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Constructive mathematics and uniform continuity principle

We work in the constructive mathematics started by E. Bishop in his
book “Foundation of Constructive Analysis”.

I Based on intuitionistic logic
I Compatible with classical mathematics (CLASS), but also
I Intuitionism by Brouwer (INT) – every function R→ R is continuous.
I Recursive mathematics (RUSS) – every function N→ N is recursive.

Consider the uniform continuity principle for the Cantor space.
UC Every point-wise continuous function f : 2N → N is uniformly

continuous.

I UC is true in CLASS and INT
I UC contradicts with RUSS
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Uniform continuity principle and Fan theorem

Fan theorem “Every bar has a uniform upper bound.”

For any P ⊆ 2∗,

(∀β ∈ 2N)(∃n ∈ N)P(βn) =⇒ (∃N ∈ N)(∀β ∈ 2N)P(βN),

where βn def
= 〈β(0), . . . , β(n− 1)〉.

Theorem (J. Berger, 2006)
UC is equivalent to c–FT (continuous Fan theorem).

Question. Does the equivalence admit a natural generalisation to the
Baire space NN? Is there any uniform continuity principle for the Baire
space which corresponds to some version of Bar induction?
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Outline

1. UCB : Uniform continuity principle for the Baire space

2. c–BI : Continuous Bar induction

3. Equivalence UCB ⇐⇒ c–BI

4. Relation to UC and c–FT
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Neighbourhood functions α : N∗ → N

The class K ⊆ N∗ → N of neighbourhood functions is inductively
generated by the following clauses:

n ∈ N
λa.n + 1 ∈ K

α(〈〉) = 0 (∀n ∈ N)λa.α(〈n〉 ∗ a) ∈ K
α ∈ K

Remark. A neighbourhood function α ∈ K can be identified with a
well-founded tree labelled by elements of N.
1. λa.n + 1 corresponds to a single node tree {(〈〉, n + 1)} labelled

by n + 1.
2. if α(〈〉) = 0 and for each n ∈ N, λa.α(〈n〉 ∗ a) corresponds to a

labelled tree Tn, then α corresponds to a tree
T = {(〈〉, 0)} ∪ {(〈n〉 ∗ a,L) | n ∈ N, (a,L) ∈ Tn}.

〈〉 n + 1

〈0〉 ∗

T0

〈1〉 ∗

T1 · · ·

〈n〉 ∗

Tn · · ·

〈〉 0
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Neighbourhood functions α : N∗ → N

The leaves of the tree corresponding to neighbourhood function α ∈ K
determines a bar

Pα =
{

a ∈ N∗ | α(a) > 0 &
(
∀a′ ≺ a

)
α(a′) = 0

}
,

that is
(
∀β ∈ NN) (∃k ∈ N)βk ∈ Pα.

A neighbourhood function α ∈ K determines a (unique) continuous
function fα : NN → N such that for each β ∈ NN

fα(β) = α(βk)− 1

where k ∈ N is such that βk ∈ Pα.

Definition
A function f : NN → N is realizable if f = fα for some α ∈ K.
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Uniform continuity principle of the Baire space

UCB Every point-wise continuous function f : NN → N is realizable.

Proposition
A function f : NN → N is realizable iff there exists α ∈ K such that

(∀a ∈ Pα) (∀β, γ ∈ a) f (β) = f (γ),

where β ∈ a def⇐⇒ β|a| = a, i.e. f is uniformly continuous with respect
to the covering uniformity {Pα | α ∈ K} on NN.
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c–BI : continuous Bar induction.

I P ⊆ N∗ is a bar if
(
∀β ∈ NN) (∃n ∈ N)P(βn).

I A bar P is a c–bar if there is δ : N∗ → N such that
P(a)↔ (∀b ∈ N∗) δ(a) = δ(a ∗ b) for all a ∈ N∗.

I Q ⊆ N∗ is inductive if (∀n ∈ N)Q(a ∗ 〈n〉)→ Q(a) for all a ∈ N∗.

c–BI If P is a c–bar and Q is an inductive subset such that P ⊆ Q,
then Q(〈〉).
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Equivalence

Theorem. UCB and c–BI are equivalent.

Proof. (c–BI =⇒ UCB) Let f : NN → N be a continuous map.
Write f (a) def

= f (a ∗ 0ω) for each a ∈ N∗. Then(
∀β ∈ NN

)
(∃n ∈ N) (∀b ∈ N∗) f (βn) = f (βn ∗ b).

Define δ : N∗ → N by δ(a) def
= f (a), and put

P(a) def⇐⇒ (∀b ∈ N∗) δ(a) = δ(a ∗ b).

Then P is a c–bar. Define

Q(a) def⇐⇒ (∃α ∈ K) (∀b ∈ N∗)α(b) > 0→ P(a∗b) & α(b) = δ(a∗b)+1.

It can be shown that Q is inductive and P ⊆ Q. By c–BI, we get Q(〈〉),
so there exists α ∈ K such that

(∀a ∈ N∗)α(a) > 0 =⇒ α(a) = f (a) + 1,

which means f = fα.
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Lemma 1. For any α ∈ K and Q ⊆ N∗ which is inductive

Pα ⊆ Q =⇒ Q(〈〉).
Lemma 2. For any α ∈ K, there is α′ ∈ K such that

(∀a ∈ N∗)α′(a) > 0 =⇒ α(a) = α′(a) & α′(a) < |a|.
Proof of UCB =⇒ c–BI. Let P ⊆ N∗ be a c–bar and Q ⊆ N∗ be an
inductive subset such that P ⊆ Q. Then, there exists δ : N∗ → N such
that P(a) ⇐⇒ (∀b ∈ N∗) δ(a) = δ(a ∗ b). We must show Q(〈〉).
By Lemma 1, it suffices to find α ∈ K such that Pα ⊆ Q.
Let β ∈ NN. Since P is a bar, there exists n ∈ N such that P(βn). Put

Dβ
def
=

{
m ∈ N | δ(βm) 6= δ(βn)

}
∪ {1},

and define a continuous f : NN → N by

f (β) def
= max Dβ.

By UCB and Lemma 2, there exists α ∈ K such that f = fα and
α(a) > 0→ |a| > α(a). Let a ∈ Pα. Then α(a) > 0, so

|a| > α(a) = fα(a) + 1 = max Da∗0ω + 1.

Then, (∀b ∈ N∗) δ(a) = δ(a ∗ b), i.e. P(a). Hence Q(a).
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Relation to UC and c–FT

The class K ⊆ N∗ of neighbourhood functions is inductively
generated by the following clauses:

n ∈ N
λa.n + 1 ∈ K

,
α(〈〉) = 0 (∀n ∈ N )λa.α(〈n〉 ∗ a) ∈ K

α ∈ K
.

Proposition. A function f : 2N → N is uniformly continuous iff f is
realizable by some α ∈ KC.

c–BI If P is a c–bar and Q is an inductive subset such that P ⊆ Q,
then Q(〈〉).

I P ⊆ is a bar if (∀β ∈ ) (∃n ∈ )P(βn).
I A bar P is a c–bar if there is δ : → N such that

P(a)↔ (∀b ∈ ) δ(a) = δ(a ∗ b) for all a ∈ .
I Q ⊆ is inductive if (∀n ∈ )Q(a ∗ 〈n〉)→ Q(a) for all a ∈ .

Proposition. c–FT’ and c–FT are equivalent.
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Further works and references

Further work

I Is an analogy between UCB ⇐⇒ c–BI and UC ⇐⇒ c–FT
can be formulated in more mathematical way?

I BIM =⇒ c–BI =⇒ BID. Are these implications strict?
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