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Introduction

S1S (second-order logic of one successor) is a monadic
second-order logic interpreted in the structure (ω,≤,S,0).

Büchi (1962) proved that S1S is decidable.
His proof uses a back-and-forth conversion between second-order
formulas and automata on infinite words.
If one converts a formula ϕ into an automaton, and then back into
a formula, one obtains an equivalent formula ϕ′ which is ‘almost
existential’.
First-order theories in which every formula is equivalent to an
existential one are called model complete.
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Introduction

How to make this connection to model completeness more explicit?

S1S can be read as a first-order logic, interpreted in P(ω).
We enrich the Boolean algebra P(ω) with suitable modal
operators, allowing us to convert an automaton with the Büchi
acceptance condition into a genuine existential formula.
In this way, S1S turns out to be the model companion of the
temporal logic LTL ...
... in a sense we make precise by introducing a suitable class of
temporal algebras.
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Model companion: definition

Definition
Let T and T ∗ be theories in a first-order language L.

The theory T ∗ is called a model companion of T provided that
1 T ∗ is model complete, i.e., for any L-formula ϕ there is an

existential L-formula ϕ′ such that T ` ϕ↔ ϕ′;
2 T ∗ is a companion of T , i.e., for any universal L-formula ϕ, T ∗ ` ϕ

if, and only if, T ` ϕ.
Equivalently,

1 All embeddings between T ∗-models are elementary;
2 Every T -model embeds in some T ∗-model and vice versa.
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Model companion: basic facts

Fact
A theory T ∗ is a model companion of T iff the class of T ∗-models
coincides with the class of existentially closed T -models.

In particular, any theory T has at most one model companion, and
the model companion of T exists iff the class of existentially
closed T -models is elementary.
A model companion T ∗ of T is a model completion iff the class of
T -models has amalgamation iff T ∗ has quantifier elimination.
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Model companion: examples

Theory Model companion

Integral domains Algebraically closed fields

Linear orders Dense linear orders without endpoints

Boolean algebras Atomless Boolean algebras

Gödel algebras Gödel algebras with density and splitting1

1cf. L. Darnière & M. Junker, “Model completions of varieties of co-Heyting algebras”.

(All of these examples are in fact model completions.)
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LTLI-algebras
LTLI-algebras are the universal class of BAO’s corresponding to linear
temporal logic without until, enriched with an ‘initial atom’, I.

Example
The complex algebra of (ω,≤,0,S) is an LTLI-algebra
(P(ω),∪,−, ∅,♦,X, I), where ♦a := ↓a, Xa := S−1(a), and I := {0}.

Definition

An LTLI-algebra is a tuple (A,∪,−, ∅,♦,X, I), where
1 (A,∪,−, ∅) is a Boolean algebra;
2 ♦ : A→ A is a modal operator on A, i.e., preserves ∅ and ∪;
3 X : A→ A is a Boolean endomorphism on A;
4 for any a ∈ A, the following conditions hold:

1 ♦a = a ∪ X♦a,
2 if Xa ⊆ a then ♦a ⊆ a,

3 if a 6= ∅ then I ⊆ ♦a.
4 XI = ∅.
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Model companion of LTLI-algebras

Let L be the first-order language with binary operation ∪, unary
operations −, ♦, and X, and constant symbols ∅ and I.

Theorem
The theory of the L-structure P(ω) is the model companion of the
theory of LTLI-algebras.

Proof outline.
Let T be the theory of LTLI-algebras and T ∗ the theory of the
L-structure P(ω).
Two parts:

1 T ∗ is a companion of T , via duality and filtrations;
2 T ∗ is model complete, via automata.
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Duality for LTLI-algebras

Fact
For any LTLI-algebra (A,∪,−, ∅,♦,X, I),

1 the reduct (A,∪,−, ∅,♦) is an S4-algebra;
2 the element I is an atom.

The Stone-Jónsson-Tarski dual of the (∪,−, ∅,♦)-reduct of an
LTLI-algebra is a Boolean space X equipped with a preorder ≤
that is compatible with the topology.
The dual of the Boolean homomorphism X is a continuous
function, f , on X .
The dual of I is an isolated point, x0, of X .
The axioms can also be translated, leading to a definition of
LTLI-space.
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Duality for LTLI-algebras

Definition
An LTLI-space is a tuple (X ,≤, f , x0), where

X is a Boolean topological space,
≤ is a preorder on X that is compatible with the topology,
f : X → X is a continuous function,
x0 ∈ X is a point such that {x0} is open,

and for any x , y ∈ X and clopen K ⊆ X :

1 x ≤ f (x) and x < y ⇒ f (x) ≤ y ,
2 if f (K ) ⊆ K then ↑K ⊆ K ,

3 x0 ≤ x ,
4 f (x) 6= x0.

Theorem
The category of LTLI-algebras and homomorphisms is dually
equivalent to the category of LTLI-spaces and continuous
p-morphisms.
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Filtration for LTLI-spaces

The duality can be used to prove:

Theorem (Completeness of LTLI with respect to ω)
For any L-term t, if P(ω) |= t = ∅, then for any LTLI-algebra A,
A |= t = ∅.

The crucial step in the proof of this theorem is a filtration lemma for
LTLI-spaces, adapting the usual completeness proof of LTL to our
setting.
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Companionship from completeness
Lemma
Any quantifier-free L-formula is T -provably equivalent to a positive
quantifier-free L-formula.

Proof.
The crucial thing to note is that, in any LTLI-algebra,

a 6= ∅ if, and only if, I ⊆ ♦−a.

Theorem
The theory of P(ω) is a companion of the theory of LTLI-algebras.

Proof.

By the Lemma and standard Boolean algebra facts, any universal
L-sentence is equivalent to one of the form ∀v(t(v) = ∅).
By the Completeness Theorem, if this sentence is true in P(ω),
then it is true in all LTLI-algebras.
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Model companion of LTLI-algebras

Let L be the first-order language with binary operation ∪, unary
operations −, ♦, and X, and constant symbols ∅ and I.

Theorem
The theory of the L-structure P(ω) is the model companion of the
theory of LTLI-algebras.

Proof outline.
Let T be the theory of LTLI-algebras and T ∗ the theory of the
L-structure P(ω).
Two parts:

1 T ∗ is a companion of T , via duality and filtrations;
2 T ∗ is model complete, via automata.
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S1S
S1S-formulae are built up from atomic formulae X ⊆ Y and
S(X ,Y ) with connectives ∨, ¬, and ∃X .

Valuations a ∈ P(ω)k correspond one-to-one to infinite words over
the alphabet Σk := P(k), via the bijection:

P(ω)k ∼= (Σk )ω,

a 7→ wa : n 7→ {i ∈ {1, . . . , k} | n ∈ ai}.

Any S1S-formula ϕ(X1, . . . ,Xk ) describes a set, or language, of
infinite words over the alphabet Σk :

Lϕ := {wa | ϕ[Xi 7→ ai ] is true}.

For example:

I the formula ∃Y¬(X1 ⊆ Y ) describes
{w ∈ 2ω | w(n) = 1 for some n ∈ ω}.

I the (abbreviated) formula
∃Y (X1 ⊆ Y ∧ zero(Y ) ∧ ∀Z (singleton(Z )→ (Z ⊆ Y ↔ ¬S(Z ,Y )))
describes {w ∈ 2ω | if w(n) = 1 then n is even}.
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Büchi’s theorem
Theorem (Büchi 1962)
The languages of infinite words that can be described by
S1S-formulae are exactly those which are accepted by
non-deterministic finite automata with the Büchi acceptance condition.

Büchi acceptance condition: an infinite run of the automaton is
successful iff there is a final state that occurs infinitely often.
Note: if A is an m-state automaton with set of final states
F ⊆ {1, . . . ,m}, and ρ is an infinite run of A, then ρ is successful
if, and only if, in the algebra P(ω), we have

ω =
⋃
i∈F

♦qi , (?)

where
qi := {t ∈ ω | ρ is in state i at time t}.

(?) is a quantifier-free formula in the first-order language L!
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Th(P(ω)) is model-complete

Via standard translation, we associate with any L-formula
ϕ(x1, . . . , xn) an S1S-formula ϕ̂(X1, . . . ,Xn) such that, for any
a ∈ P(ω)k ,

(P(ω),a) |= ϕ ⇐⇒ wa ∈ Lϕ̂.

By Büchi’s theorem, we pick an automaton A in alphabet Σk
recognizing Lϕ̂.
Using (?), we construct an L-term tA which describes ‘successful
runs of A’.
The term tA yields an existential L-formula which is equivalent to
the formula ϕ(x1, . . . , xn) in the LTLI-algebra P(ω).
This completes the proof that T ∗ = Th(P(ω)) is model complete.
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Model companion of LTLI-algebras

Let L be the first-order language with binary operation ∪, unary
operations −, ♦, and X, and constant symbols ∅ and I.

Theorem
The theory of the L-structure P(ω) is the model companion of the
theory of LTLI-algebras.

Proof outline.
Let T be the theory of LTLI-algebras and T ∗ the theory of the
L-structure P(ω).
Two parts:

1 T ∗ is a companion of T , via duality and filtrations;
2 T ∗ is model complete, via automata.
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Conclusion

We proved that T ∗ is a model companion of T ; is it a model
completion?

I (Probably not...)

Adapting the proof, one can obtain a version for finite words:

Proposition
The theory of the algebra Pfc(ω) is the model companion of the theory
of LTLI-algebras satisfying the condition �♦x ≤ ♦�x.

These results are just a first step, many questions remain:

I Can a similar result be obtained for other structures, such as finite
trees, infinite trees, ...?

I What is the general mechanism underlying such results?
I Can these results be used to give (alternative) axiomatizations of

monadic second order logics?
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