a, b, we denote the supremum of $\{a, b\}$ by $a \vee b$, and the infimum by $a \wedge b$.
(2) A lattice is called bounded if it has a least element, denoted 0 , and a greatest element, denoted 1.
(3) A lattice is called complete if the suprema and infima exist for all subsets. Each complete lattice is bounded.

Lattices

Definition: A lattice is a partially ordered set P such that the suprema and infima exist for all two-element subsets of P.

Notes:

(1) For two elements a, b, we denote the supremum of $\{a, b\}$ by $a \vee b$, and the infimum by $a \wedge b$.
(2) A lattice is called bounded if it has a least element, denoted 0 , and a greatest element, denoted 1.
(3) A lattice is called complete if the suprema and infima exist for all subsets. Each complete lattice is bounded.
(9) For a subset S, we denote the supremum of S by $\bigvee S$, and the infimum by $\wedge S$.

Lattices

Definition: A lattice is a partially ordered set P such that the suprema and infima exist for all two-element subsets of P.

Notes:

(1) For two elements a, b, we denote the supremum of $\{a, b\}$ by $a \vee b$, and the infimum by $a \wedge b$.
(2) A lattice is called bounded if it has a least element, denoted 0 , and a greatest element, denoted 1.
(3) A lattice is called complete if the suprema and infima exist for all subsets. Each complete lattice is bounded.
(4) For a subset S, we denote the supremum of S by $\bigvee S$, and the infimum by $\wedge S$.
(5) For a lattice to be complete it is sufficient for $\bigvee S$ to exist for all subsets S.

Lattices

Definition: A lattice is a partially ordered set P such that the suprema and infima exist for all two-element subsets of P.

Notes:

(1) For two elements a, b, we denote the supremum of $\{a, b\}$ by $a \vee b$, and the infimum by $a \wedge b$.
(2) A lattice is called bounded if it has a least element, denoted 0 , and a greatest element, denoted 1.
(3) A lattice is called complete if the suprema and infima exist for all subsets. Each complete lattice is bounded.
(4) For a subset S, we denote the supremum of S by $\bigvee S$, and the infimum by $\wedge S$.
(5) For a lattice to be complete it is sufficient for $\bigvee S$ to exist for all subsets S. Similarly, it is sufficient for $\bigwedge S$ to exist for all subsets S.

Algebraic presentation of lattices

Algebraic presentation of lattices

Lattices can alternatively be described as algebras (L, \vee, \wedge), where $\vee, \wedge: L^{2} \rightarrow L$ are two binary operations on L satisfying

Algebraic presentation of lattices

Lattices can alternatively be described as algebras (L, \vee, \wedge), where $\vee, \wedge: L^{2} \rightarrow L$ are two binary operations on L satisfying
(1) $a \vee b=b \vee a$ and $a \wedge b=b \wedge a$ (commutative).

Algebraic presentation of lattices

Lattices can alternatively be described as algebras (L, \vee, \wedge), where $\vee, \wedge: L^{2} \rightarrow L$ are two binary operations on L satisfying
(1) $a \vee b=b \vee a$ and $a \wedge b=b \wedge a$ (commutative).
(2) $a \vee(b \vee c)=(a \vee b) \vee c$ and $a \wedge(b \wedge c)=(a \wedge b) \wedge c$ (associative).

Algebraic presentation of lattices

Lattices can alternatively be described as algebras (L, \vee, \wedge), where $\vee, \wedge: L^{2} \rightarrow L$ are two binary operations on L satisfying
(1) $a \vee b=b \vee a$ and $a \wedge b=b \wedge a$ (commutative).
(2) $a \vee(b \vee c)=(a \vee b) \vee c$ and $a \wedge(b \wedge c)=(a \wedge b) \wedge c$ (associative).
(3) $a \vee a=a$ and $a=a \wedge a$ (idempotent).

Algebraic presentation of lattices

Lattices can alternatively be described as algebras (L, \vee, \wedge), where $\vee, \wedge: L^{2} \rightarrow L$ are two binary operations on L satisfying
(1) $a \vee b=b \vee a$ and $a \wedge b=b \wedge a$ (commutative).
(2) $a \vee(b \vee c)=(a \vee b) \vee c$ and $a \wedge(b \wedge c)=(a \wedge b) \wedge c$ (associative).
(3) $a \vee a=a$ and $a=a \wedge a$ (idempotent).
(4) $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$ (absorbtion).

Algebraic presentation of lattices

Lattices can alternatively be described as algebras (L, \vee, \wedge), where $\vee, \wedge: L^{2} \rightarrow L$ are two binary operations on L satisfying
(1) $a \vee b=b \vee a$ and $a \wedge b=b \wedge a$ (commutative).
(2) $a \vee(b \vee c)=(a \vee b) \vee c$ and $a \wedge(b \wedge c)=(a \wedge b) \wedge c$ (associative).
(3) $a \vee a=a$ and $a=a \wedge a$ (idempotent).
(4) $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$ (absorbtion).

The partial order on L is given by $a \leqslant b$ iff $a=a \wedge b$

Algebraic presentation of lattices

Lattices can alternatively be described as algebras (L, \vee, \wedge), where $\vee, \wedge: L^{2} \rightarrow L$ are two binary operations on L satisfying
(1) $a \vee b=b \vee a$ and $a \wedge b=b \wedge a$ (commutative).
(2) $a \vee(b \vee c)=(a \vee b) \vee c$ and $a \wedge(b \wedge c)=(a \wedge b) \wedge c$ (associative).
(3) $a \vee a=a$ and $a=a \wedge a$ (idempotent).
(4) $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$ (absorbtion).

The partial order on L is given by $a \leqslant b$ iff $a=a \wedge b$
(equivalently, $a \leqslant b$ iff $a \vee b=b$),

Algebraic presentation of lattices

Lattices can alternatively be described as algebras (L, \vee, \wedge), where $\vee, \wedge: L^{2} \rightarrow L$ are two binary operations on L satisfying
(1) $a \vee b=b \vee a$ and $a \wedge b=b \wedge a$ (commutative).
(2) $a \vee(b \vee c)=(a \vee b) \vee c$ and $a \wedge(b \wedge c)=(a \wedge b) \wedge c$ (associative).
(3) $a \vee a=a$ and $a=a \wedge a$ (idempotent).
(4) $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$ (absorbtion).

The partial order on L is given by $a \leqslant b$ iff $a=a \wedge b$
(equivalently, $a \leqslant b$ iff $a \vee b=b$), and $a \vee b$ is the supremum and $a \wedge b$ is the infimum of $\{a, b\}$.

Algebraic presentation of lattices

Lattices can alternatively be described as algebras (L, \vee, \wedge), where $\vee, \wedge: L^{2} \rightarrow L$ are two binary operations on L satisfying
(1) $a \vee b=b \vee a$ and $a \wedge b=b \wedge a$ (commutative).
(2) $a \vee(b \vee c)=(a \vee b) \vee c$ and $a \wedge(b \wedge c)=(a \wedge b) \wedge c$ (associative).
(3) $a \vee a=a$ and $a=a \wedge a$ (idempotent).
(4) $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$ (absorbtion).

The partial order on L is given by $a \leqslant b$ iff $a=a \wedge b$ (equivalently, $a \leqslant b$ iff $a \vee b=b$), and $a \vee b$ is the supremum and $a \wedge b$ is the infimum of $\{a, b\}$.

Bounded lattices have two additional constants 0,1 satisfying $0 \wedge a=0$ and $a \vee 1=1$.

Distributive lattices

Distributive lattices

Definition: A lattice L is distributive if it satisfies the two distributive laws:
(1) $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.
(2) $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.

Distributive lattices

Definition: A lattice L is distributive if it satisfies the two distributive laws:
(1) $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.
(2) $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.

A basic fact in lattice theory is that the two distributive laws are equivalent.

Distributive lattices

Definition: A lattice L is distributive if it satisfies the two distributive laws:
(1) $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.
(2) $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.

A basic fact in lattice theory is that the two distributive laws are equivalent.
Birkhoff's characterization of distributive lattices:

Distributive lattices

Definition: A lattice L is distributive if it satisfies the two distributive laws:
(1) $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.
(2) $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.

A basic fact in lattice theory is that the two distributive laws are equivalent.
Birkhoff's characterization of distributive lattices: A lattice L is distributive iff the pentagon N_{5} and the diamond M_{3} are not embeddable in L.

Distributive lattices

Definition: A lattice L is distributive if it satisfies the two distributive laws:
(1) $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.
(2) $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.

A basic fact in lattice theory is that the two distributive laws are equivalent.
Birkhoff's characterization of distributive lattices: A lattice L is distributive iff the pentagon N_{5} and the diamond M_{3} are not embeddable in L.

N_{5}

M_{3}

Infinite distributive laws

Infinite distributive laws

Definition: Let L be a complete lattice.

Infinite distributive laws

Definition: Let L be a complete lattice.
(1) L satisfies the join infinite distributive law (JID) if $a \wedge \bigvee S=\bigvee\{a \wedge s \mid s \in S\}$.

Infinite distributive laws

Definition: Let L be a complete lattice.
(1) L satisfies the join infinite distributive law (JID) if $a \wedge \bigvee S=\bigvee\{a \wedge s \mid s \in S\}$.
(2) L satisfies the meet infinite distributive law (MID) if $a \vee \bigwedge S=\bigwedge\{a \vee s \mid s \in S\}$.

Infinite distributive laws

Definition: Let L be a complete lattice.
(1) L satisfies the join infinite distributive law (JID) if $a \wedge \bigvee S=\bigvee\{a \wedge s \mid s \in S\}$.
(2) L satisfies the meet infinite distributive law (MID) if $a \vee \bigwedge S=\bigwedge\{a \vee s \mid s \in S\}$.

Unlike the finite distributive laws, JID and MID are not equivalent!

Frames

Frames

Definition: A frame is a complete lattice L satisfying the JID.

Frames

Definition: A frame is a complete lattice L satisfying the JID.

A frame homomorphism is a map $h: L \rightarrow M$ between two frames preserving arbitrary joins and finite meets.

Frames

Definition: A frame is a complete lattice L satisfying the JID.

A frame homomorphism is a map $h: L \rightarrow M$ between two frames preserving arbitrary joins and finite meets.

Note: Each frame is a bounded lattice and each frame homomorphism preserves the bounds.

Frames

Definition: A frame is a complete lattice L satisfying the JID.

A frame homomorphism is a map $h: L \rightarrow M$ between two frames preserving arbitrary joins and finite meets.

Note: Each frame is a bounded lattice and each frame homomorphism preserves the bounds.

It is easy to see that frames and frame homomorphisms between them form a category, which we denote Frm.

From Top to Frm

From Top to Frm

Typical examples of frames come from topologies.

From Top to Frm

Typical examples of frames come from topologies. If (X, τ) is a topological space, then (τ, \cap, \bigcup) is a frame.

From Top to Frm

Typical examples of frames come from topologies. If (X, τ) is a topological space, then (τ, \cap, \bigcup) is a frame.

If $f: X \rightarrow Y$ is a continuous map, then $f^{-1}: \tau_{Y} \rightarrow \tau_{X}$ is a frame homomorphism.

From Top to Frm

Typical examples of frames come from topologies. If (X, τ) is a topological space, then (τ, \cap, \bigcup) is a frame.

If $f: X \rightarrow Y$ is a continuous map, then $f^{-1}: \tau_{Y} \rightarrow \tau_{X}$ is a frame homomorphism.

This defines a contravariant functor $\Omega: \mathbf{T o p} \rightarrow$ Frm.

From Top to Frm

Typical examples of frames come from topologies. If (X, τ) is a topological space, then (τ, \cap, \bigcup) is a frame.

If $f: X \rightarrow Y$ is a continuous map, then $f^{-1}: \tau_{Y} \rightarrow \tau_{X}$ is a frame homomorphism.

This defines a contravariant functor $\Omega:$ Top \rightarrow Frm. The functor sends a topological space X to the frame $\Omega(X)$ of opens of X,

From Top to Frm

Typical examples of frames come from topologies. If (X, τ) is a topological space, then (τ, \cap, \bigcup) is a frame.

If $f: X \rightarrow Y$ is a continuous map, then $f^{-1}: \tau_{Y} \rightarrow \tau_{X}$ is a frame homomorphism.

This defines a contravariant functor $\Omega:$ Top \rightarrow Frm. The functor sends a topological space X to the frame $\Omega(X)$ of opens of X, and a continuous map $f: X \rightarrow Y$ to $f^{-1}: \Omega(Y) \rightarrow \Omega(X)$.

From Top to Frm

Typical examples of frames come from topologies. If (X, τ) is a topological space, then (τ, \cap, \bigcup) is a frame.

If $f: X \rightarrow Y$ is a continuous map, then $f^{-1}: \tau_{Y} \rightarrow \tau_{X}$ is a frame homomorphism.

This defines a contravariant functor $\Omega:$ Top \rightarrow Frm. The functor sends a topological space X to the frame $\Omega(X)$ of opens of X, and a continuous map $f: X \rightarrow Y$ to $f^{-1}: \Omega(Y) \rightarrow \Omega(X)$.

But how do we go back?

From Top to Frm

Typical examples of frames come from topologies. If (X, τ) is a topological space, then (τ, \cap, \bigcup) is a frame.

If $f: X \rightarrow Y$ is a continuous map, then $f^{-1}: \tau_{Y} \rightarrow \tau_{X}$ is a frame homomorphism.

This defines a contravariant functor $\Omega:$ Top \rightarrow Frm. The functor sends a topological space X to the frame $\Omega(X)$ of opens of X, and a continuous map $f: X \rightarrow Y$ to $f^{-1}: \Omega(Y) \rightarrow \Omega(X)$.

But how do we go back? In other words, how do we associate a topological space with a frame?

Points

Points

Let $x \in X$.

Points

Let $x \in X$.

Points

Let $x \in X$.

But $\Omega(\{x\}) \cong \mathbf{2}$, where $\mathbf{2}=\{0,1\}$ is the two-element frame.

Points

Let $x \in X$.

But $\Omega(\{x\}) \cong \mathbf{2}$, where $2=\{0,1\}$ is the two-element frame. Thus, a point of X can be identified with a frame homomorphism $\Omega(X) \rightarrow \mathbf{2}$.

Points

Let $x \in X$.

But $\Omega(\{x\}) \cong \mathbf{2}$, where $2=\{0,1\}$ is the two-element frame. Thus, a point of X can be identified with a frame homomorphism $\Omega(X) \rightarrow \mathbf{2}$.

Definition: A point of a frame L is a frame homomorphism $p: L \rightarrow \mathbf{2}$.

Completely prime filters

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point.

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point. Set $F=p^{-1}(1)$.

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point. Set $F=p^{-1}(1)$.

$$
a, b \in F \quad \Leftrightarrow \quad p(a)=1, p(b)=1
$$

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point. Set $F=p^{-1}(1)$.

$$
a, b \in F \quad \Leftrightarrow \quad p(a)=1, p(b)=1 \Leftrightarrow p(a) \wedge p(b)=1
$$

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point. Set $F=p^{-1}(1)$.

$$
\begin{aligned}
a, b \in F & \Leftrightarrow p(a)=1, p(b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a \wedge b)=1
\end{aligned}
$$

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point. Set $F=p^{-1}(1)$.

$$
\begin{aligned}
a, b \in F & \Leftrightarrow p(a)=1, p(b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow a \wedge b \in F
\end{aligned}
$$

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point. Set $F=p^{-1}(1)$.

$$
\begin{aligned}
a, b \in F & \Leftrightarrow p(a)=1, p(b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow a \wedge b \in F \\
\bigvee S \in F & \Rightarrow p(\bigvee S)=1
\end{aligned}
$$

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point. Set $F=p^{-1}(1)$.

$$
\begin{aligned}
a, b \in F & \Leftrightarrow p(a)=1, p(b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow a \wedge b \in F \\
\bigvee S \in F & \Rightarrow p(\bigvee S)=1 \Rightarrow \bigvee_{s \in S} p(s)=1
\end{aligned}
$$

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point. Set $F=p^{-1}(1)$.

$$
\begin{aligned}
a, b \in F & \Leftrightarrow p(a)=1, p(b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow a \wedge b \in F \\
\bigvee S \in F & \Rightarrow p(\bigvee S)=1 \Rightarrow \bigvee_{s \in S} p(s)=1 \\
& \Rightarrow p(s)=1 \text { some } s \in S
\end{aligned}
$$

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point. Set $F=p^{-1}(1)$.

$$
\begin{aligned}
a, b \in F & \Leftrightarrow p(a)=1, p(b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow a \wedge b \in F \\
\bigvee S \in F & \Rightarrow p(\bigvee S)=1 \Rightarrow \bigvee_{s \in S} p(s)=1 \\
& \Rightarrow p(s)=1 \text { some } s \in S \Rightarrow S \cap F \neq \varnothing
\end{aligned}
$$

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point. Set $F=p^{-1}(1)$.

$$
\begin{aligned}
a, b \in F & \Leftrightarrow p(a)=1, p(b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow a \wedge b \in F \\
\bigvee S \in F & \Rightarrow p(\bigvee S)=1 \Rightarrow \bigvee_{s \in S} p(s)=1 \\
& \Rightarrow p(s)=1 \text { some } s \in S \Rightarrow S \cap F \neq \varnothing
\end{aligned}
$$

Therefore, F is a completely prime filter.

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point. Set $F=p^{-1}(1)$.

$$
\begin{aligned}
a, b \in F & \Leftrightarrow p(a)=1, p(b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow a \wedge b \in F \\
\bigvee S \in F & \Rightarrow p(\bigvee S)=1 \Rightarrow \bigvee_{s \in S} p(s)=1 \\
& \Rightarrow p(s)=1 \text { some } s \in S \Rightarrow S \cap F \neq \varnothing
\end{aligned}
$$

Therefore, F is a completely prime filter. Conversely, if F is completely prime, then sending F to 1 and $L \backslash F$ to 0 defines a point.

Completely prime filters

Suppose $p: L \rightarrow \mathbf{2}$ is a point. Set $F=p^{-1}(1)$.

$$
\begin{aligned}
a, b \in F & \Leftrightarrow p(a)=1, p(b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow a \wedge b \in F \\
\bigvee S \in F & \Rightarrow p(\bigvee S)=1 \Rightarrow \bigvee_{s \in S} p(s)=1 \\
& \Rightarrow p(s)=1 \text { some } s \in S \Rightarrow S \cap F \neq \varnothing
\end{aligned}
$$

Therefore, F is a completely prime filter. Conversely, if F is completely prime, then sending F to 1 and $L \backslash F$ to 0 defines a point. It is easy to see that this establishes a 1-1 correspondence between points and completely prime filters.

Meet prime elements

Meet prime elements

For a point $p: L \rightarrow \mathbf{2}$, let $m=\bigvee p^{-1}(0)$.

Meet prime elements

For a point $p: L \rightarrow \mathbf{2}$, let $m=\bigvee p^{-1}(0)$. Then m is the largest element that p sends to 0 .

Meet prime elements

For a point $p: L \rightarrow \mathbf{2}$, let $m=\bigvee p^{-1}(0)$. Then m is the largest element that p sends to 0 .

$$
a \wedge b \leqslant m
$$

Meet prime elements

For a point $p: L \rightarrow \mathbf{2}$, let $m=\bigvee p^{-1}(0)$. Then m is the largest element that p sends to 0 .

$$
a \wedge b \leqslant m \Rightarrow p(a \wedge b)=0
$$

Meet prime elements

For a point $p: L \rightarrow \mathbf{2}$, let $m=\bigvee p^{-1}(0)$. Then m is the largest element that p sends to 0 .

$$
a \wedge b \leqslant m \Rightarrow p(a \wedge b)=0 \Rightarrow p(a) \wedge p(b)=0
$$

Meet prime elements

For a point $p: L \rightarrow \mathbf{2}$, let $m=\bigvee p^{-1}(0)$. Then m is the largest element that p sends to 0 .

$$
\begin{aligned}
a \wedge b \leqslant m & \Rightarrow p(a \wedge b)=0 \Rightarrow p(a) \wedge p(b)=0 \\
& \Rightarrow p(a)=0 \text { or } p(b)=0
\end{aligned}
$$

Meet prime elements

For a point $p: L \rightarrow \mathbf{2}$, let $m=\bigvee p^{-1}(0)$. Then m is the largest element that p sends to 0 .

$$
\begin{aligned}
a \wedge b \leqslant m & \Rightarrow p(a \wedge b)=0 \Rightarrow p(a) \wedge p(b)=0 \\
& \Rightarrow p(a)=0 \text { or } p(b)=0 \Rightarrow a \leqslant m \text { or } b \leqslant m
\end{aligned}
$$

Meet prime elements

For a point $p: L \rightarrow \mathbf{2}$, let $m=\bigvee p^{-1}(0)$. Then m is the largest element that p sends to 0 .

$$
\begin{aligned}
a \wedge b \leqslant m & \Rightarrow p(a \wedge b)=0 \Rightarrow p(a) \wedge p(b)=0 \\
& \Rightarrow p(a)=0 \text { or } p(b)=0 \Rightarrow a \leqslant m \text { or } b \leqslant m
\end{aligned}
$$

Therefore, m is meet prime.

Meet prime elements

For a point $p: L \rightarrow \mathbf{2}$, let $m=\bigvee p^{-1}(0)$. Then m is the largest element that p sends to 0 .

$$
\begin{aligned}
a \wedge b \leqslant m & \Rightarrow p(a \wedge b)=0 \Rightarrow p(a) \wedge p(b)=0 \\
& \Rightarrow p(a)=0 \text { or } p(b)=0 \Rightarrow a \leqslant m \text { or } b \leqslant m
\end{aligned}
$$

Therefore, m is meet prime. Conversely, if m is meet prime, then sending $\downarrow m$ to 0 and $L \backslash \downarrow m$ to 1 defines a point,

Meet prime elements

For a point $p: L \rightarrow \mathbf{2}$, let $m=\bigvee p^{-1}(0)$. Then m is the largest element that p sends to 0 .

$$
\begin{aligned}
a \wedge b \leqslant m & \Rightarrow p(a \wedge b)=0 \Rightarrow p(a) \wedge p(b)=0 \\
& \Rightarrow p(a)=0 \text { or } p(b)=0 \Rightarrow a \leqslant m \text { or } b \leqslant m
\end{aligned}
$$

Therefore, m is meet prime. Conversely, if m is meet prime, then sending $\downarrow m$ to 0 and $L \backslash \downarrow m$ to 1 defines a point, and it is easy to see that this yields a 1-1 correspondence between points and meet prime elements.

Meet prime elements

For a point $p: L \rightarrow \mathbf{2}$, let $m=\bigvee p^{-1}(0)$. Then m is the largest element that p sends to 0 .

$$
\begin{aligned}
a \wedge b \leqslant m & \Rightarrow p(a \wedge b)=0 \Rightarrow p(a) \wedge p(b)=0 \\
& \Rightarrow p(a)=0 \text { or } p(b)=0 \Rightarrow a \leqslant m \text { or } b \leqslant m
\end{aligned}
$$

Therefore, m is meet prime. Conversely, if m is meet prime, then sending $\downarrow m$ to 0 and $L \backslash \downarrow m$ to 1 defines a point, and it is easy to see that this yields a 1-1 correspondence between points and meet prime elements.

Thus, points \Leftrightarrow completely prime filters \Leftrightarrow meet prime elements

Topology on $p t(L)$

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L.

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L. For $a \in L$, set $O(a)=\{p \mid p(a)=1\}$.

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L. For $a \in L$, set $O(a)=\{p \mid p(a)=1\}$. Let $\tau=\{O(a) \mid a \in L\}$.

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L. For $a \in L$, set $O(a)=\{p \mid p(a)=1\}$. Let $\tau=\{O(a) \mid a \in L\}$.

Theorem: τ is a topology on $\operatorname{pt}(L)$,

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L. For $a \in L$, set $O(a)=\{p \mid p(a)=1\}$. Let $\tau=\{O(a) \mid a \in L\}$.

Theorem: τ is a topology on $p t(L)$, and $O: L \rightarrow \tau$ is a frame homomorphism.

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L. For $a \in L$, set $O(a)=\{p \mid p(a)=1\}$. Let $\tau=\{O(a) \mid a \in L\}$.

Theorem: τ is a topology on $\operatorname{pt}(L)$, and $O: L \rightarrow \tau$ is a frame homomorphism.

Proof:

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L. For $a \in L$, set $O(a)=\{p \mid p(a)=1\}$. Let $\tau=\{O(a) \mid a \in L\}$.

Theorem: τ is a topology on $p t(L)$, and $O: L \rightarrow \tau$ is a frame homomorphism.

Proof:

$$
p \in O(a \wedge b)
$$

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L. For $a \in L$, set $O(a)=\{p \mid p(a)=1\}$. Let $\tau=\{O(a) \mid a \in L\}$.

Theorem: τ is a topology on $p t(L)$, and $O: L \rightarrow \tau$ is a frame homomorphism.

Proof:

$$
p \in O(a \wedge b) \quad \Leftrightarrow \quad p(a \wedge b)=1
$$

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L. For $a \in L$, set $O(a)=\{p \mid p(a)=1\}$. Let $\tau=\{O(a) \mid a \in L\}$.

Theorem: τ is a topology on $p t(L)$, and $O: L \rightarrow \tau$ is a frame homomorphism.

Proof:

$$
p \in O(a \wedge b) \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow p(a) \wedge p(b)=1
$$

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L. For $a \in L$, set $O(a)=\{p \mid p(a)=1\}$. Let $\tau=\{O(a) \mid a \in L\}$.

Theorem: τ is a topology on $p t(L)$, and $O: L \rightarrow \tau$ is a frame homomorphism.

Proof:

$$
\begin{aligned}
p \in O(a \wedge b) & \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a)=1 \text { and } p(b)=1
\end{aligned}
$$

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L. For $a \in L$, set $O(a)=\{p \mid p(a)=1\}$. Let $\tau=\{O(a) \mid a \in L\}$.

Theorem: τ is a topology on $p t(L)$, and $O: L \rightarrow \tau$ is a frame homomorphism.

Proof:

$$
\begin{aligned}
p \in O(a \wedge b) & \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a)=1 \text { and } p(b)=1 \\
& \Leftrightarrow p \in O(a) \text { and } p \in O(b)
\end{aligned}
$$

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L. For $a \in L$, set $O(a)=\{p \mid p(a)=1\}$. Let $\tau=\{O(a) \mid a \in L\}$.

Theorem: τ is a topology on $p t(L)$, and $O: L \rightarrow \tau$ is a frame homomorphism.

Proof:

$$
\begin{aligned}
p \in O(a \wedge b) & \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a)=1 \text { and } p(b)=1 \\
& \Leftrightarrow p \in O(a) \text { and } p \in O(b) \\
& \Leftrightarrow p \in O(a) \cap O(b)
\end{aligned}
$$

Topology on $p t(L)$

Let $p t(L)$ be the set of all points of L. For $a \in L$, set $O(a)=\{p \mid p(a)=1\}$. Let $\tau=\{O(a) \mid a \in L\}$.

Theorem: τ is a topology on $\operatorname{pt}(L)$, and $O: L \rightarrow \tau$ is a frame homomorphism.

Proof:

$$
\begin{aligned}
p \in O(a \wedge b) & \Leftrightarrow p(a \wedge b)=1 \Leftrightarrow p(a) \wedge p(b)=1 \\
& \Leftrightarrow p(a)=1 \text { and } p(b)=1 \\
& \Leftrightarrow p \in O(a) \text { and } p \in O(b) \\
& \Leftrightarrow p \in O(a) \cap O(b)
\end{aligned}
$$

Thus, $O(a \wedge b)=O(a) \cap O(b)$.

Topology on $p t(L)$

Topology on $p t(L)$

Proof (continued):

Topology on $p t(L)$

Proof (continued):

$$
p \in O(\bigvee S)
$$

Topology on $p t(L)$

Proof (continued):

$$
p \in O(\bigvee S) \Leftrightarrow p(\bigvee S)=1
$$

Topology on $p t(L)$

Proof (continued):

$$
p \in O(\bigvee S) \Leftrightarrow p(\bigvee S)=1 \Leftrightarrow \bigvee\{p(s) \mid s \in S\}=1
$$

Topology on $p t(L)$

Proof (continued):

$$
\begin{aligned}
p \in O(\bigvee S) & \Leftrightarrow p(\bigvee S)=1 \Leftrightarrow \bigvee\{p(s) \mid s \in S\}=1 \\
& \Leftrightarrow p(s)=1 \text { some } s \in S
\end{aligned}
$$

Topology on $p t(L)$

Proof (continued):

$$
\begin{aligned}
p \in O(\bigvee S) & \Leftrightarrow p(\bigvee S)=1 \Leftrightarrow \bigvee\{p(s) \mid s \in S\}=1 \\
& \Leftrightarrow p(s)=1 \text { some } s \in S \Leftrightarrow p \in O(s) \text { some } s \in S
\end{aligned}
$$

Topology on $p t(L)$

Proof (continued):

$$
\begin{aligned}
p \in O(\bigvee S) & \Leftrightarrow p(\bigvee S)=1 \Leftrightarrow \bigvee\{p(s) \mid s \in S\}=1 \\
& \Leftrightarrow p(s)=1 \text { some } s \in S \Leftrightarrow p \in O(s) \text { some } s \in S \\
& \Leftrightarrow p \in \bigcup\{O(s) \mid s \in S\}
\end{aligned}
$$

Topology on $p t(L)$

Proof (continued):

$$
\begin{aligned}
p \in O(\bigvee S) & \Leftrightarrow p(\bigvee S)=1 \Leftrightarrow \bigvee\{p(s) \mid s \in S\}=1 \\
& \Leftrightarrow p(s)=1 \text { some } s \in S \Leftrightarrow p \in O(s) \text { some } s \in S \\
& \Leftrightarrow p \in \bigcup\{O(s) \mid s \in S\}
\end{aligned}
$$

Thus, $O(\bigvee S)=\bigcup\{O(s) \mid s \in S\}$.

Topology on $p t(L)$

Proof (continued):

$$
\begin{aligned}
p \in O(\bigvee S) & \Leftrightarrow p(\bigvee S)=1 \Leftrightarrow \bigvee\{p(s) \mid s \in S\}=1 \\
& \Leftrightarrow p(s)=1 \text { some } s \in S \Leftrightarrow p \in O(s) \text { some } s \in S \\
& \Leftrightarrow p \in \bigcup\{O(s) \mid s \in S\}
\end{aligned}
$$

Thus, $O(\bigvee S)=\bigcup\{O(s) \mid s \in S\}$.
It follows that $O: L \rightarrow \tau$ is a frame homomorphism,

Topology on $p t(L)$

Proof (continued):

$$
\begin{aligned}
p \in O(\bigvee S) & \Leftrightarrow p(\bigvee S)=1 \Leftrightarrow \bigvee\{p(s) \mid s \in S\}=1 \\
& \Leftrightarrow p(s)=1 \text { some } s \in S \Leftrightarrow p \in O(s) \text { some } s \in S \\
& \Leftrightarrow p \in \bigcup\{O(s) \mid s \in S\}
\end{aligned}
$$

Thus, $O(\bigvee S)=\bigcup\{O(s) \mid s \in S\}$.
It follows that $O: L \rightarrow \tau$ is a frame homomorphism, and hence τ is a topology on $\operatorname{pt}(L)$.

Frame homomorphisms and continuous maps

Frame homomorphisms and continuous maps

Let $h: L \rightarrow M$ be a frame homomorphism.

Frame homomorphisms and continuous maps

Let $h: L \rightarrow M$ be a frame homomorphism. Define $p t(h): p t(M) \rightarrow p t(L)$ by $p t(h)(q)=q \circ h$ for each $q \in p t(M)$.

Frame homomorphisms and continuous maps

Let $h: L \rightarrow M$ be a frame homomorphism. Define $p t(h): p t(M) \rightarrow p t(L)$ by $p t(h)(q)=q \circ h$ for each $q \in p t(M)$.

Frame homomorphisms and continuous maps

Let $h: L \rightarrow M$ be a frame homomorphism. Define $p t(h): p t(M) \rightarrow p t(L)$ by $p t(h)(q)=q \circ h$ for each $q \in p t(M)$.

Claim: $p t(h)^{-1} O(a)=O(h a)$.

Frame homomorphisms and continuous maps

Let $h: L \rightarrow M$ be a frame homomorphism. Define $p t(h): p t(M) \rightarrow p t(L)$ by $p t(h)(q)=q \circ h$ for each $q \in p t(M)$.

Claim: $p t(h)^{-1} O(a)=O(h a)$.
Proof:

Frame homomorphisms and continuous maps

Let $h: L \rightarrow M$ be a frame homomorphism. Define $p t(h): p t(M) \rightarrow p t(L)$ by $p t(h)(q)=q \circ h$ for each $q \in p t(M)$.

Claim: $p t(h)^{-1} O(a)=O(h a)$.
Proof:

$$
q \in p t(h)^{-1} O(a)
$$

Frame homomorphisms and continuous maps

Let $h: L \rightarrow M$ be a frame homomorphism. Define $p t(h): p t(M) \rightarrow p t(L)$ by $p t(h)(q)=q \circ h$ for each $q \in p t(M)$.

Claim: $p t(h)^{-1} O(a)=O(h a)$.
Proof:

$$
q \in p t(h)^{-1} O(a) \Leftrightarrow p t(h)(q) \in O(a)
$$

Frame homomorphisms and continuous maps

Let $h: L \rightarrow M$ be a frame homomorphism. Define $p t(h): p t(M) \rightarrow p t(L)$ by $p t(h)(q)=q \circ h$ for each $q \in p t(M)$.

Claim: $p t(h)^{-1} O(a)=O(h a)$.
Proof:

$$
q \in p t(h)^{-1} O(a) \Leftrightarrow p t(h)(q) \in O(a) \Leftrightarrow q \circ h \in O(a)
$$

Frame homomorphisms and continuous maps

Let $h: L \rightarrow M$ be a frame homomorphism. Define $p t(h): p t(M) \rightarrow p t(L)$ by $p t(h)(q)=q \circ h$ for each $q \in p t(M)$.

Claim: $p t(h)^{-1} O(a)=O(h a)$.
Proof:

$$
\begin{aligned}
q \in p t(h)^{-1} O(a) & \Leftrightarrow p t(h)(q) \in O(a) \Leftrightarrow q \circ h \in O(a) \\
& \Leftrightarrow q(h a)=1
\end{aligned}
$$

Frame homomorphisms and continuous maps

Let $h: L \rightarrow M$ be a frame homomorphism. Define $p t(h): p t(M) \rightarrow p t(L)$ by $p t(h)(q)=q \circ h$ for each $q \in p t(M)$.

Claim: $p t(h)^{-1} O(a)=O(h a)$.
Proof:

$$
\begin{aligned}
q \in p t(h)^{-1} O(a) & \Leftrightarrow p t(h)(q) \in O(a) \Leftrightarrow q \circ h \in O(a) \\
& \Leftrightarrow q(h a)=1 \Leftrightarrow q \in O(h a)
\end{aligned}
$$

The functor $p t:$ Frm \rightarrow Top

The functor $p t:$ Frm \rightarrow Top

As a result, we obtain a contravariant functor $p t: \mathbf{F r m} \rightarrow \mathbf{T o p}$,

The functor $p t:$ Frm \rightarrow Top

As a result, we obtain a contravariant functor $p t:$ Frm \rightarrow Top, sending each frame L to the space $p t(L)$, and each frame homomorphism $h: L \rightarrow M$ to the continuous map $p t(h): p t(M) \rightarrow p t(L)$.

The functor $p t:$ Frm \rightarrow Top

As a result, we obtain a contravariant functor $p t:$ Frm \rightarrow Top, sending each frame L to the space $p t(L)$, and each frame homomorphism $h: L \rightarrow M$ to the continuous map $p t(h): p t(M) \rightarrow p t(L)$.

The functor $p t:$ Frm \rightarrow Top

As a result, we obtain a contravariant functor $p t:$ Frm \rightarrow Top, sending each frame L to the space $p t(L)$, and each frame homomorphism $h: L \rightarrow M$ to the continuous map $p t(h): p t(M) \rightarrow p t(L)$.

$$
O(a)=\{p \mid p(a)=1\}
$$

The functor $p t:$ Frm \rightarrow Top

As a result, we obtain a contravariant functor $p t:$ Frm \rightarrow Top, sending each frame L to the space $p t(L)$, and each frame homomorphism $h: L \rightarrow M$ to the continuous map $p t(h): p t(M) \rightarrow p t(L)$.

$$
O(a)=\{p \mid p(a)=1\} \text { and } \varepsilon(x)(U)= \begin{cases}1 & x \in U \\ 0 & \text { otherwise }\end{cases}
$$

The functor $p t:$ Frm \rightarrow Top

As a result, we obtain a contravariant functor $p t:$ Frm \rightarrow Top, sending each frame L to the space $p t(L)$, and each frame homomorphism $h: L \rightarrow M$ to the continuous map $p t(h): p t(M) \rightarrow p t(L)$.

$O(a)=\{p \mid p(a)=1\}$ and $\varepsilon(x)(U)= \begin{cases}1 & x \in U, \\ 0 & \text { otherwise } .\end{cases}$
Note: ε is continuous because $\varepsilon^{-1} O(U)=U$ for all $U \in \Omega X$.

Contravariant adjunction

Contravariant adjunction

Theorem: The functors $\Omega:$ Top \rightarrow Frm and $p t:$ Frm \rightarrow Top form a contravariant adjunction.

Contravariant adjunction

Theorem: The functors Ω : Top \rightarrow Frm and $p t:$ Frm \rightarrow Top form a contravariant adjunction.

Proof sketch:

Contravariant adjunction

Theorem: The functors Ω : Top \rightarrow Frm and $p t:$ Frm \rightarrow Top form a contravariant adjunction.

Proof sketch: Sufficient to observe

Contravariant adjunction

Theorem: The functors $\Omega:$ Top \rightarrow Frm and $p t:$ Frm \rightarrow Top form a contravariant adjunction.

Proof sketch: Sufficient to observe

$$
\operatorname{hom}_{\text {Top }}(X, p t L) \cong \operatorname{hom}_{\text {Frm }}(L, \Omega X)
$$

Contravariant adjunction

Theorem: The functors Ω : Top \rightarrow Frm and $p t:$ Frm \rightarrow Top form a contravariant adjunction.

Proof sketch: Sufficient to observe

$$
\operatorname{hom}_{\text {Top }}(X, p t L) \cong \operatorname{hom}_{\text {Frm }}(L, \Omega X)
$$

Contravariant adjunction

Theorem: The functors $\Omega: \mathbf{T o p} \rightarrow$ Frm and $p t:$ Frm \rightarrow Top form a contravariant adjunction.

Proof sketch: Sufficient to observe

$$
\operatorname{hom}_{\text {Top }}(X, p t L) \cong \operatorname{hom}_{\text {Frm }}(L, \Omega X)
$$

$f \mapsto f^{*}$ where $f^{*}(a)=f^{-1} O(a)$

Contravariant adjunction

Theorem: The functors Ω : Top \rightarrow Frm and $p t:$ Frm \rightarrow Top form a contravariant adjunction.

Proof sketch: Sufficient to observe

$$
\operatorname{hom}_{\mathrm{Top}}(X, p t L) \cong \operatorname{hom}_{\mathrm{Frm}}(L, \Omega X)
$$

$f \mapsto f^{*}$ where $f^{*}(a)=f^{-1} O(a)$
$h \mapsto h^{*}$ where $h^{*}(x)(a)= \begin{cases}1 & x \in h(a), \\ 0 & \text { otherwise } .\end{cases}$

Sober spaces

Sober spaces

In general, $\varepsilon: X \rightarrow p t \Omega X$ is not a bijection.

Sober spaces

In general, $\varepsilon: X \rightarrow p t \Omega X$ is not a bijection.
Definition: Call X sober if ε is a bijection.

Sober spaces

In general, $\varepsilon: X \rightarrow p t \Omega X$ is not a bijection.
Definition: Call X sober if ε is a bijection.
A closed set F is (join) irreducible if $F=G_{1} \cup G_{2}$, with G_{1}, G_{2} closed, implies $F=G_{1}$ or $F=G_{2}$.

Sober spaces

In general, $\varepsilon: X \rightarrow p t \Omega X$ is not a bijection.
Definition: Call X sober if ε is a bijection.
A closed set F is (join) irreducible if $F=G_{1} \cup G_{2}$, with G_{1}, G_{2} closed, implies $F=G_{1}$ or $F=G_{2}$.

Theorem: A space X is sober iff each closed irreducible set F is the closure of a unique point (called the generic point of F).

Sober spaces

In general, $\varepsilon: X \rightarrow p t \Omega X$ is not a bijection.
Definition: Call X sober if ε is a bijection.
A closed set F is (join) irreducible if $F=G_{1} \cup G_{2}$, with G_{1}, G_{2} closed, implies $F=G_{1}$ or $F=G_{2}$.

Theorem: A space X is sober iff each closed irreducible set F is the closure of a unique point (called the generic point of F).

Proof sketch:

Sober spaces

In general, $\varepsilon: X \rightarrow p t \Omega X$ is not a bijection.
Definition: Call X sober if ε is a bijection.
A closed set F is (join) irreducible if $F=G_{1} \cup G_{2}$, with G_{1}, G_{2} closed, implies $F=G_{1}$ or $F=G_{2}$.

Theorem: A space X is sober iff each closed irreducible set F is the closure of a unique point (called the generic point of F).

Proof sketch: Points of ΩX correspond to meet prime elements of ΩX.

Sober spaces

In general, $\varepsilon: X \rightarrow p t \Omega X$ is not a bijection.
Definition: Call X sober if ε is a bijection.
A closed set F is (join) irreducible if $F=G_{1} \cup G_{2}$, with G_{1}, G_{2} closed, implies $F=G_{1}$ or $F=G_{2}$.

Theorem: A space X is sober iff each closed irreducible set F is the closure of a unique point (called the generic point of F).

Proof sketch: Points of ΩX correspond to meet prime elements of ΩX. Meet primes of ΩX correspond to irreducible closed sets.

Sober spaces

In general, $\varepsilon: X \rightarrow p t \Omega X$ is not a bijection.
Definition: Call X sober if ε is a bijection.
A closed set F is (join) irreducible if $F=G_{1} \cup G_{2}$, with G_{1}, G_{2} closed, implies $F=G_{1}$ or $F=G_{2}$.

Theorem: A space X is sober iff each closed irreducible set F is the closure of a unique point (called the generic point of F).

Proof sketch: Points of ΩX correspond to meet prime elements of ΩX. Meet primes of ΩX correspond to irreducible closed sets. Thus, ε is a bijection iff each irreducible closed set has the generic point.

Spatial frames

Spatial frames

Similarly, $O: L \rightarrow \Omega p t L$ is not a bijection in general.

Spatial frames

Similarly, $O: L \rightarrow \Omega p t L$ is not a bijection in general.

Definition: Call L spatial if O is a bijection.

Spatial frames

Similarly, $O: L \rightarrow \Omega p t L$ is not a bijection in general.

Definition: Call L spatial if O is a bijection.

Theorem: L is spatial iff
$(\forall a, b \in L)(a \nless b \Rightarrow \exists p \in p t L: p(a)=1$ and $p(b)=0)$.

Spatial frames

Similarly, $O: L \rightarrow \Omega$ pt L is not a bijection in general.

Definition: Call L spatial if O is a bijection.

Theorem: L is spatial iff
$(\forall a, b \in L)(a \nless b \Rightarrow \exists p \in p t L: p(a)=1$ and $p(b)=0)$.

Proof sketch:

Spatial frames

Similarly, $O: L \rightarrow \Omega$ pt L is not a bijection in general.

Definition: Call L spatial if O is a bijection.

Theorem: L is spatial iff
$(\forall a, b \in L)(a \nless b \Rightarrow \exists p \in p t L: p(a)=1$ and $p(b)=0)$.

Proof sketch: O is always onto.

Spatial frames

Similarly, $O: L \rightarrow \Omega$ pt L is not a bijection in general.

Definition: Call L spatial if O is a bijection.

Theorem: L is spatial iff
$(\forall a, b \in L)(a \nless b \Rightarrow \exists p \in p t L: p(a)=1$ and $p(b)=0)$.

Proof sketch: O is always onto. The above condition is equivalent to O being 1-1.

Dual equivalence

Dual equivalence

Sob $=$ The full subcategory of Top consisting of sober spaces.

Dual equivalence

Sob $=$ The full subcategory of Top consisting of sober spaces.
SFrm $=$ The full subcategory of Frm consisting of spatial frames.

Dual equivalence

Sob $=$ The full subcategory of Top consisting of sober spaces.
SFrm $=$ The full subcategory of Frm consisting of spatial frames.

Theorem: The contravariant adjunction Ω : Top \rightarrow Frm, $p t:$ Frm \rightarrow Top restricts to a dual equivalence of Sob and SFrm.

Dual equivalence

Sob $=$ The full subcategory of Top consisting of sober spaces.
SFrm $=$ The full subcategory of Frm consisting of spatial frames.

Theorem: The contravariant adjunction Ω : Top \rightarrow Frm, $p t:$ Frm \rightarrow Top restricts to a dual equivalence of Sob and SFrm.

Proof sketch:

Dual equivalence

Sob $=$ The full subcategory of Top consisting of sober spaces.
SFrm $=$ The full subcategory of Frm consisting of spatial frames.

Theorem: The contravariant adjunction $\Omega: \mathbf{T o p} \rightarrow$ Frm, $p t:$ Frm \rightarrow Top restricts to a dual equivalence of Sob and SFrm.

Proof sketch: For each $X \in$ Top, the frame ΩX is spatial.

Dual equivalence

Sob $=$ The full subcategory of Top consisting of sober spaces.
SFrm $=$ The full subcategory of Frm consisting of spatial frames.

Theorem: The contravariant adjunction Ω : Top \rightarrow Frm, $p t:$ Frm \rightarrow Top restricts to a dual equivalence of Sob and SFrm.

Proof sketch: For each $X \in$ Top, the frame ΩX is spatial. For each $L \in \mathrm{Frm}$, the space pt L is sober.

Dual equivalence

Sob $=$ The full subcategory of Top consisting of sober spaces.
SFrm $=$ The full subcategory of Frm consisting of spatial frames.

Theorem: The contravariant adjunction Ω : Top \rightarrow Frm, $p t:$ Frm \rightarrow Top restricts to a dual equivalence of Sob and SFrm.

Proof sketch: For each $X \in$ Top, the frame ΩX is spatial. For each $L \in \mathbf{F r m}$, the space $p t L$ is sober. If $X \in \mathbf{S o b}$, then $\varepsilon: X \rightarrow p t \Omega X$ is a bijection, hence a homeomorphism.

Dual equivalence

Sob $=$ The full subcategory of Top consisting of sober spaces.
SFrm $=$ The full subcategory of Frm consisting of spatial frames.

Theorem: The contravariant adjunction Ω : Top \rightarrow Frm, $p t:$ Frm \rightarrow Top restricts to a dual equivalence of Sob and SFrm.

Proof sketch: For each $X \in$ Top, the frame ΩX is spatial. For each $L \in \mathbf{F r m}$, the space $p t L$ is sober. If $X \in \mathbf{S o b}$, then $\varepsilon: X \rightarrow p t \Omega X$ is a bijection, hence a homeomorphism. If $L \in \mathbf{S F r m}$, then $O: L \rightarrow \Omega p t L$ is a bijection, hence an isomorphism.

Brief summary

Brief summary

We have built bridges connecting the world of topology with that of frames.

Brief summary

We have built bridges connecting the world of topology with that of frames.

The bridges establish perfect balance between sober spaces and spatial frames.

Brief summary

We have built bridges connecting the world of topology with that of frames.

The bridges establish perfect balance between sober spaces and spatial frames.

How can we utilize this framework?

Brief summary

We have built bridges connecting the world of topology with that of frames.

The bridges establish perfect balance between sober spaces and spatial frames.

How can we utilize this framework? In particular, how can it be used in Logic?

Boolean algebras

Boolean algebras

Let L be a bounded lattice.

Boolean algebras

Let L be a bounded lattice. A complement of $a \in L$ is $b \in L$ satisfying $a \wedge b=0$ and $a \vee b=1$.

Boolean algebras

Let L be a bounded lattice. A complement of $a \in L$ is $b \in L$ satisfying $a \wedge b=0$ and $a \vee b=1$. If each $a \in L$ has a complement, then L is called complemented.

Boolean algebras

Let L be a bounded lattice. A complement of $a \in L$ is $b \in L$ satisfying $a \wedge b=0$ and $a \vee b=1$. If each $a \in L$ has a complement, then L is called complemented.

When L is distributive, then if $a \in L$ has a complement, then it is unique,

Boolean algebras

Let L be a bounded lattice. A complement of $a \in L$ is $b \in L$ satisfying $a \wedge b=0$ and $a \vee b=1$. If each $a \in L$ has a complement, then L is called complemented.

When L is distributive, then if $a \in L$ has a complement, then it is unique, and is denoted a^{*} (or $\neg a$).

Boolean algebras

Let L be a bounded lattice. A complement of $a \in L$ is $b \in L$ satisfying $a \wedge b=0$ and $a \vee b=1$. If each $a \in L$ has a complement, then L is called complemented.

When L is distributive, then if $a \in L$ has a complement, then it is unique, and is denoted a^{*} (or $\neg a$).

Definition: A Boolean algebra is a complemented distributive lattice.

Boolean algebras

Let L be a bounded lattice. A complement of $a \in L$ is $b \in L$ satisfying $a \wedge b=0$ and $a \vee b=1$. If each $a \in L$ has a complement, then L is called complemented.

When L is distributive, then if $a \in L$ has a complement, then it is unique, and is denoted a^{*} (or $\neg a$).

Definition: A Boolean algebra is a complemented distributive lattice.

It is well known that Boolean algebras serve as algebraic models of classical logic.

Boolean algebras

Let L be a bounded lattice. A complement of $a \in L$ is $b \in L$ satisfying $a \wedge b=0$ and $a \vee b=1$. If each $a \in L$ has a complement, then L is called complemented.

When L is distributive, then if $a \in L$ has a complement, then it is unique, and is denoted a^{*} (or $\neg a$).

Definition: A Boolean algebra is a complemented distributive lattice.

It is well known that Boolean algebras serve as algebraic models of classical logic.

How are Boolean algebras related to frames?

From Boolean algebras to frames

From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is closed under finite joins.

From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is closed under finite joins.

For $S \subseteq B$, let $I(S)$ be the ideal generated by S.

From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is closed under finite joins.

For $S \subseteq B$, let $I(S)$ be the ideal generated by S. Then $a \in I(S)$ iff $\exists s_{1}, \ldots, s_{n} \in S$ such that $a \leqslant s_{1} \vee \cdots \vee s_{n}$.

From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is closed under finite joins.

For $S \subseteq B$, let $I(S)$ be the ideal generated by S. Then $a \in I(S)$ iff $\exists s_{1}, \ldots, s_{n} \in S$ such that $a \leqslant s_{1} \vee \cdots \vee s_{n}$.

Let $\Im(B)$ be the poset of ideals of B ordered by inclusion.

From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is closed under finite joins.

For $S \subseteq B$, let $I(S)$ be the ideal generated by S. Then $a \in I(S)$ iff $\exists s_{1}, \ldots, s_{n} \in S$ such that $a \leqslant s_{1} \vee \cdots \vee s_{n}$.

Let $\Im(B)$ be the poset of ideals of B ordered by inclusion.

Claim 1: $\mathfrak{J}(B)$ is a complete lattice.

From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is closed under finite joins.

For $S \subseteq B$, let $I(S)$ be the ideal generated by S. Then $a \in I(S)$ iff $\exists s_{1}, \ldots, s_{n} \in S$ such that $a \leqslant s_{1} \vee \cdots \vee s_{n}$.

Let $\Im(B)$ be the poset of ideals of B ordered by inclusion.

Claim 1: $\Im(B)$ is a complete lattice.

Proof:

From Boolean algebras to frames

An ideal of a Boolean algebra B is a nonempty downset which is closed under finite joins.

For $S \subseteq B$, let $I(S)$ be the ideal generated by S. Then $a \in I(S)$ iff $\exists s_{1}, \ldots, s_{n} \in S$ such that $a \leqslant s_{1} \vee \cdots \vee s_{n}$.

Let $\Im(B)$ be the poset of ideals of B ordered by inclusion.

Claim 1: $\Im(B)$ is a complete lattice.

Proof: It is sufficient to observe that $\left\{I_{\alpha}\right\} \subseteq \Im(B)$ implies $\bigcap_{\alpha} I_{\alpha} \in \mathfrak{I}(B)$.

From Boolean algebras to frames

From Boolean algebras to frames

Claim 2: $\Im(B)$ satisfies the JID.

From Boolean algebras to frames

Claim 2: $\Im(B)$ satisfies the JID.
Proof:

From Boolean algebras to frames

Claim 2: $\mathfrak{I}(B)$ satisfies the JID.
Proof: Let $I, K_{\alpha} \in \mathfrak{I}(B)$ for $\alpha \in \Gamma$.

From Boolean algebras to frames

Claim 2: $\mathfrak{I}(B)$ satisfies the JID.
Proof: Let $I, K_{\alpha} \in \mathfrak{I}(B)$ for $\alpha \in \Gamma$. Since the inclusion
$\bigvee_{\alpha}\left(I \cap K_{\alpha}\right) \subseteq I \cap \bigvee_{\alpha} K_{\alpha}$ always holds, it is sufficient to show the other inclusion.

From Boolean algebras to frames

Claim 2: $\mathfrak{I}(B)$ satisfies the JID.
Proof: Let $I, K_{\alpha} \in \mathfrak{I}(B)$ for $\alpha \in \Gamma$. Since the inclusion
$\bigvee_{\alpha}\left(I \cap K_{\alpha}\right) \subseteq I \cap \bigvee_{\alpha} K_{\alpha}$ always holds, it is sufficient to show the other inclusion.

Let $a \in I \cap \bigvee_{\alpha} K_{\alpha}$.

From Boolean algebras to frames

Claim 2: $\mathfrak{I}(B)$ satisfies the JID.
Proof: Let $I, K_{\alpha} \in \mathfrak{I}(B)$ for $\alpha \in \Gamma$. Since the inclusion
$\bigvee_{\alpha}\left(I \cap K_{\alpha}\right) \subseteq I \cap \bigvee_{\alpha} K_{\alpha}$ always holds, it is sufficient to show the other inclusion.

Let $a \in I \cap \bigvee_{\alpha} K_{\alpha}$. Then $a \in I$ and there exist $s_{i} \in K_{\alpha_{i}}$ with $a \leqslant s_{1} \vee \cdots \vee s_{n}$.

From Boolean algebras to frames

Claim 2: $\mathfrak{I}(B)$ satisfies the JID.
Proof: Let $I, K_{\alpha} \in \Im(B)$ for $\alpha \in \Gamma$. Since the inclusion
$\bigvee_{\alpha}\left(I \cap K_{\alpha}\right) \subseteq I \cap \bigvee_{\alpha} K_{\alpha}$ always holds, it is sufficient to show the other inclusion.

Let $a \in I \cap \bigvee_{\alpha} K_{\alpha}$. Then $a \in I$ and there exist $s_{i} \in K_{\alpha_{i}}$ with
$a \leqslant s_{1} \vee \cdots \vee s_{n}$.
Therefore, $a=a \wedge\left(s_{1} \vee \cdots \vee s_{n}\right)$

From Boolean algebras to frames

Claim 2: $\mathfrak{I}(B)$ satisfies the JID.
Proof: Let $I, K_{\alpha} \in \Im(B)$ for $\alpha \in \Gamma$. Since the inclusion
$\bigvee_{\alpha}\left(I \cap K_{\alpha}\right) \subseteq I \cap \bigvee_{\alpha} K_{\alpha}$ always holds, it is sufficient to show the other inclusion.

Let $a \in I \cap \bigvee_{\alpha} K_{\alpha}$. Then $a \in I$ and there exist $s_{i} \in K_{\alpha_{i}}$ with
$a \leqslant s_{1} \vee \cdots \vee s_{n}$.
Therefore, $a=a \wedge\left(s_{1} \vee \cdots \vee s_{n}\right)=\left(a \wedge s_{1}\right) \vee \cdots \vee\left(a \wedge s_{n}\right)$.

From Boolean algebras to frames

Claim 2: $\mathfrak{I}(B)$ satisfies the JID.
Proof: Let $I, K_{\alpha} \in \mathfrak{I}(B)$ for $\alpha \in \Gamma$. Since the inclusion
$\bigvee_{\alpha}\left(I \cap K_{\alpha}\right) \subseteq I \cap \bigvee_{\alpha} K_{\alpha}$ always holds, it is sufficient to show the other inclusion.

Let $a \in I \cap \bigvee_{\alpha} K_{\alpha}$. Then $a \in I$ and there exist $s_{i} \in K_{\alpha_{i}}$ with
$a \leqslant s_{1} \vee \cdots \vee s_{n}$.
Therefore, $a=a \wedge\left(s_{1} \vee \cdots \vee s_{n}\right)=\left(a \wedge s_{1}\right) \vee \cdots \vee\left(a \wedge s_{n}\right)$.
But each $a \wedge s_{i} \in I \cap K_{\alpha_{i}}$.

From Boolean algebras to frames

Claim 2: $\mathfrak{I}(B)$ satisfies the JID.
Proof: Let $I, K_{\alpha} \in \mathfrak{I}(B)$ for $\alpha \in \Gamma$. Since the inclusion
$\bigvee_{\alpha}\left(I \cap K_{\alpha}\right) \subseteq I \cap \bigvee_{\alpha} K_{\alpha}$ always holds, it is sufficient to show the other inclusion.

```
Let \(a \in I \cap \bigvee_{\alpha} K_{\alpha}\). Then \(a \in I\) and there exist \(s_{i} \in K_{\alpha_{i}}\) with \(a \leqslant s_{1} \vee \cdots \vee s_{n}\).
```

Therefore, $a=a \wedge\left(s_{1} \vee \cdots \vee s_{n}\right)=\left(a \wedge s_{1}\right) \vee \cdots \vee\left(a \wedge s_{n}\right)$.
But each $a \wedge s_{i} \in I \cap K_{\alpha_{i}}$.
So $a \in \bigvee_{i}\left(I \cap K_{\alpha_{i}}\right) \subseteq \bigvee_{\alpha}\left(I \cap K_{\alpha}\right)$.

From Boolean algebras to frames

Claim 2: $\mathfrak{I}(B)$ satisfies the JID.
Proof: Let $I, K_{\alpha} \in \mathfrak{I}(B)$ for $\alpha \in \Gamma$. Since the inclusion
$\bigvee_{\alpha}\left(I \cap K_{\alpha}\right) \subseteq I \cap \bigvee_{\alpha} K_{\alpha}$ always holds, it is sufficient to show the other inclusion.

```
Let \(a \in I \cap \bigvee_{\alpha} K_{\alpha}\). Then \(a \in I\) and there exist \(s_{i} \in K_{\alpha_{i}}\) with \(a \leqslant s_{1} \vee \cdots \vee s_{n}\).
```

Therefore, $a=a \wedge\left(s_{1} \vee \cdots \vee s_{n}\right)=\left(a \wedge s_{1}\right) \vee \cdots \vee\left(a \wedge s_{n}\right)$.
But each $a \wedge s_{i} \in I \cap K_{\alpha_{i}}$.
So $a \in \bigvee_{i}\left(I \cap K_{\alpha_{i}}\right) \subseteq \bigvee_{\alpha}\left(I \cap K_{\alpha}\right)$.
Thus, $\mathfrak{I}(B)$ is a frame.

From Boolean algebras to frames

Claim 2: $\mathfrak{I}(B)$ satisfies the JID.
Proof: Let $I, K_{\alpha} \in \mathfrak{I}(B)$ for $\alpha \in \Gamma$. Since the inclusion
$\bigvee_{\alpha}\left(I \cap K_{\alpha}\right) \subseteq I \cap \bigvee_{\alpha} K_{\alpha}$ always holds, it is sufficient to show the other inclusion.

Let $a \in I \cap \bigvee_{\alpha} K_{\alpha}$. Then $a \in I$ and there exist $s_{i} \in K_{\alpha_{i}}$ with $a \leqslant s_{1} \vee \cdots \vee s_{n}$.

Therefore, $a=a \wedge\left(s_{1} \vee \cdots \vee s_{n}\right)=\left(a \wedge s_{1}\right) \vee \cdots \vee\left(a \wedge s_{n}\right)$.
But each $a \wedge s_{i} \in I \cap K_{\alpha_{i}}$.
So $a \in \bigvee_{i}\left(I \cap K_{\alpha_{i}}\right) \subseteq \bigvee_{\alpha}\left(I \cap K_{\alpha}\right)$.
Thus, $\mathfrak{I}(B)$ is a frame.
Note: The proof above only uses that B is a bounded distributive lattice.

From Boolean algebras to frames

Claim 2: $\mathfrak{I}(B)$ satisfies the JID.
Proof: Let $I, K_{\alpha} \in \mathfrak{I}(B)$ for $\alpha \in \Gamma$. Since the inclusion
$\bigvee_{\alpha}\left(I \cap K_{\alpha}\right) \subseteq I \cap \bigvee_{\alpha} K_{\alpha}$ always holds, it is sufficient to show the other inclusion.

Let $a \in I \cap \bigvee_{\alpha} K_{\alpha}$. Then $a \in I$ and there exist $s_{i} \in K_{\alpha_{i}}$ with $a \leqslant s_{1} \vee \cdots \vee s_{n}$.

Therefore, $a=a \wedge\left(s_{1} \vee \cdots \vee s_{n}\right)=\left(a \wedge s_{1}\right) \vee \cdots \vee\left(a \wedge s_{n}\right)$.
But each $a \wedge s_{i} \in I \cap K_{\alpha_{i}}$.
So $a \in \bigvee_{i}\left(I \cap K_{\alpha_{i}}\right) \subseteq \bigvee_{\alpha}\left(I \cap K_{\alpha}\right)$.
Thus, $\mathfrak{I}(B)$ is a frame.
Note: The proof above only uses that B is a bounded distributive lattice. Therefore, the lattice of ideals of any bounded distributive lattice is a frame!

Compact frames

Compact frames

Not every frame is of the form $\mathfrak{I}(B)$ for some Boolean algebra B.

Compact frames

Not every frame is of the form $\mathfrak{I}(B)$ for some Boolean algebra B. An element a of a frame L is compact if $a \leqslant \bigvee S$ implies $a \leqslant \bigvee T$ for some finite $T \subseteq S$.

Compact frames

Not every frame is of the form $\mathfrak{I}(B)$ for some Boolean algebra B. An element a of a frame L is compact if $a \leqslant \bigvee S$ implies $a \leqslant \bigvee T$ for some finite $T \subseteq S$.

Definition: A frame L is compact if 1 is compact in L.

Compact frames

Not every frame is of the form $\mathfrak{I}(B)$ for some Boolean algebra B.
An element a of a frame L is compact if $a \leqslant \bigvee S$ implies $a \leqslant \bigvee T$ for some finite $T \subseteq S$.

Definition: A frame L is compact if 1 is compact in L.
Since ideal generation only requires finite joins, it is easy to see that $\mathfrak{I}(B)$ is compact.

Compact frames

Not every frame is of the form $\mathfrak{I}(B)$ for some Boolean algebra B.
An element a of a frame L is compact if $a \leqslant \bigvee S$ implies $a \leqslant \bigvee T$ for some finite $T \subseteq S$.

Definition: A frame L is compact if 1 is compact in L.
Since ideal generation only requires finite joins, it is easy to see that $\Im(B)$ is compact.

What else can we say about $\mathfrak{I}(B)$?

Compact frames

Not every frame is of the form $\mathfrak{I}(B)$ for some Boolean algebra B.
An element a of a frame L is compact if $a \leqslant \bigvee S$ implies $a \leqslant \bigvee T$ for some finite $T \subseteq S$.

Definition: A frame L is compact if 1 is compact in L.
Since ideal generation only requires finite joins, it is easy to see that $\Im(B)$ is compact.

What else can we say about $\mathfrak{I}(B)$?
Let us examine the principal ideal $\downarrow a$.

Compact frames

Not every frame is of the form $\mathfrak{I}(B)$ for some Boolean algebra B.
An element a of a frame L is compact if $a \leqslant \bigvee S$ implies $a \leqslant \bigvee T$ for some finite $T \subseteq S$.

Definition: A frame L is compact if 1 is compact in L.
Since ideal generation only requires finite joins, it is easy to see that $\Im(B)$ is compact.

What else can we say about $\mathfrak{I}(B)$?
Let us examine the principal ideal $\downarrow a$. Since B is a Boolean algebra,

Compact frames

Not every frame is of the form $\mathfrak{I}(B)$ for some Boolean algebra B.
An element a of a frame L is compact if $a \leqslant \bigvee S$ implies $a \leqslant \bigvee T$ for some finite $T \subseteq S$.

Definition: A frame L is compact if 1 is compact in L.
Since ideal generation only requires finite joins, it is easy to see that $\Im(B)$ is compact.

What else can we say about $\Im(B)$?
Let us examine the principal ideal $\downarrow a$. Since B is a Boolean algebra,
$\downarrow a \cap \downarrow\left(a^{*}\right)=(0)$ and $\downarrow a \vee \downarrow\left(a^{*}\right)=B$.

Compact frames

Not every frame is of the form $\mathfrak{I}(B)$ for some Boolean algebra B.
An element a of a frame L is compact if $a \leqslant \bigvee S$ implies $a \leqslant \bigvee T$ for some finite $T \subseteq S$.

Definition: A frame L is compact if 1 is compact in L.
Since ideal generation only requires finite joins, it is easy to see that $\Im(B)$ is compact.

What else can we say about $\mathfrak{I}(B)$?
Let us examine the principal ideal $\downarrow a$. Since B is a Boolean algebra,
$\downarrow a \cap \downarrow\left(a^{*}\right)=(0)$ and $\downarrow a \vee \downarrow\left(a^{*}\right)=B$.
Therefore, principal ideals are complemented in $\mathfrak{I}(B)$.

Zero-dimensional frames

Zero-dimensional frames

The converse is also true.

Zero-dimensional frames

The converse is also true. If $I \in \Im(B)$ is complemented, then there is $J \in \mathfrak{I}(B)$ with $I \cap J=(0)$ and $I \vee J=B$.

Zero-dimensional frames

The converse is also true. If $I \in \mathfrak{I}(B)$ is complemented, then there is $J \in \mathfrak{I}(B)$ with $I \cap J=(0)$ and $I \vee J=B$.

From $I \vee J=B$ it follows that there exist $a \in I$ and $b \in J$ with $a \vee b=1$.

Zero-dimensional frames

The converse is also true. If $I \in \Im(B)$ is complemented, then there is $J \in \mathfrak{I}(B)$ with $I \cap J=(0)$ and $I \vee J=B$.

From $I \vee J=B$ it follows that there exist $a \in I$ and $b \in J$ with $a \vee b=1$. And from $I \cap J=(0)$ it follows that $a \wedge b=0$.

Zero-dimensional frames

The converse is also true. If $I \in \Im(B)$ is complemented, then there is $J \in \mathfrak{I}(B)$ with $I \cap J=(0)$ and $I \vee J=B$.

From $I \vee J=B$ it follows that there exist $a \in I$ and $b \in J$ with $a \vee b=1$. And from $I \cap J=(0)$ it follows that $a \wedge b=0$. Therefore, $b=a^{*}$.

Zero-dimensional frames

The converse is also true. If $I \in \Im(B)$ is complemented, then there is $J \in \mathfrak{I}(B)$ with $I \cap J=(0)$ and $I \vee J=B$.

From $I \vee J=B$ it follows that there exist $a \in I$ and $b \in J$ with $a \vee b=1$. And from $I \cap J=(0)$ it follows that $a \wedge b=0$. Therefore, $b=a^{*}$. Thus, $I=\downarrow a$ and $J=\downarrow\left(a^{*}\right)$.

Zero-dimensional frames

The converse is also true. If $I \in \Im(B)$ is complemented, then there is $J \in \mathfrak{I}(B)$ with $I \cap J=(0)$ and $I \vee J=B$.

From $I \vee J=B$ it follows that there exist $a \in I$ and $b \in J$ with $a \vee b=1$. And from $I \cap J=(0)$ it follows that $a \wedge b=0$. Therefore, $b=a^{*}$. Thus, $I=\downarrow a$ and $J=\downarrow\left(a^{*}\right)$.

For a frame L, let $Z(L)$ be the set of complemented elements of L.

Zero-dimensional frames

The converse is also true. If $I \in \mathfrak{I}(B)$ is complemented, then there is $J \in \mathfrak{I}(B)$ with $I \cap J=(0)$ and $I \vee J=B$.

From $I \vee J=B$ it follows that there exist $a \in I$ and $b \in J$ with $a \vee b=1$. And from $I \cap J=(0)$ it follows that $a \wedge b=0$. Therefore, $b=a^{*}$. Thus, $I=\downarrow a$ and $J=\downarrow\left(a^{*}\right)$.

For a frame L, let $Z(L)$ be the set of complemented elements of L. It is easy to verify that $Z(L)$ is a sublattice of L and that $Z(L)$ is a Boolean algebra.

Zero-dimensional frames

The converse is also true. If $I \in \mathfrak{I}(B)$ is complemented, then there is $J \in \mathfrak{I}(B)$ with $I \cap J=(0)$ and $I \vee J=B$.

From $I \vee J=B$ it follows that there exist $a \in I$ and $b \in J$ with $a \vee b=1$. And from $I \cap J=(0)$ it follows that $a \wedge b=0$. Therefore, $b=a^{*}$. Thus, $I=\downarrow a$ and $J=\downarrow\left(a^{*}\right)$.

For a frame L, let $Z(L)$ be the set of complemented elements of L. It is easy to verify that $Z(L)$ is a sublattice of L and that $Z(L)$ is a Boolean algebra. It is often referred to as the center of L.

Zero-dimensional frames

The converse is also true. If $I \in \mathfrak{I}(B)$ is complemented, then there is $J \in \mathfrak{I}(B)$ with $I \cap J=(0)$ and $I \vee J=B$.

From $I \vee J=B$ it follows that there exist $a \in I$ and $b \in J$ with $a \vee b=1$. And from $I \cap J=(0)$ it follows that $a \wedge b=0$. Therefore, $b=a^{*}$. Thus, $I=\downarrow a$ and $J=\downarrow\left(a^{*}\right)$.

For a frame L, let $Z(L)$ be the set of complemented elements of L. It is easy to verify that $Z(L)$ is a sublattice of L and that $Z(L)$ is a Boolean algebra. It is often referred to as the center of L.

Definition: A frame L is zero-dimensional if $Z(L)$ generates L;

Zero-dimensional frames

The converse is also true. If $I \in \mathfrak{I}(B)$ is complemented, then there is $J \in \mathfrak{I}(B)$ with $I \cap J=(0)$ and $I \vee J=B$.

From $I \vee J=B$ it follows that there exist $a \in I$ and $b \in J$ with $a \vee b=1$. And from $I \cap J=(0)$ it follows that $a \wedge b=0$. Therefore, $b=a^{*}$. Thus, $I=\downarrow a$ and $J=\downarrow\left(a^{*}\right)$.

For a frame L, let $Z(L)$ be the set of complemented elements of L. It is easy to verify that $Z(L)$ is a sublattice of L and that $Z(L)$ is a Boolean algebra. It is often referred to as the center of L.

Definition: A frame L is zero-dimensional if $Z(L)$ generates L; that is, each $a \in L$ is a join of elements of $Z(L)$.

Zero-dimensional frames

Zero-dimensional frames

Claim: $\mathfrak{I}(B)$ is a zero-dimensional frame for each Boolean algebra B.

Zero-dimensional frames

Claim: $\mathfrak{I}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof:

Zero-dimensional frames

Claim: $\mathfrak{I}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\mathfrak{I}(B)$.

Zero-dimensional frames

Claim: $\mathfrak{I}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\mathfrak{I}(B)$. Clearly each ideal is the join of principal ideals,

Zero-dimensional frames

Claim: $\mathfrak{I}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\mathfrak{I}(B)$. Clearly each ideal is the join of principal ideals, hence the result.

Zero-dimensional frames

Claim: $\mathfrak{I}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\Im(B)$. Clearly each ideal is the join of principal ideals, hence the result.

Consequently, $\mathfrak{I}(B)$ is compact and zero-dimensional.

Zero-dimensional frames

Claim: $\mathfrak{I}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\Im(B)$. Clearly each ideal is the join of principal ideals, hence the result.

Consequently, $\Im(B)$ is compact and zero-dimensional. Theorem: A frame L is compact and zero-dimensional iff L is isomorphic to $\mathfrak{I}(B)$ for some Boolean algebra B.

Zero-dimensional frames

Claim: $\mathfrak{I}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\Im(B)$. Clearly each ideal is the join of principal ideals, hence the result.

Consequently, $\mathfrak{I}(B)$ is compact and zero-dimensional.
Theorem: A frame L is compact and zero-dimensional iff L is isomorphic to $\mathfrak{I}(B)$ for some Boolean algebra B.

Proof sketch:

Zero-dimensional frames

Claim: $\mathfrak{I}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\Im(B)$. Clearly each ideal is the join of principal ideals, hence the result.

Consequently, $\mathfrak{I}(B)$ is compact and zero-dimensional.
Theorem: A frame L is compact and zero-dimensional iff L is isomorphic to $\mathfrak{I}(B)$ for some Boolean algebra B.

Proof sketch: We already saw that $\Im(B)$ is compact and zero-dimensional.

Zero-dimensional frames

Claim: $\mathfrak{I}(B)$ is a zero-dimensional frame for each Boolean algebra B.

Proof: As we observed, the principal ideals are the center of $\mathfrak{I}(B)$. Clearly each ideal is the join of principal ideals, hence the result.

Consequently, $\mathfrak{I}(B)$ is compact and zero-dimensional.
Theorem: A frame L is compact and zero-dimensional iff L is isomorphic to $\mathfrak{I}(B)$ for some Boolean algebra B.
Proof sketch: We already saw that $\mathfrak{J}(B)$ is compact and zero-dimensional.

Conversely, if L is compact and zero-dimensional, then take $B=Z(L)$.

Zero-dimensional frames

Claim: $\mathfrak{J}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\mathfrak{I}(B)$. Clearly each ideal is the join of principal ideals, hence the result.

Consequently, $\Im(B)$ is compact and zero-dimensional.
Theorem: A frame L is compact and zero-dimensional iff L is isomorphic to $\mathfrak{I}(B)$ for some Boolean algebra B.
Proof sketch: We already saw that $\mathfrak{I}(B)$ is compact and zero-dimensional.
Conversely, if L is compact and zero-dimensional, then take $B=Z(L)$. Then B is a Boolean algebra.

Zero-dimensional frames

Claim: $\mathfrak{J}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\mathfrak{I}(B)$. Clearly each ideal is the join of principal ideals, hence the result.

Consequently, $\Im(B)$ is compact and zero-dimensional.
Theorem: A frame L is compact and zero-dimensional iff L is isomorphic to $\mathfrak{I}(B)$ for some Boolean algebra B.
Proof sketch: We already saw that $\mathfrak{I}(B)$ is compact and zero-dimensional.
Conversely, if L is compact and zero-dimensional, then take $B=Z(L)$. Then B is a Boolean algebra. Define $h: L \rightarrow \mathfrak{I}(B)$ by $h(a)=\downarrow a \cap Z(L)$.

Zero-dimensional frames

Claim: $\mathfrak{J}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\mathfrak{I}(B)$. Clearly each ideal is the join of principal ideals, hence the result.

Consequently, $\Im(B)$ is compact and zero-dimensional.
Theorem: A frame L is compact and zero-dimensional iff L is isomorphic to $\mathfrak{I}(B)$ for some Boolean algebra B.
Proof sketch: We already saw that $\mathfrak{I}(B)$ is compact and zero-dimensional.
Conversely, if L is compact and zero-dimensional, then take $B=Z(L)$. Then B is a Boolean algebra. Define $h: L \rightarrow \mathfrak{I}(B)$ by $h(a)=\downarrow a \cap Z(L)$. Since L is zero-dimensional, h is an order embedding.

Zero-dimensional frames

Claim: $\mathfrak{J}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\mathfrak{I}(B)$. Clearly each ideal is the join of principal ideals, hence the result.

Consequently, $\Im(B)$ is compact and zero-dimensional.
Theorem: A frame L is compact and zero-dimensional iff L is isomorphic to $\mathfrak{J}(B)$ for some Boolean algebra B.
Proof sketch: We already saw that $\mathfrak{I}(B)$ is compact and zero-dimensional.

Conversely, if L is compact and zero-dimensional, then take $B=Z(L)$. Then B is a Boolean algebra. Define $h: L \rightarrow \mathfrak{I}(B)$ by $h(a)=\downarrow a \cap Z(L)$. Since L is zero-dimensional, h is an order embedding. Since L is also compact, each $z \in Z(L)$ is compact.

Zero-dimensional frames

Claim: $\mathfrak{J}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\mathfrak{I}(B)$. Clearly each ideal is the join of principal ideals, hence the result.

Consequently, $\Im(B)$ is compact and zero-dimensional.
Theorem: A frame L is compact and zero-dimensional iff L is isomorphic to $\mathfrak{J}(B)$ for some Boolean algebra B.
Proof sketch: We already saw that $\mathfrak{I}(B)$ is compact and zero-dimensional.

Conversely, if L is compact and zero-dimensional, then take $B=Z(L)$. Then B is a Boolean algebra. Define $h: L \rightarrow \mathfrak{I}(B)$ by $h(a)=\downarrow a \cap Z(L)$. Since L is zero-dimensional, h is an order embedding. Since L is also compact, each $z \in Z(L)$ is compact. Therefore, h is onto.

Zero-dimensional frames

Claim: $\mathfrak{J}(B)$ is a zero-dimensional frame for each Boolean algebra B.
Proof: As we observed, the principal ideals are the center of $\mathfrak{I}(B)$. Clearly each ideal is the join of principal ideals, hence the result.

Consequently, $\Im(B)$ is compact and zero-dimensional.
Theorem: A frame L is compact and zero-dimensional iff L is isomorphic to $\mathfrak{J}(B)$ for some Boolean algebra B.
Proof sketch: We already saw that $\mathfrak{I}(B)$ is compact and zero-dimensional.
Conversely, if L is compact and zero-dimensional, then take $B=Z(L)$. Then B is a Boolean algebra. Define $h: L \rightarrow \mathfrak{I}(B)$ by $h(a)=\downarrow a \cap Z(L)$. Since L is zero-dimensional, h is an order embedding. Since L is also compact, each $z \in Z(L)$ is compact. Therefore, h is onto. Thus, h is a frame isomorphism.

zKFrm and BA

zKFrm and BA

zKFrm = The full subcategory of Frm consisting of compact zero-dimensional frames.

zKFrm and BA

zKFrm = The full subcategory of Frm consisting of compact zero-dimensional frames.

BA $=$ The category of Boolean algebras and Boolean homomorphisms.

zKFrm and BA

zKFrm = The full subcategory of Frm consisting of compact zero-dimensional frames.

BA $=$ The category of Boolean algebras and Boolean homomorphisms.

Theorem: zKFrm is equivalent to BA.

zKFrm and BA

zKFrm $=$ The full subcategory of Frm consisting of compact zero-dimensional frames.

BA $=$ The category of Boolean algebras and Boolean homomorphisms.

Theorem: zKFrm is equivalent to BA.
Proof sketch:

zKFrm and BA

zKFrm = The full subcategory of Frm consisting of compact zero-dimensional frames.

BA $=$ The category of Boolean algebras and Boolean homomorphisms.

Theorem: zKFrm is equivalent to BA.
Proof sketch: The ideal functor $\mathcal{I}:$ BA \rightarrow zKFrm and the center functor $Z: \mathbf{z K F r m} \rightarrow$ BA give the desired equivalence.

zKFrm and BA

zKFrm = The full subcategory of Frm consisting of compact zero-dimensional frames.

BA $=$ The category of Boolean algebras and Boolean homomorphisms.

Theorem: zKFrm is equivalent to BA.
Proof sketch: The ideal functor $\mathcal{I}: \mathbf{B A} \rightarrow \mathbf{z K F r m}$ and the center functor $Z: \mathbf{z K F r m} \rightarrow \mathbf{B A}$ give the desired equivalence.

End of Lecture 1

