Monadic second order logic on infinite words is the model companion of linear temporal logic

Silvio Ghilardi and Sam van Gool

Università degli Studi di Milano

TACL, Ischia, 26 June 2015
Introduction

- **$S1S$** (second-order logic of one successor) is a monadic second-order logic interpreted in the structure $(\omega, \leq, S, 0)$.

Büchi (1962) proved that $S1S$ is decidable. His proof uses a back-and-forth conversion between second-order formulas and automata on infinite words. If one converts a formula ϕ into an automaton, and then back into a formula, one obtains an equivalent formula ϕ' which is 'almost existential'. First-order theories in which every formula is equivalent to an existential one are called model complete.
S1S (second-order logic of one successor) is a monadic second-order logic interpreted in the structure \((\omega, \leq, S, 0)\). Büchi (1962) proved that S1S is decidable.
Introduction

- **S1S** (second-order logic of one successor) is a monadic second-order logic interpreted in the structure \((\omega, \leq, S, 0)\).
- Büchi (1962) proved that S1S is decidable.
- His proof uses a back-and-forth conversion between second-order formulas and automata on infinite words.
Introduction

- **S1S** (second-order logic of one successor) is a monadic second-order logic interpreted in the structure $(\omega, \leq, S, 0)$.
- Büchi (1962) proved that S1S is decidable.
- His proof uses a back-and-forth conversion between second-order formulas and automata on infinite words.
- If one converts a formula φ into an automaton, and then back into a formula, one obtains an equivalent formula φ' which is ‘almost existential’.
S1S (second-order logic of one successor) is a monadic second-order logic interpreted in the structure \((\omega, \leq, S, 0)\).

Büchi (1962) proved that S1S is decidable.

His proof uses a back-and-forth conversion between second-order formulas and automata on infinite words.

If one converts a formula \(\varphi\) into an automaton, and then back into a formula, one obtains an equivalent formula \(\varphi'\) which is ‘almost existential’.

First-order theories in which every formula is equivalent to an existential one are called \textit{model complete}.

S1S is the model companion of LTL.
How to make this connection to model completeness more explicit?
Introduction

How to make this connection to model completeness more explicit?

- S1S can be read as a first-order logic, interpreted in $\mathcal{P}(\omega)$.
How to make this connection to model completeness more explicit?

- S1S can be read as a first-order logic, interpreted in $\mathcal{P}(\omega)$.
- We enrich the Boolean algebra $\mathcal{P}(\omega)$ with suitable modal operators, allowing us to convert an automaton with the Büchi acceptance condition into a genuine existential formula.
How to make this connection to model completeness more explicit?

- S1S can be read as a first-order logic, interpreted in $\mathcal{P}(\omega)$.
- We enrich the Boolean algebra $\mathcal{P}(\omega)$ with suitable modal operators, allowing us to convert an automaton with the Büchi acceptance condition into a genuine existential formula.
- In this way, S1S turns out to be the *model companion* of the temporal logic LTL ...
How to make this connection to model completeness more explicit?

- S1S can be read as a first-order logic, interpreted in $\mathcal{P}(\omega)$.
- We enrich the Boolean algebra $\mathcal{P}(\omega)$ with suitable modal operators, allowing us to convert an automaton with the Büchi acceptance condition into a genuine existential formula.
- In this way, S1S turns out to be the model companion of the temporal logic LTL ...
- ... in a sense we make precise by introducing a suitable class of temporal algebras.
Model companion: definition

Definition

Let T and T^* be theories in a first-order language \mathcal{L}.
Definition

Let T and T^* be theories in a first-order language \mathcal{L}. The theory T^* is called a model companion of T provided that

1. T^* is model complete, i.e., for any \mathcal{L}-formula ϕ there is an existential \mathcal{L}-formula ϕ' such that $T \vdash \phi \leftrightarrow \phi'$;
2. T^* is a companion of T, i.e., for any universal \mathcal{L}-formula ϕ, $T^* \vdash \phi$ if, and only if, $T \vdash \phi$.

Equivalently,

1. All embeddings between T^*-models are elementary;
2. Every T-model embeds in some T^*-model and vice versa.
Definition

Let T and T^* be theories in a first-order language \mathcal{L}. The theory T^* is called a **model companion** of T provided that

1. T^* is **model complete**, i.e., for any \mathcal{L}-formula φ there is an existential \mathcal{L}-formula φ' such that $T \vdash \varphi \iff \varphi'$;

2. T^* is a companion of T, i.e., for any universal \mathcal{L}-formula φ, $T^* \vdash \varphi$ if, and only if, $T \vdash \varphi$.

Equivalently,

1. All embeddings between T^*-models are elementary;
2. Every T-model embeds in some T^*-model and vice versa.

S. Ghilardi & S. J. v. Gool
Model companion: definition

Definition

Let \(T \) and \(T^* \) be theories in a first-order language \(\mathcal{L} \).
The theory \(T^* \) is called a model companion of \(T \) provided that

1. \(T^* \) is model complete, i.e., for any \(\mathcal{L} \)-formula \(\varphi \) there is an existential \(\mathcal{L} \)-formula \(\varphi' \) such that \(T \vdash \varphi \iff \varphi' \);

2. \(T^* \) is a companion of \(T \), i.e., for any universal \(\mathcal{L} \)-formula \(\varphi \), \(T^* \vdash \varphi \) if, and only if, \(T \vdash \varphi \).
Model companion: definition

Definition

Let T and T^* be theories in a first-order language \mathcal{L}. The theory T^* is called a **model companion** of T provided that

1. T^* is **model complete**, i.e., for any \mathcal{L}-formula φ there is an existential \mathcal{L}-formula φ' such that $T \models \varphi \iff \varphi'$;
2. T^* is a **companion** of T, i.e., for any universal \mathcal{L}-formula φ, $T^* \models \varphi$ if, and only if, $T \models \varphi$.

Equivalently,
Definition

Let T and T^* be theories in a first-order language \mathcal{L}. The theory T^* is called a model companion of T provided that

1. T^* is model complete, i.e., for any \mathcal{L}-formula φ there is an existential \mathcal{L}-formula φ' such that $T \vdash \varphi \iff \varphi'$;
2. T^* is a companion of T, i.e., for any universal \mathcal{L}-formula φ, $T^* \vdash \varphi$ if, and only if, $T \vdash \varphi$.

Equivalently,

1. All embeddings between T^*-models are elementary;
Definition

Let T and T^* be theories in a first-order language \mathcal{L}. The theory T^* is called a model companion of T provided that

1. T^* is model complete, i.e., for any \mathcal{L}-formula φ there is an existential \mathcal{L}-formula φ' such that $T \vdash \varphi \leftrightarrow \varphi'$;

2. T^* is a companion of T, i.e., for any universal \mathcal{L}-formula φ, $T^* \vdash \varphi$ if, and only if, $T \vdash \varphi$.

Equivalently,

1. All embeddings between T^*-models are elementary;

2. Every T-model embeds in some T^*-model and vice versa.
Fact

A theory T^* is a model companion of T iff the class of T^*-models coincides with the class of existentially closed T-models.
Model companion: basic facts

Fact

- A theory T^* is a model companion of T iff the class of T^*-models coincides with the class of existentially closed T-models.

- In particular, any theory T has at most one model companion, and the model companion of T exists iff the class of existentially closed T-models is elementary.
Model companion: basic facts

Fact

- A theory T^* is a model companion of T iff the class of T^*-models coincides with the class of existentially closed T-models.

- In particular, any theory T has at most one model companion, and the model companion of T exists iff the class of existentially closed T-models is elementary.

- A model companion T^* of T is a model completion iff the class of T-models has amalgamation iff T^* has quantifier elimination.
Model companion: examples

<table>
<thead>
<tr>
<th>Theory</th>
<th>Model companion</th>
</tr>
</thead>
</table>

1. Integral domains
2. Algebraically closed fields
3. Linear orders
4. Dense linear orders without endpoints
5. Boolean algebras
6. Atomless Boolean algebras
7. Gödel algebras
8. Gödel algebras with density and splitting

cf. L. Darnière & M. Junker, "Model completions of varieties of co-Heyting algebras".

(All of these examples are in fact model completions.)

S. Ghilardi & S. J. v. Gool
Model companion: examples

<table>
<thead>
<tr>
<th>Theory</th>
<th>Model companion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral domains</td>
<td>Algebraically closed fields</td>
</tr>
</tbody>
</table>

(All of these examples are in fact model completions.)
Model companion: examples

<table>
<thead>
<tr>
<th>Theory</th>
<th>Model companion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral domains</td>
<td>Algebraically closed fields</td>
</tr>
<tr>
<td>Linear orders</td>
<td>Dense linear orders without endpoints</td>
</tr>
</tbody>
</table>

S. Ghilardi & S. J. v. Gool

S1S is the model companion of LTL
Model companion: examples

<table>
<thead>
<tr>
<th>Theory</th>
<th>Model companion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral domains</td>
<td>Algebraically closed fields</td>
</tr>
<tr>
<td>Linear orders</td>
<td>Dense linear orders without endpoints</td>
</tr>
<tr>
<td>Boolean algebras</td>
<td>Atomless Boolean algebras</td>
</tr>
</tbody>
</table>

(All of these examples are in fact model completions.)
Model companion: examples

<table>
<thead>
<tr>
<th>Theory</th>
<th>Model companion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral domains</td>
<td>Algebraically closed fields</td>
</tr>
<tr>
<td>Linear orders</td>
<td>Dense linear orders without endpoints</td>
</tr>
<tr>
<td>Boolean algebras</td>
<td>Atomless Boolean algebras</td>
</tr>
<tr>
<td>G"odel algebras</td>
<td>G"odel algebras with density and splitting1</td>
</tr>
</tbody>
</table>

1. Cf. L. Darnière & M. Junker, "Model completions of varieties of co-Heyting algebras." All of these examples are in fact model completions.
Model companion: examples

<table>
<thead>
<tr>
<th>Theory</th>
<th>Model companion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral domains</td>
<td>Algebraically closed fields</td>
</tr>
<tr>
<td>Linear orders</td>
<td>Dense linear orders without endpoints</td>
</tr>
<tr>
<td>Boolean algebras</td>
<td>Atomless Boolean algebras</td>
</tr>
<tr>
<td>Gödel algebras</td>
<td>Gödel algebras with density and splitting(^1)</td>
</tr>
</tbody>
</table>

\(^1\) cf. L. Darnière & M. Junker, “Model completions of varieties of co-Heyting algebras”.
Model companion: examples

<table>
<thead>
<tr>
<th>Theory</th>
<th>Model companion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral domains</td>
<td>Algebraically closed fields</td>
</tr>
<tr>
<td>Linear orders</td>
<td>Dense linear orders without endpoints</td>
</tr>
<tr>
<td>Boolean algebras</td>
<td>Atomless Boolean algebras</td>
</tr>
<tr>
<td>Gödel algebras</td>
<td>Gödel algebras with density and splitting(^1)</td>
</tr>
</tbody>
</table>

\(^1\)cf. L. Darnière & M. Junker, “Model completions of varieties of co-Heyting algebras”.

(All of these examples are in fact model completions.)
LTL$_I$-algebras

LTL$_I$-algebras are the universal class of BAO’s corresponding to linear temporal logic without until, enriched with an ‘initial atom’, I.

Example

The complex algebra of $(\omega, \leq, 0, S)$ is an LTL$_I$-algebra $(\mathcal{P}(\omega), \cup, -, \emptyset, \diamond, X, I)$, where $\diamond a := \downarrow a$, $X a := S^{-1}(a)$, and $I := \{0\}$.

Definition

An LTL$_I$-algebra is a tuple $(A, \cup, -, \emptyset, \diamond, X, I)$, where

1. $(A, \cup, -, \emptyset)$ is a Boolean algebra;
2. $\diamond : A \to A$ is a modal operator on A, i.e., preserves \emptyset and \cup;
3. $X : A \to A$ is a Boolean endomorphism on A;
4. for any $a \in A$, the following conditions hold:
 1. $\diamond a = a \cup X \diamond a$,
 2. if $X a \subseteq a$ then $\diamond a \subseteq a$,
 3. if $a \neq \emptyset$ then $I \subseteq \diamond a$.
 4. $XI = \emptyset$.

S. Ghilardi & S. J. v. Gool

S1S is the model companion of LTL
LTL_1-algebras

LTL_1-algebras are the universal class of BAO’s corresponding to linear temporal logic without until, enriched with an ‘initial atom’, \(I \).

Example

The complex algebra of \((\omega, \leq, 0, S)\) is an **LTL_1**-algebra \((\mathcal{P}(\omega), \cup, -, \emptyset, \lozenge, X, I)\), where \(\lozenge a := \downarrow a \), \(Xa := S^{-1}(a) \), and \(I := \{0\} \).
LTL}_I\)-algebras

\(\text{LTL}_I\)-algebras are the universal class of BAO’s corresponding to linear temporal logic without until, enriched with an ‘initial atom’, \(I\).

Example

The complex algebra of \((\omega, \leq, 0, S)\) is an \(\text{LTL}_I\)-algebra \((\mathcal{P}(\omega), \cup, \neg, \emptyset, \Diamond, X, I)\), where \(\Diamond a := \downarrow a\), \(Xa := S^{-1}(a)\), and \(I := \{0\}\).

Definition
LTL$_I$-algebras

LTL$_I$-algebras are the universal class of BAO’s corresponding to linear temporal logic without until, enriched with an ‘initial atom’, I.

Example

The complex algebra of $(\omega, \leq, 0, S)$ is an LTL$_I$-algebra $(P(\omega), \cup, -, \emptyset, \Diamond, X, I)$, where $\Diamond a := \downarrow a$, $X a := S^{-1}(a)$, and $I := \{0\}$.

Definition

An **LTL$_I$-algebra** is a tuple $(A, \cup, -, \emptyset, \Diamond, X, I)$, where
LTL\textsubscript{I}-algebras

LTL\textsubscript{I}-algebras are the universal class of BAO’s corresponding to linear temporal logic without until, enriched with an ‘initial atom’, \(I \).

Example

The complex algebra of \((\omega, \leq, 0, S)\) is an LTL\textsubscript{I}-algebra \((\mathcal{P}(\omega), \cup, -, \emptyset, \Diamond, X, I)\), where \(\Diamond a := \downarrow a \), \(Xa := S^{-1}(a) \), and \(I := \{0\} \).

Definition

An **LTL\textsubscript{I}-algebra** is a tuple \((A, \cup, -, \emptyset, \Diamond, X, I)\), where

1. \((A, \cup, -, \emptyset)\) is a Boolean algebra;
LTL$_I$-algebras

LTL$_I$-algebras are the universal class of BAO’s corresponding to linear temporal logic without until, enriched with an ‘initial atom’, I.

Example

The complex algebra of $(\omega, \leq, 0, S)$ is an LTL$_I$-algebra $(\mathcal{P}(\omega), \cup, -, \emptyset, \Diamond, X, I)$, where $\Diamond a := \downarrow a$, $Xa := S^{-1}(a)$, and $I := \{0\}$.

Definition

An LTL$_I$-algebra is a tuple $(A, \cup, -, \emptyset, \Diamond, X, I)$, where

1. $(A, \cup, -, \emptyset)$ is a Boolean algebra;
2. $\Diamond : A \rightarrow A$ is a modal operator on A, i.e., preserves \emptyset and \cup;
LTL\textsubscript{I}-algebras

LTL\textsubscript{I}-algebras are the universal class of BAO’s corresponding to linear temporal logic without until, enriched with an ‘initial atom’, \(I\).

Example

The complex algebra of \((\omega, \leq, 0, S)\) is an LTL\textsubscript{I}-algebra \((\mathcal{P}(\omega), \cup, -, \emptyset, \Diamond, X, I)\), where \(\Diamond a := \downarrow a\), \(Xa := S^{-1}(a)\), and \(I := \{0\}\).

Definition

An LTL\textsubscript{I}-algebra is a tuple \((A, \cup, -, \emptyset, \Diamond, X, I)\), where

1. \((A, \cup, -, \emptyset)\) is a Boolean algebra;
2. \(\Diamond : A \rightarrow A\) is a modal operator on \(A\), i.e., preserves \(\emptyset\) and \(\cup\);
3. \(X : A \rightarrow A\) is a Boolean endomorphism on \(A\);
LTL$_I$-algebras

LTL$_I$-algebras are the universal class of BAO’s corresponding to linear temporal logic without until, enriched with an ‘initial atom’, I.

Example

The complex algebra of $(\omega, \leq, 0, S)$ is an LTL$_I$-algebra $(\mathcal{P}(\omega), \cup, -, \emptyset, \Diamond, X, I)$, where $\Diamond a := \downarrow a$, $Xa := S^{-1}(a)$, and $I := \{0\}$.

Definition

An **LTL$_I$-algebra** is a tuple $(A, \cup, -, \emptyset, \Diamond, X, I)$, where

1. $(A, \cup, -, \emptyset)$ is a Boolean algebra;
2. $\Diamond : A \to A$ is a modal operator on A, i.e., preserves \emptyset and \cup;
3. $X : A \to A$ is a Boolean endomorphism on A;
4. for any $a \in A$, the following conditions hold:
LTL\(I\)-algebras

LTL\(I\)-algebras are the universal class of BAO’s corresponding to linear temporal logic without until, enriched with an ‘initial atom’, \(I\).

Example

The complex algebra of \((\omega, \leq, 0, S)\) is an LTL\(I\)-algebra \((\mathcal{P}(\omega), \cup, -, \emptyset, \lozenge, X, I)\), where \(\lozenge a := \downarrow a, Xa := S^{-1}(a)\), and \(I := \{0\}\).

Definition

An **LTL\(I\)-algebra** is a tuple \((A, \cup, -, \emptyset, \lozenge, X, I)\), where

1. \((A, \cup, -, \emptyset)\) is a Boolean algebra;
2. \(\lozenge : A \rightarrow A\) is a modal operator on \(A\), i.e., preserves \(\emptyset\) and \(\cup\);
3. \(X : A \rightarrow A\) is a Boolean endomorphism on \(A\);
4. for any \(a \in A\), the following conditions hold:
 1. \(\lozenge a = a \cup X\lozenge a\),
LTL$_I$-algebras

LTL$_I$-algebras are the universal class of BAO’s corresponding to linear temporal logic without until, enriched with an ‘initial atom’, I.

Example

The complex algebra of $(\omega, \leq, 0, S)$ is an LTL$_I$-algebra

$(\mathcal{P}(\omega), \cup, -, \emptyset, \Diamond, X, I)$, where $\Diamond a := \downarrow a$, $X a := S^{-1}(a)$, and $I := \{0\}$.

Definition

An **LTL$_I$-algebra** is a tuple $(A, \cup, -, \emptyset, \Diamond, X, I)$, where

1. $(A, \cup, -, \emptyset)$ is a Boolean algebra;
2. $\Diamond : A \to A$ is a modal operator on A, i.e., preserves \emptyset and \cup;
3. $X : A \to A$ is a Boolean endomorphism on A;
4. for any $a \in A$, the following conditions hold:
 1. $\Diamond a = a \cup X \Diamond a$,
 2. if $X a \subseteq a$ then $\Diamond a \subseteq a$,
LTL$_I$-algebras

LTL$_I$-algebras are the universal class of BAO’s corresponding to linear temporal logic without until, enriched with an ‘initial atom’, I.

Example

The complex algebra of $(\omega, \leq, 0, S)$ is an LTL$_I$-algebra $(\mathcal{P}(\omega), \cup, -, \emptyset, \Diamond, X, I)$, where $\Diamond a := \downarrow a$, $Xa := S^{-1}(a)$, and $I := \{0\}$.

Definition

An **LTL$_I$-algebra** is a tuple $(A, \cup, -, \emptyset, \Diamond, X, I)$, where

1. $(A, \cup, -, \emptyset)$ is a Boolean algebra;
2. $\Diamond : A \to A$ is a modal operator on A, i.e., preserves \emptyset and \cup;
3. $X : A \to A$ is a Boolean endomorphism on A;
4. for any $a \in A$, the following conditions hold:
 1. $\Diamond a = a \cup X\Diamond a$,
 2. if $Xa \subseteq a$ then $\Diamond a \subseteq a$,
 3. if $a \neq \emptyset$ then $I \subseteq \Diamond a$.

S. Ghilardi & S. J. v. Gool

S1S is the model companion of LTL
LTL$_{I}$-algebras

LTL$_{I}$-algebras are the universal class of BAO’s corresponding to linear temporal logic without until, enriched with an ‘initial atom’, I.

Example

The complex algebra of $(\omega, \leq, 0, S)$ is an LTL$_{I}$-algebra $(\mathcal{P}(\omega), \cup, -, \emptyset, \Diamond, X, I)$, where $\Diamond a := \downarrow a$, $Xa := S^{-1}(a)$, and $I := \{0\}$.

Definition

An LTL$_{I}$-algebra is a tuple $(A, \cup, -, \emptyset, \Diamond, X, I)$, where

1. $(A, \cup, -, \emptyset)$ is a Boolean algebra;
2. $\Diamond : A \rightarrow A$ is a modal operator on A, i.e., preserves \emptyset and \cup;
3. $X : A \rightarrow A$ is a Boolean endomorphism on A;
4. for any $a \in A$, the following conditions hold:
 1. $\Diamond a = a \cup Xa$,
 2. if $Xa \subseteq a$ then $\Diamond a \subseteq a$,
 3. if $a \neq \emptyset$ then $I \subseteq \Diamond a$,
 4. $XI = \emptyset$.

S. Ghilardi & S. J. v. Gool

S1S is the model companion of LTL
Model companion of LTL_I-algebras

Let \mathcal{L} be the first-order language with binary operation \cup, unary operations \neg, \diamond, and \mathbf{X}, and constant symbols \emptyset and \mathbf{I}.

Theorem

The theory of the \mathcal{L}-structure $P(\omega)$ is the model companion of the theory of LTL_I-algebras.

Proof outline.

Let T be the theory of LTL_I-algebras and T^* the theory of the \mathcal{L}-structure $P(\omega)$.

Two parts:

1. T^* is a companion of T, via duality and filtrations;
2. T^* is model complete, via automata.
Model companion of \(\text{LTL}_{I} \)-algebras

Let \(\mathcal{L} \) be the first-order language with binary operation \(\cup \), unary operations \(- \), \(\Diamond \), and \(\mathbf{X} \), and constant symbols \(\emptyset \) and \(I \).

Theorem

The theory of the \(\mathcal{L} \)-structure \(\mathcal{P}(\omega) \) is the model companion of the theory of \(\text{LTL}_{I} \)-algebras.
Model companion of LTL_I-algebras

Let \mathcal{L} be the first-order language with binary operation \cup, unary operations \neg, \diamond, and \mathbf{X}, and constant symbols \emptyset and \mathbf{I}.

Theorem

*The theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$ is the model companion of the theory of LTL_I-algebras.***

Proof outline.

Let T be the theory of LTL_I-algebras and T^* the theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$.

Two parts:
Model companion of LTL_I-algebras

Let \mathcal{L} be the first-order language with binary operation \cup, unary operations \neg, \diamond, and \mathbf{X}, and constant symbols \emptyset and I.

Theorem

The theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$ is the model companion of the theory of LTL_I-algebras.

Proof outline.

Let T be the theory of LTL_I-algebras and T^\ast the theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$.

Two parts:

1. T^\ast is a companion of T, via duality and filtrations;
Model companion of LTL_1-algebras

Let \mathcal{L} be the first-order language with binary operation \cup, unary operations \neg, \Diamond, and \mathbf{X}, and constant symbols \emptyset and \mathbf{I}.

Theorem

The theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$ is the model companion of the theory of LTL_1-algebras.

Proof outline.

Let T be the theory of LTL_1-algebras and T^* the theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$.

Two parts:

1. T^* is a companion of T, via duality and filtrations;
2. T^* is model complete, via automata.
Model companion of LTL_{I}-algebras

Let \mathcal{L} be the first-order language with binary operation \cup, unary operations \neg, \lozenge, and \Box, and constant symbols \emptyset and I.

Theorem

The theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$ is the model companion of the theory of LTL_{I}-algebras.

Proof outline.

Let T be the theory of LTL_{I}-algebras and T^* the theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$.

Two parts:

1. T^* is a companion of T, via duality and filtrations;
2. T^* is model complete, via automata.
Fact

For any \(\text{LTL}_{I} \)-algebra \((A, \cup, -, \emptyset, \Diamond, X, I)\),

- the reduct \((A, \cup, -, \emptyset, \Diamond)\) is an S4-algebra;
- the element \(I\) is an atom.

The Stone-Jónsson-Tarski dual of the \((\cup, -, \emptyset, \Diamond)\)-reduct of an \(\text{LTL}_{I}\)-algebra is a Boolean space \(X\) equipped with a preorder \(\leq\) that is compatible with the topology.

The dual of the Boolean homomorphism \(X\) is a continuous function, \(f\), on \(X\).

The dual of \(I\) is an isolated point, \(x_0\), of \(X\).

The axioms can also be translated, leading to a definition of \(\text{LTL}_{I}\)-space.
Duality for LTL_I-algebras

Fact

For any LTL_I-algebra $(A, \cup, -, \emptyset, \Diamond, X, I)$,

1. the reduct $(A, \cup, -, \emptyset, \Diamond)$ is an S4-algebra;

2. the element I is an atom.
Duality for LTL_{I}-algebras

Fact

For any LTL_{I}-algebra $(A, \cup, -, \emptyset, \diamond, X, I)$,

1. the reduct $(A, \cup, -, \emptyset, \diamond)$ is an S4-algebra;
2. the element I is an atom.
Duality for LTL$_1$-algebras

Fact

For any LTL$_1$-algebra $(A, \cup, -, \emptyset, \lozenge, X, \mathbf{I})$,

1. the reduct $(A, \cup, -, \emptyset, \lozenge)$ is an S4-algebra;
2. the element \mathbf{I} is an atom.

The Stone-Jónsson-Tarski dual of the $(\cup, -, \emptyset, \lozenge)$-reduct of an LTL$_1$-algebra is a Boolean space X equipped with a preorder \leq that is compatible with the topology.
Duality for LTL_I-algebras

Fact

For any LTL_I-algebra $(A, \cup, -, \emptyset, \lozenge, X, I)$,

1. the reduct $(A, \cup, -, \emptyset, \lozenge)$ is an S4-algebra;
2. the element I is an atom.

The Stone-Jónsson-Tarski dual of the $(\cup, -, \emptyset, \lozenge)$-reduct of an LTL_I-algebra is a Boolean space X equipped with a preorder \leq that is compatible with the topology.

The dual of the Boolean homomorphism X is a continuous function, f, on X.
Duality for LTL_I-algebras

Fact

For any LTL_I-algebra $(A, \cup, -, \emptyset, \Diamond, X, 1)$,

1. the reduct $(A, \cup, -, \emptyset, \Diamond)$ is an S4-algebra;
2. the element 1 is an atom.

- The Stone-Jónsson-Tarski dual of the $(\cup, -, \emptyset, \Diamond)$-reduct of an LTL_I-algebra is a Boolean space X equipped with a preorder \leq that is compatible with the topology.

- The dual of the Boolean homomorphism X is a continuous function, f, on X.

- The dual of 1 is an isolated point, x_0, of X.

S. Ghilardi & S. J. v. Gool

S1S is the model companion of LTL

10 / 20
Duality for LTL$_I$-algebras

Fact

For any LTL$_I$-algebra $(A, \cup, -, \emptyset, \Diamond, X, I)$,

1. the reduct $(A, \cup, -, \emptyset, \Diamond)$ is an S4-algebra;
2. the element I is an atom.

- The Stone-Jónsson-Tarski dual of the $(\cup, -, \emptyset, \Diamond)$-reduct of an LTL$_I$-algebra is a Boolean space X equipped with a preorder \leq that is compatible with the topology.
- The dual of the Boolean homomorphism X is a continuous function, f, on X.
- The dual of I is an isolated point, x_0, of X.
- The axioms can also be translated, leading to a definition of LTL$_I$-space.
Duality for LTL_1-algebras

Definition

An **LTL_1-space** is a tuple (X, \leq, f, x_0), where

- X is a Boolean topological space,
- \leq is a preorder on X that is compatible with the topology,
- $f : X \to X$ is a continuous function,
- $x_0 \in X$ is a point such that $\{x_0\}$ is open,

and for any $x, y \in X$ and clopen $K \subseteq X$:

1. $x \leq f(x)$ and $x < y \Rightarrow f(x) \leq y$,
2. if $f(K) \subseteq K$ then $\uparrow K \subseteq K$,
3. $x_0 \leq x$,
4. $f(x) \neq x_0$.
Duality for LTL_I-algebras

Definition

An LTL_I-space is a tuple (X, \leq, f, x_0), where

- X is a Boolean topological space,
- \leq is a preorder on X that is compatible with the topology,
- $f : X \to X$ is a continuous function,
- $x_0 \in X$ is a point such that $\{x_0\}$ is open,

and for any $x, y \in X$ and clopen $K \subseteq X$:

1. $x \leq f(x)$ and $x < y \Rightarrow f(x) \leq y$,
2. if $f(K) \subseteq K$ then $\uparrow K \subseteq K$,
3. $x_0 \leq x$,
4. $f(x) \neq x_0$.

Theorem

The category of LTL_I-algebras and homomorphisms is dually equivalent to the category of LTL_I-spaces and continuous p-morphisms.
Filtration for LTL_1-spaces

The duality can be used to prove:

Theorem (Completeness of LTL_1 with respect to ω) For any L-term t, if $P(\omega) \models t = \emptyset$, then for any LTL_1-algebra A, $A \models t = \emptyset$. The crucial step in the proof of this theorem is a filtration lemma for LTL_1-spaces, adapting the usual completeness proof of LTL to our setting.
Filtration for \(\text{LTL}_I \)-spaces

The duality can be used to prove:

Theorem (Completeness of \(\text{LTL}_I \) with respect to \(\omega \))

For any \(\mathcal{L} \)-term \(t \), if \(\mathcal{P}(\omega) \models t = \emptyset \), then for any \(\text{LTL}_I \)-algebra \(A \), \(A \models t = \emptyset \).
Filtration for LTL_I-spaces

The duality can be used to prove:

Theorem (Completeness of LTL_I with respect to ω)

For any \mathcal{L}-term t, if $\mathcal{P}(\omega) \models t = \emptyset$, then for any LTL_I-algebra \mathbb{A}, $\mathbb{A} \models t = \emptyset$.

The crucial step in the proof of this theorem is a filtration lemma for LTL_I-spaces, adapting the usual completeness proof of LTL to our setting.
Companionship from completeness

Lemma

Any quantifier-free \mathcal{L}-formula is T-provably equivalent to a positive quantifier-free \mathcal{L}-formula.
Companionship from completeness

Lemma

Any quantifier-free \mathcal{L}-formula is T-provably equivalent to a positive quantifier-free \mathcal{L}-formula.

Proof.

The crucial thing to note is that, in any LTL_I-algebra,

$$a \neq \emptyset \text{ if, and only if, } I \subseteq \Diamond \neg a.$$
Companionship from completeness

Lemma

Any quantifier-free \mathcal{L}-formula is T-provably equivalent to a positive quantifier-free \mathcal{L}-formula.

Proof.

The crucial thing to note is that, in any LTL_I-algebra,

$$a \neq \emptyset \text{ if, and only if, } I \subseteq \Diamond \neg a.$$

Theorem

The theory of $\mathcal{P}(\omega)$ is a companion of the theory of LTL_I-algebras.
Lemma

Any quantifier-free \mathcal{L}-formula is T-provably equivalent to a positive quantifier-free \mathcal{L}-formula.

Proof.

The crucial thing to note is that, in any LTL_I-algebra,

$$a \neq \emptyset \text{ if, and only if, } I \subseteq \Diamond \neg a.$$

\square

Theorem

The theory of $\mathcal{P}(\omega)$ is a companion of the theory of LTL_I-algebras.

Proof.
Companionship from completeness

Lemma

Any quantifier-free \mathcal{L}-formula is T-provably equivalent to a positive quantifier-free \mathcal{L}-formula.

Proof.

The crucial thing to note is that, in any \mathcal{LTL}_I-algebra,

$$a \neq \emptyset \text{ if, and only if, } I \subseteq \Diamond \neg a.$$

Theorem

The theory of $\mathcal{P}(\omega)$ is a companion of the theory of \mathcal{LTL}_I-algebras.

Proof.

By the Lemma and standard Boolean algebra facts, any universal \mathcal{L}-sentence is equivalent to one of the form $\forall \overline{v}(t(\overline{v}) = \emptyset)$.

S. Ghilardi & S. J. v. Gool

S1S is the model companion of LTL
Companionship from completeness

Lemma

Any quantifier-free \mathcal{L}-formula is T-provably equivalent to a positive quantifier-free \mathcal{L}-formula.

Proof.

The crucial thing to note is that, in any \mathbf{LTL}_I-algebra,

$$a \neq \emptyset \text{ if, and only if, } I \subseteq \Diamond \neg a.$$

Theorem

The theory of $\mathcal{P}(\omega)$ is a companion of the theory of \mathbf{LTL}_I-algebras.

Proof.

- By the Lemma and standard Boolean algebra facts, any universal \mathcal{L}-sentence is equivalent to one of the form $\forall \overline{v}(t(\overline{v}) = \emptyset)$.
- By the Completeness Theorem, if this sentence is true in $\mathcal{P}(\omega)$, then it is true in all \mathbf{LTL}_I-algebras.
Model companion of LTL_I-algebras

Let \mathcal{L} be the first-order language with binary operation \cup, unary operations \neg, \Diamond, and X, and constant symbols \emptyset and I.

Theorem

The theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$ is the model companion of the theory of LTL_I-algebras.

Proof outline.

Let T be the theory of LTL_I-algebras and T^* the theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$.

Two parts:

1. T^* is a companion of T, via duality and filtrations;
2. T^* is model complete, via automata.
Model companion of LTL_I-algebras

Let \mathcal{L} be the first-order language with binary operation \cup, unary operations $-$, \lozenge, and \textbf{X}, and constant symbols \emptyset and I.

Theorem

The theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$ is the model companion of the theory of LTL_I-algebras.

Proof outline.

Let T be the theory of LTL_I-algebras and T^* the theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$.

Two parts:

1. T^* is a companion of T, via duality and filtrations;
2. T^* is model complete, via automata.
S1S-formulae are built up from atomic formulae $X \subseteq Y$ and $S(X, Y)$ with connectives \lor, \neg, and $\exists X$.
S1S

- **S1S-formulae** are built up from atomic formulae $X \subseteq Y$ and $S(X, Y)$ with connectives \lor, \neg, and $\exists X$.
- **Valuations** $\bar{a} \in \mathcal{P}(\omega)^k$ correspond one-to-one to infinite words over the alphabet $\Sigma_k := \mathcal{P}(k)$, via the bijection:

$$\mathcal{P}(\omega)^k \cong (\Sigma_k)^\omega,$$

$$\bar{a} \mapsto w_{\bar{a}} : n \mapsto \{ i \in \{1, \ldots, k\} \mid n \in a_i \}.$$
S1S

- **S1S-formulae** are built up from atomic formulae $X \subseteq Y$ and $S(X, Y)$ with connectives \lor, \neg, and $\exists X$.
- **Valuations** $\bar{a} \in \mathcal{P}(\omega)^k$ correspond one-to-one to infinite words over the alphabet $\Sigma_k := \mathcal{P}(k)$, via the bijection:
 \[
 \mathcal{P}(\omega)^k \cong (\Sigma_k)^\omega, \\
 \bar{a} \mapsto w_{\bar{a}} : n \mapsto \{i \in \{1, \ldots, k\} \mid n \in a_i\}.
 \]
- Any S1S-formula $\varphi(X_1, \ldots, X_k)$ describes a set, or language, of infinite words over the alphabet Σ_k:
 \[
 L_\varphi := \{w_{\bar{a}} \mid \varphi[X_i \mapsto a_i] \text{ is true}\}.
 \]
S1S

- **S1S-formulae** are built up from atomic formulae $X \subseteq Y$ and $S(X, Y)$ with connectives \lor, \neg, and $\exists X$.
- **Valuations** $\bar{a} \in \mathcal{P}(\omega)^k$ correspond one-to-one to infinite words over the alphabet $\Sigma_k := \mathcal{P}(k)$, via the bijection:
 \[
 \mathcal{P}(\omega)^k \cong (\Sigma_k)^\omega, \\
 \bar{a} \mapsto w_\bar{a} : n \mapsto \{ i \in \{1, \ldots, k\} \mid n \in a_i \}.
 \]
- Any S1S-formula $\varphi(X_1, \ldots, X_k)$ describes a set, or language, of infinite words over the alphabet Σ_k:
 \[
 L_\varphi := \{ w_\bar{a} \mid \varphi[X_i \mapsto a_i] \text{ is true} \}.
 \]
- For example:
S1S

- **S1S-formulae** are built up from atomic formulae $X \subseteq Y$ and $S(X, Y)$ with connectives $\lor, \neg, \text{ and } \exists X$.

- Valuations $\bar{a} \in \mathcal{P}(\omega)^k$ correspond one-to-one to infinite words over the alphabet $\Sigma_k := \mathcal{P}(k)$, via the bijection:

 $$\mathcal{P}(\omega)^k \cong (\Sigma_k)^\omega,$$

 $$\bar{a} \mapsto w_{\bar{a}} : n \mapsto \{i \in \{1, \ldots, k\} \mid n \in a_i\}.$$

- Any S1S-formula $\varphi(X_1, \ldots, X_k)$ describes a set, or language, of infinite words over the alphabet Σ_k:

 $$L_\varphi := \{w_{\bar{a}} \mid \varphi[X_i \mapsto a_i] \text{ is true}\}.$$

- For example:
 - the formula $\exists Y \neg(X_1 \subseteq Y)$ describes
 $$\{w \in 2^\omega \mid w(n) = 1 \text{ for some } n \in \omega\}.$$
S1S

- **S1S-formulae** are built up from atomic formulae $X \subseteq Y$ and $S(X, Y)$ with connectives \lor, \neg, and $\exists X$.

- **Valuations** $\bar{a} \in \mathcal{P}(\omega)^k$ correspond one-to-one to infinite words over the alphabet $\Sigma_k := \mathcal{P}(k)$, via the bijection:

 $\mathcal{P}(\omega)^k \cong (\Sigma_k)^\omega$,

 $\bar{a} \mapsto w_{\bar{a}} : n \mapsto \{ i \in \{1, \ldots, k \} | n \in a_i \}$.

- Any S1S-formula $\varphi(X_1, \ldots, X_k)$ describes a set, or language, of infinite words over the alphabet Σ_k:

 $L_{\varphi} := \{ w_{\bar{a}} | \varphi[X_i \mapsto a_i] \text{ is true} \}$.

- For example:
 - the formula $\exists Y \neg (X_1 \subseteq Y)$ describes $\{ w \in 2^\omega | w(n) = 1 \text{ for some } n \in \omega \}$.
 - the (abbreviated) formula
 $\exists Y(X_1 \subseteq Y \land \text{zero}(Y) \land \forall Z(\text{singleton}(Z) \rightarrow (Z \subseteq Y \leftrightarrow \neg S(Z, Y)))$
 describes $\{ w \in 2^\omega | \text{if } w(n) = 1 \text{ then } n \text{ is even} \}$.

S. Ghilardi & S. J. v. Gool
Büchi’s theorem

Theorem (Büchi 1962)

The languages of infinite words that can be described by S1S-formulae are exactly those which are accepted by non-deterministic finite automata with the Büchi acceptance condition.

Note: if \(A \) is an \(m \)-state automaton with set of final states \(F \subseteq \{1, \ldots, m\} \), and \(\rho \) is an infinite run of \(A \), then \(\rho \) is successful if, and only if, in the algebra \(\mathcal{P}(\omega) \), we have

\[
\omega = \bigcup_{i \in F} \diamond q_i,
\]

where \(q_i := \{ t \in \omega | \rho \text{ is in state } i \text{ at time } t \} \).

\((\star)\) is a quantifier-free formula in the first-order language \(L \).
Büchi’s theorem

Theorem (Büchi 1962)

The languages of infinite words that can be described by S1S-formulae are exactly those which are accepted by non-deterministic finite automata with the **Büchi acceptance condition**.

- Büchi acceptance condition: an infinite run of the automaton is successful iff there is a final state that occurs infinitely often.
Büchi’s theorem

Theorem (Büchi 1962)

The languages of infinite words that can be described by S1S-formulae are exactly those which are accepted by non-deterministic finite automata with the Büchi acceptance condition.

- Büchi acceptance condition: an infinite run of the automaton is successful iff there is a final state that occurs infinitely often.
- Note: if A is an m-state automaton with set of final states $F \subseteq \{1, \ldots, m\}$, and ρ is an infinite run of A, then ρ is successful if, and only if, in the algebra $P(\omega)$, we have

$$\omega = \bigcup_{i \in F} \Diamond q_i, \quad (\star)$$

where

$$q_i := \{ t \in \omega \mid \rho \text{ is in state } i \text{ at time } t \}.$$
Büchi’s theorem

Theorem (Büchi 1962)

The languages of infinite words that can be described by S1S-formulae are exactly those which are accepted by non-deterministic finite automata with the Büchi acceptance condition.

- Büchi acceptance condition: an infinite run of the automaton is successful iff there is a final state that occurs infinitely often.
- Note: if A is an m-state automaton with set of final states $F \subseteq \{1, \ldots, m\}$, and ρ is an infinite run of A, then ρ is successful if, and only if, in the algebra $P(\omega)$, we have

$$\omega = \bigcup_{i \in F} \Box q_i, \quad (\star)$$

where

$$q_i := \{ t \in \omega \mid \rho \text{ is in state } i \text{ at time } t \}.$$

- (\star) is a quantifier-free formula in the first-order language \mathcal{L}!
Th(\mathcal{P}(\omega)) \text{ is model-complete}

- Via standard translation, we associate with any \(\mathcal{L} \)-formula \(\varphi(x_1, \ldots, x_n) \) an S1S-formula \(\hat{\varphi}(X_1, \ldots, X_n) \) such that, for any \(\bar{a} \in \mathcal{P}(\omega)^k \),

\[
(\mathcal{P}(\omega), \bar{a}) \models \varphi \iff \omega\bar{a} \in L_{\hat{\varphi}}.
\]
Th(\mathcal{P}(\omega)) is model-complete

- Via standard translation, we associate with any \mathcal{L}-formula \varphi(x_1, \ldots, x_n) an S1S-formula \hat{\varphi}(X_1, \ldots, X_n) such that, for any \overline{a} \in \mathcal{P}(\omega)^k,
 \[(\mathcal{P}(\omega), \overline{a}) \models \varphi \iff w_{\overline{a}} \in L_{\hat{\varphi}}.\]

- By Büchi’s theorem, we pick an automaton \mathcal{A} in alphabet \Sigma_k recognizing \hat{L}_{\hat{\varphi}}.

S. Ghilardi & S. J. v. Gool

S1S is the model companion of LTL
Th(\(\mathcal{P}(\omega)\)) is model-complete

- Via standard translation, we associate with any \(\mathcal{L}\)-formula \(\varphi(x_1, \ldots, x_n)\) an S1S-formula \(\hat{\varphi}(X_1, \ldots, X_n)\) such that, for any \(\bar{a} \in \mathcal{P}(\omega)^k\),
 \[
 (\mathcal{P}(\omega), \bar{a}) \models \varphi \iff \mathcal{w}_{\bar{a}} \in L_{\hat{\varphi}}.
 \]

- By Büchi’s theorem, we pick an automaton \(\mathcal{A}\) in alphabet \(\Sigma_k\) recognizing \(L_{\hat{\varphi}}\).

- Using \(\star\), we construct an \(\mathcal{L}\)-term \(t_{\mathcal{A}}\) which describes ‘successful runs of \(\mathcal{A}\)’.
Th($\mathcal{P}(\omega)$) is model-complete

- Via standard translation, we associate with any \mathcal{L}-formula $\varphi(x_1, \ldots, x_n)$ an S1S-formula $\hat{\varphi}(X_1, \ldots, X_n)$ such that, for any $\overline{a} \in \mathcal{P}(\omega)^k$,
 \[(\mathcal{P}(\omega), \overline{a}) \models \varphi \iff w_{\overline{a}} \in L_{\hat{\varphi}}.\]

- By Büchi’s theorem, we pick an automaton A in alphabet Σ_k recognizing $L_{\hat{\varphi}}$.

- Using (\star), we construct an \mathcal{L}-term t_A which describes ‘successful runs of A’.

- The term t_A yields an existential \mathcal{L}-formula which is equivalent to the formula $\varphi(x_1, \ldots, x_n)$ in the LTL$_1$-algebra $\mathcal{P}(\omega)$.
Th(\mathcal{P}(\omega)) is model-complete

- Via standard translation, we associate with any \mathcal{L}\text{-formula } \varphi(x_1, \ldots, x_n) an S1S-formula \hat{\varphi}(X_1, \ldots, X_n) such that, for any \overline{a} \in \mathcal{P}(\omega)^k,
 \[(\mathcal{P}(\omega), \overline{a}) \models \varphi \iff w_{\overline{a}} \in L_{\hat{\varphi}}.\]

- By Büchi’s theorem, we pick an automaton \mathcal{A} in alphabet \Sigma_k recognizing \hat{L}_{\hat{\varphi}}.

- Using (\star), we construct an \mathcal{L}\text{-term } t_{\mathcal{A}} which describes ‘successful runs of } \mathcal{A}'.

- The term \(t_{\mathcal{A}} \) yields an existential \mathcal{L}\text{-formula which is equivalent to the formula } \varphi(x_1, \ldots, x_n) in the \text{LTL}_I\text{-algebra } \mathcal{P}(\omega).

- This completes the proof that \(T^* = \text{Th}(\mathcal{P}(\omega)) \) is model complete.
Model companion of LTL_{I}-algebras

Let \mathcal{L} be the first-order language with binary operation \cup, unary operations \neg, \Diamond, and X, and constant symbols \emptyset and I.

Theorem

The theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$ is the model companion of the theory of LTL_{I}-algebras.

Proof outline.

Let T be the theory of LTL_{I}-algebras and T^* the theory of the \mathcal{L}-structure $\mathcal{P}(\omega)$.

Two parts:

1. T^* is a companion of T, via duality and filtrations;
2. T^* is model complete, via automata.
Conclusion

- We proved that T^* is a model companion of T; is it a model completion?
Conclusion

- We proved that T^* is a model companion of T; is it a model completion?
 - (Probably not...)
Conclusion

- We proved that T^* is a model companion of T; is it a model completion?
 - (Probably not...)
- Adapting the proof, one can obtain a version for finite words:
Conclusion

- We proved that T^* is a model companion of T; is it a model completion?
 - (Probably not...)
- Adapting the proof, one can obtain a version for finite words:

Proposition

*The theory of the algebra $P_{fc}(\omega)$ is the model companion of the theory of LTL_I-algebras satisfying the condition $\Box\Diamond x \leq \Diamond\Box x$.***
Conclusion

- We proved that T^* is a model companion of T; is it a model completion?
 - (Probably not...)
- Adapting the proof, one can obtain a version for finite words:

Proposition

*The theory of the algebra $P_{fc}(\omega)$ is the model companion of the theory of LTL_I-algebras satisfying the condition $\square \Diamond x \leq \Diamond \square x$.***

- These results are just a first step, many questions remain:
Conclusion

- We proved that T^* is a model companion of T; is it a model completion?
 - (Probably not...)

- Adapting the proof, one can obtain a version for finite words:

Proposition

The theory of the algebra $P_{fc}(\omega)$ is the model companion of the theory of LTL_I-algebras satisfying the condition $\Box \Diamond x \leq \Diamond \Box x$.

- These results are just a first step, many questions remain:
 - Can a similar result be obtained for other structures, such as finite trees, infinite trees, ...?
Conclusion

- We proved that T^* is a model companion of T; is it a model completion?
 - (Probably not...)
- Adapting the proof, one can obtain a version for finite words:

Proposition

The theory of the algebra $P_{fc}(\omega)$ is the model companion of the theory of \LTL_I-algebras satisfying the condition $\Box \Diamond x \leq \Diamond \Box x$.

- These results are just a first step, many questions remain:
 - Can a similar result be obtained for other structures, such as finite trees, infinite trees, ...?
 - What is the general mechanism underlying such results?
Conclusion

- We proved that T^* is a model companion of T; is it a model completion?
 - (Probably not...)
- Adapting the proof, one can obtain a version for finite words:

Proposition

*The theory of the algebra $P_{fc}(\omega)$ is the model companion of the theory of LTL$_I$-algebras satisfying the condition $\Box \Diamond x \leq \Diamond \Box x$.***

- These results are just a first step, many questions remain:
 - Can a similar result be obtained for other structures, such as finite trees, infinite trees, ...?
 - What is the general mechanism underlying such results?
 - Can these results be used to give (alternative) axiomatizations of monadic second order logics?