A uniform continuity principle for the Baire space and a corresponding bar induction

Tatsuji Kawai

Japan Advanced Institute of Science and Technology

Topology, Algebra, and Categories in Logic 2015 Ischia 21–26 June

This work is supported by Core-to-Core Program A. Advanced Research Networks by Japan Society for the Promotion of Science.

- Based on intuitionistic logic
- Compatible with classical mathematics (CLASS), but also
- Intuitionism by Brouwer (INT) every function $\mathbb{R} \to \mathbb{R}$ is continuous.
- ▶ Recursive mathematics (RUSS) every function $\mathbb{N} \to \mathbb{N}$ is recursive.

- Based on intuitionistic logic
- Compatible with classical mathematics (CLASS), but also
- ▶ Intuitionism by Brouwer (INT) every function $\mathbb{R} \to \mathbb{R}$ is continuous.
- ▶ Recursive mathematics (RUSS) every function $\mathbb{N} \to \mathbb{N}$ is recursive.

Consider the uniform continuity principle for the Cantor space.

UC Every point-wise continuous function $f: 2^{\mathbb{N}} \to \mathbb{N}$ is uniformly continuous.

- Based on intuitionistic logic
- Compatible with classical mathematics (CLASS), but also
- ▶ Intuitionism by Brouwer (INT) every function $\mathbb{R} \to \mathbb{R}$ is continuous.
- ▶ Recursive mathematics (RUSS) every function $\mathbb{N} \to \mathbb{N}$ is recursive.

Consider the uniform continuity principle for the Cantor space.

- UC Every point-wise continuous function $f: 2^{\mathbb{N}} \to \mathbb{N}$ is uniformly continuous.
 - UC is true in CLASS and INT

- Based on intuitionistic logic
- Compatible with classical mathematics (CLASS), but also
- ▶ Intuitionism by Brouwer (INT) every function $\mathbb{R} \to \mathbb{R}$ is continuous.
- ▶ Recursive mathematics (RUSS) every function $\mathbb{N} \to \mathbb{N}$ is recursive.

Consider the uniform continuity principle for the Cantor space.

UC Every point-wise continuous function $f: 2^{\mathbb{N}} \to \mathbb{N}$ is uniformly continuous.

- UC is true in CLASS and INT
- UC contradicts with RUSS

Fan theorem "Every bar has a uniform upper bound."

For any $P \subseteq \mathbf{2}^*$,

 $(\forall \beta \in \mathbf{2}^{\mathbb{N}})(\exists n \in \mathbb{N})P(\overline{\beta}n) \implies (\exists N \in \mathbb{N})(\forall \beta \in 2^{\mathbb{N}})P(\overline{\beta}N),$

where $\overline{\beta}n \stackrel{\text{def}}{=} \langle \beta(0), \ldots, \beta(n-1) \rangle$.

Theorem (J. Berger, 2006)

UC is equivalent to c-FT (continuous Fan theorem).

Fan theorem "Every bar has a uniform upper bound."

For any $P \subseteq \mathbf{2}^*$,

 $(\forall \beta \in \mathbf{2}^{\mathbb{N}})(\exists n \in \mathbb{N})P(\overline{\beta}n) \implies (\exists N \in \mathbb{N})(\forall \beta \in 2^{\mathbb{N}})P(\overline{\beta}N),$

where $\overline{\beta}n \stackrel{\text{def}}{=} \langle \beta(0), \ldots, \beta(n-1) \rangle$.

Theorem (J. Berger, 2006)

UC is equivalent to c-FT (continuous Fan theorem).

Question. Does the equivalence admit a natural generalisation to the Baire space $\mathbb{N}^{\mathbb{N}}$?

Fan theorem "Every bar has a uniform upper bound."

For any $P \subseteq \mathbf{2}^*$,

 $(\forall \beta \in \mathbf{2}^{\mathbb{N}})(\exists n \in \mathbb{N})P(\overline{\beta}n) \implies (\exists N \in \mathbb{N})(\forall \beta \in 2^{\mathbb{N}})P(\overline{\beta}N),$

where $\overline{\beta}n \stackrel{\text{def}}{=} \langle \beta(0), \ldots, \beta(n-1) \rangle$.

Theorem (J. Berger, 2006)

UC is equivalent to c-FT (continuous Fan theorem).

Question. Does the equivalence admit a natural generalisation to the Baire space $\mathbb{N}^{\mathbb{N}}$? Is there any uniform continuity principle for the Baire space which corresponds to some version of Bar induction?

- 1. UC_B : Uniform continuity principle for the Baire space
- 2. c-BI: Continuous Bar induction
- 3. Equivalence $UC_B \iff c-BI$
- 4. Relation to UC and c-FT

The class $K \subseteq \mathbb{N}^* \to \mathbb{N}$ of **neighbourhood functions** is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n+1 \in K} \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbb{N})\lambda a.\alpha(\langle n \rangle * a) \in K}{\alpha \in K}$$

The class $K \subseteq \mathbb{N}^* \to \mathbb{N}$ of **neighbourhood functions** is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n + 1 \in K} \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbb{N})\lambda a.\alpha(\langle n \rangle * a) \in K}{\alpha \in K}$$

- 1. $\lambda a.n + 1$ corresponds to a single node tree $\{(\langle \rangle, n + 1)\}$ labelled by n + 1.
- **2.** if $\alpha(\langle \rangle) = 0$ and for each $n \in \mathbb{N}$, $\lambda a. \alpha(\langle n \rangle * a)$ corresponds to a labelled tree T_n , then α corresponds to a tree $T = \{(\langle \rangle, 0)\} \cup \{(\langle n \rangle * a, L) \mid n \in \mathbb{N}, (a, L) \in T_n\}.$

The class $K \subseteq \mathbb{N}^* \to \mathbb{N}$ of **neighbourhood functions** is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n + 1 \in K} \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbb{N})\lambda a.\alpha(\langle n \rangle * a) \in K}{\alpha \in K}$$

Remark. A neighbourhood function $\alpha \in K$ can be identified with a well-founded tree labelled by elements of \mathbb{N} .

- 1. $\lambda a.n + 1$ corresponds to a single node tree $\{(\langle \rangle, n + 1)\}$ labelled by n + 1.
- **2.** if $\alpha(\langle \rangle) = 0$ and for each $n \in \mathbb{N}$, $\lambda a.\alpha(\langle n \rangle * a)$ corresponds to a labelled tree T_n , then α corresponds to a tree $T = \{(\langle \rangle, 0)\} \cup \{(\langle n \rangle * a, L) \mid n \in \mathbb{N}, (a, L) \in T_n\}.$

 $\langle \rangle n+1$

The class $K \subseteq \mathbb{N}^* \to \mathbb{N}$ of **neighbourhood functions** is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n + 1 \in K} \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbb{N})\lambda a.\alpha(\langle n \rangle * a) \in K}{\alpha \in K}$$

- 1. $\lambda a.n + 1$ corresponds to a single node tree $\{(\langle \rangle, n + 1)\}$ labelled by n + 1.
- **2.** if $\alpha(\langle \rangle) = 0$ and for each $n \in \mathbb{N}$, $\lambda a.\alpha(\langle n \rangle * a)$ corresponds to a labelled tree T_n , then α corresponds to a tree $T = \{(\langle \rangle, 0)\} \cup \{(\langle n \rangle * a, L) \mid n \in \mathbb{N}, (a, L) \in T_n\}.$

$$\langle \rangle n+1$$
 T_0 T_1 \cdots T_n \cdots

The class $K \subseteq \mathbb{N}^* \to \mathbb{N}$ of **neighbourhood functions** is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n + 1 \in K} \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbb{N})\lambda a.\alpha(\langle n \rangle * a) \in K}{\alpha \in K}$$

- 1. $\lambda a.n + 1$ corresponds to a single node tree $\{(\langle \rangle, n + 1)\}$ labelled by n + 1.
- **2.** if $\alpha(\langle \rangle) = 0$ and for each $n \in \mathbb{N}$, $\lambda a.\alpha(\langle n \rangle * a)$ corresponds to a labelled tree T_n , then α corresponds to a tree $T = \{(\langle \rangle, 0)\} \cup \{(\langle n \rangle * a, L) \mid n \in \mathbb{N}, (a, L) \in T_n\}.$

$$\langle \rangle n+1 \qquad \langle 0 \rangle * T_0 \quad \langle 1 \rangle * T_1 \quad \cdots \quad \langle n \rangle * T_n \quad \cdots$$

The class $K \subseteq \mathbb{N}^* \to \mathbb{N}$ of **neighbourhood functions** is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n + 1 \in K} \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbb{N})\lambda a.\alpha(\langle n \rangle * a) \in K}{\alpha \in K}$$

- 1. $\lambda a.n + 1$ corresponds to a single node tree $\{(\langle \rangle, n + 1)\}$ labelled by n + 1.
- **2.** if $\alpha(\langle \rangle) = 0$ and for each $n \in \mathbb{N}$, $\lambda a.\alpha(\langle n \rangle * a)$ corresponds to a labelled tree T_n , then α corresponds to a tree $T = \{(\langle \rangle, 0)\} \cup \{(\langle n \rangle * a, L) \mid n \in \mathbb{N}, (a, L) \in T_n\}.$

$$\langle \rangle n+1 \qquad \langle 0 \rangle * T_0 \quad \langle 1 \rangle * T_1 \quad \cdots \quad \langle n \rangle * T_n \quad \cdots$$

The class $K \subseteq \mathbb{N}^* \to \mathbb{N}$ of **neighbourhood functions** is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n + 1 \in K} \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbb{N})\lambda a.\alpha(\langle n \rangle * a) \in K}{\alpha \in K}$$

- 1. $\lambda a.n + 1$ corresponds to a single node tree $\{(\langle \rangle, n + 1)\}$ labelled by n + 1.
- **2.** if $\alpha(\langle \rangle) = 0$ and for each $n \in \mathbb{N}$, $\lambda a. \alpha(\langle n \rangle * a)$ corresponds to a labelled tree T_n , then α corresponds to a tree $T = \{(\langle \rangle, 0)\} \cup \{(\langle n \rangle * a, L) \mid n \in \mathbb{N}, (a, L) \in T_n\}.$

The leaves of the tree corresponding to neighbourhood function $\alpha \in K$ determines a bar

$$P_{\alpha} = \left\{ a \in \mathbb{N}^* \mid \alpha(a) > 0 \& \left(\forall a' \prec a \right) \alpha(a') = 0 \right\},\$$

that is $(\forall \beta \in \mathbb{N}^{\mathbb{N}})$ $(\exists k \in \mathbb{N}) \overline{\beta} k \in P_{\alpha}$.

A neighbourhood function $\alpha \in K$ determines a (unique) continuous function $f_{\alpha} \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ such that for each $\beta \in \mathbb{N}^{\mathbb{N}}$

$$f_{\alpha}(\beta) = \alpha(\overline{\beta}k) - 1$$

where $k \in \mathbb{N}$ is such that $\overline{\beta}k \in P_{\alpha}$.

The leaves of the tree corresponding to neighbourhood function $\alpha \in K$ determines a bar

$$P_{\alpha} = \left\{ a \in \mathbb{N}^* \mid \alpha(a) > 0 \& \left(\forall a' \prec a \right) \alpha(a') = 0 \right\},\$$

that is $(\forall \beta \in \mathbb{N}^{\mathbb{N}})$ $(\exists k \in \mathbb{N}) \overline{\beta} k \in P_{\alpha}$.

A neighbourhood function $\alpha \in K$ determines a (unique) continuous function $f_{\alpha} \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ such that for each $\beta \in \mathbb{N}^{\mathbb{N}}$

$$f_{\alpha}(\beta) = \alpha(\overline{\beta}k) - 1$$

where $k \in \mathbb{N}$ is such that $\overline{\beta}k \in P_{\alpha}$.

Definition

A function $f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is realizable if $f = f_{\alpha}$ for some $\alpha \in K$.

UC_B Every point-wise continuous function $f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is realizable.

Proposition

A function $f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is realizable iff there exists $\alpha \in K$ such that

$$(\forall a \in P_{\alpha}) (\forall \beta, \gamma \in a) f(\beta) = f(\gamma),$$

where $\beta \in a \iff \overline{\beta}|a| = a$, i.e. f is uniformly continuous with respect to the covering uniformity $\{P_{\alpha} \mid \alpha \in K\}$ on $\mathbb{N}^{\mathbb{N}}$.

- $P \subseteq \mathbb{N}^*$ is a bar if $(\forall \beta \in \mathbb{N}^{\mathbb{N}}) (\exists n \in \mathbb{N}) P(\overline{\beta}n)$.
- ► A bar *P* is a **c-bar** if there is $\delta : \mathbb{N}^* \to \mathbb{N}$ such that $P(a) \leftrightarrow (\forall b \in \mathbb{N}^*) \, \delta(a) = \delta(a * b)$ for all $a \in \mathbb{N}^*$.
- ▶ $Q \subseteq \mathbb{N}^*$ is inductive if $(\forall n \in \mathbb{N}) Q(a * \langle n \rangle) \rightarrow Q(a)$ for all $a \in \mathbb{N}^*$.
- **c–BI** If *P* is a c–bar and *Q* is an inductive subset such that $P \subseteq Q$, then $Q(\langle \rangle)$.

Theorem. UC_B and c-BI are equivalent.

Equivalence

Theorem. UC_B and c–BI are equivalent.

Proof. (c–BI \implies UC_B) Let $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ be a continuous map. Write $f(a) \stackrel{\text{def}}{=} f(a * 0^{\omega})$ for each $a \in \mathbb{N}^*$. Then

$$\left(orall eta \in \mathbb{N}^{\mathbb{N}}
ight) (\exists n \in \mathbb{N}) \left(orall b \in \mathbb{N}^*
ight) f(\overline{eta} n) = f(\overline{eta} n * b).$$

Define $\delta \colon \mathbb{N}^* \to \mathbb{N}$ by $\delta(a) \stackrel{\text{def}}{=} f(a)$, and put

$$P(a) \stackrel{\text{def}}{\iff} (\forall b \in \mathbb{N}^*) \, \delta(a) = \delta(a * b).$$

Then P is a c-bar. Define

$$Q(a) \ \Longleftrightarrow \ (\exists \alpha \in K) \ (\forall b \in \mathbb{N}^*) \ \alpha(b) > 0 \rightarrow P(a*b) \ \& \ \alpha(b) = \delta(a*b) + 1$$

It can be shown that Q is inductive and $P \subseteq Q$. By **c–BI**, we get $Q(\langle \rangle)$, so there exists $\alpha \in K$ such that

$$(\forall a \in \mathbb{N}^*) \, \alpha(a) > 0 \implies \alpha(a) = f(a) + 1,$$

which means $f = f_{\alpha}$.

Lemma 1. For any $\alpha \in K$ and $Q \subseteq \mathbb{N}^*$ which is inductive

$$P_{\alpha} \subseteq Q \implies Q(\langle \rangle).$$

Lemma 2. For any $\alpha \in K$, there is $\alpha' \in K$ such that

$$(\forall a \in \mathbb{N}^*) \, \alpha'(a) > 0 \implies \alpha(a) = \alpha'(a) \, \& \, \alpha'(a) < |a|.$$

Proof of UC_B \implies **c–BI.** Let $P \subseteq \mathbb{N}^*$ be a c–bar and $Q \subseteq \mathbb{N}^*$ be an inductive subset such that $P \subseteq Q$. Then, there exists $\delta \colon \mathbb{N}^* \to \mathbb{N}$ such that $P(a) \iff (\forall b \in \mathbb{N}^*) \delta(a) = \delta(a * b)$. We must show $Q(\langle \rangle)$. By Lemma 1, it suffices to find $\alpha \in K$ such that $P_{\alpha} \subseteq Q$. Let $\beta \in \mathbb{N}^{\mathbb{N}}$. Since *P* is a bar, there exists $n \in \mathbb{N}$ such that $P(\overline{\beta}n)$. Put

$$D_{\beta} \stackrel{\mathsf{def}}{=} \left\{ m \in \mathbb{N} \mid \delta(\overline{\beta}m) \neq \delta(\overline{\beta}n) \right\} \cup \{1\},$$

and define a continuous $f \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ by

$$f(\beta) \stackrel{\mathsf{def}}{=} \max D_{\beta}.$$

By $\operatorname{UC}_{\mathbf{B}}$ and Lemma 2, there exists $\alpha \in K$ such that $f = f_{\alpha}$ and $\alpha(a) > 0 \rightarrow |a| > \alpha(a)$. Let $a \in P_{\alpha}$. Then $\alpha(a) > 0$, so $|a| > \alpha(a) = f_{\alpha}(a) + 1 = \max D_{a*0^{\omega}} + 1$. Then, $(\forall b \in \mathbb{N}^*) \delta(a) = \delta(a * b)$, i.e. P(a). Hence Q(a).

The class $K \subseteq \mathbb{N}^*$ of neighbourhood functions is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n+1 \in K}, \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbb{N}) \, \lambda a. \alpha(\langle n \rangle * a) \in K}{\alpha \in K}.$$

The class $K_C \subseteq 2^*$ of neighbourhood functions is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n+1 \in K_{\mathbb{C}}}, \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbf{2}) \, \lambda a. \alpha(\langle n \rangle * a) \in K_{\mathbb{C}}}{\alpha \in K_{\mathbb{C}}}.$$

The class $K_C \subseteq 2^*$ of neighbourhood functions is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n+1 \in K_{\mathbb{C}}}, \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbf{2}) \, \lambda a. \alpha(\langle n \rangle * a) \in K_{\mathbb{C}}}{\alpha \in K_{\mathbb{C}}}$$

Proposition. A function $f : \mathbf{2}^{\mathbb{N}} \to \mathbb{N}$ is uniformly continuous iff f is realizable by some $\alpha \in K_{\mathbf{C}}$.

The class $K_{\mathbf{C}} \subseteq \mathbf{2}^*$ of neighbourhood functions is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n+1 \in K_{\mathbb{C}}}, \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbf{2}) \, \lambda a. \alpha(\langle n \rangle * a) \in K_{\mathbb{C}}}{\alpha \in K_{\mathbb{C}}}$$

Proposition. A function $f : \mathbf{2}^{\mathbb{N}} \to \mathbb{N}$ is uniformly continuous iff f is realizable by some $\alpha \in K_{\mathbf{C}}$.

- **c–FT'** If *P* is a c–bar and *Q* is an inductive subset such that $P \subseteq Q$, then $Q(\langle \rangle)$.
 - ► $P \subseteq \mathbb{N}^*$ is a bar if $(\forall \beta \in \mathbb{N}^{\mathbb{N}})$ $(\exists n \in \mathbb{N}) P(\overline{\beta}n)$.
 - ► A bar *P* is a **c**-bar if there is δ : $\mathbb{N}^* \to \mathbb{N}$ such that $P(a) \leftrightarrow (\forall b \in \mathbb{N}^*) \delta(a) = \delta(a * b)$ for all $a \in \mathbb{N}^*$.
 - ▶ $Q \subseteq \mathbb{N}^*$ is inductive if $(\forall n \in \mathbb{N}) Q(a * \langle n \rangle) \rightarrow Q(a)$ for all $a \in \mathbb{N}^*$.

The class $K_{\mathbf{C}} \subseteq \mathbf{2}^*$ of neighbourhood functions is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n+1 \in K_{\mathbb{C}}}, \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbf{2}) \, \lambda a. \alpha(\langle n \rangle * a) \in K_{\mathbb{C}}}{\alpha \in K_{\mathbb{C}}}$$

Proposition. A function $f : \mathbf{2}^{\mathbb{N}} \to \mathbb{N}$ is uniformly continuous iff f is realizable by some $\alpha \in K_{\mathbf{C}}$.

- **c–FT'** If *P* is a c–bar and *Q* is an inductive subset such that $P \subseteq Q$, then $Q(\langle \rangle)$.
 - ▶ $P \subseteq 2^*$ is a bar if $(\forall \beta \in 2^{\mathbb{N}})$ $(\exists n \in \mathbb{N}) P(\overline{\beta}n)$.
 - ► A bar *P* is a **c**-bar if there is $\delta : \mathbf{2}^* \to \mathbb{N}$ such that $P(a) \leftrightarrow (\forall b \in \mathbf{2}^*) \, \delta(a) = \delta(a * b)$ for all $a \in \mathbf{2}^*$.
 - ▶ $Q \subseteq 2^*$ is inductive if $(\forall n \in 2) Q(a * \langle n \rangle) \rightarrow Q(a)$ for all $a \in 2^*$.

The class $K_C \subseteq 2^*$ of neighbourhood functions is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n+1 \in K_{\mathbb{C}}}, \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbf{2}) \, \lambda a. \alpha(\langle n \rangle * a) \in K_{\mathbb{C}}}{\alpha \in K_{\mathbb{C}}}$$

Proposition. A function $f : \mathbf{2}^{\mathbb{N}} \to \mathbb{N}$ is uniformly continuous iff f is realizable by some $\alpha \in K_{\mathbf{C}}$.

- **c–FT'** If *P* is a c–bar and *Q* is an inductive subset such that $P \subseteq Q$, then $Q(\langle \rangle)$.
 - ► $P \subseteq \mathbf{2}^*$ is a bar if $(\forall \beta \in \mathbf{2}^{\mathbb{N}})$ $(\exists n \in \mathbb{N}) P(\overline{\beta}n)$.
 - ► A bar *P* is a **c**-bar if there is $\delta : \mathbf{2}^* \to \mathbb{N}$ such that $P(a) \leftrightarrow (\forall b \in \mathbf{2}^*) \, \delta(a) = \delta(a * b)$ for all $a \in \mathbf{2}^*$.
 - ▶ $Q \subseteq 2^*$ is inductive if $(\forall n \in 2) Q(a * \langle n \rangle) \rightarrow Q(a)$ for all $a \in 2^*$.

Proposition. c-FT and c-FT are equivalent.

Further work

- ► Is an analogy between $UC_B \iff c-BI$ and $UC \iff c-FT$ can be formulated in more mathematical way?
- $\blacktriangleright BI_M \implies c\text{-}BI \implies BI_D.$ Are these implications strict?

References

J. Berger.

The logical strength of the uniform continuity theorem. CiE 2006, volume 3988 of *Lecture Notes in Computer Science*, pages 35–39. Springer, 2006.

T. Kawai.

Formally representable functions from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N} . 5th Workshop on Formal Topology, Institute Mittag-Leffler 8–10, June 2015.