Sahlqvist theory for regular modal logics

Alessandra Palmigiano¹ Sumit Sourabh² Zhiguang Zhao¹

¹TBM, TU Delft

²ILLC, UvA

TACL 2015

An asymmetry:

Symmetry re-established via duality:

Correspondence available not just for normal modal logic:

Substructural logics

[CP15]

Jónsson-style vs

[PSZ15b]

Display calculi

[GMPTZ]

DLE-logics [CP12, CPS]

Mu-calculi [CFPS15, CGP14, CC15]

> Regular DLE-logics Kripke frames with impossible worlds [PSZ15a]

Finite lattices and monotone ML [FPS15]

Sambin-style canonicity Canonicity via pseudo-correspondence [CPSZ]

Regular modal logics

Regular modal logics are required to contain the axiom $\Diamond A \leftrightarrow \neg \Box \neg A$ and be closed under the following rule:

 $(\mathsf{RR}) \xrightarrow{A \land B \vdash C} \Box A \land \Box B \vdash \Box C$

Regular modal logics

Regular modal logics are required to contain the axiom $\Diamond A \leftrightarrow \neg \Box \neg A$ and be closed under the following rule:

$$(\mathsf{RR}) \xrightarrow{A \land B \vdash C} \Box A \land \Box B \vdash \Box C$$

No necessitation rule

$$(\mathsf{N}) \xrightarrow{\vdash A}{\vdash \Box A}$$

Epistemic and deontic logic (Lemmon '57)

If \Box interpreted as "scientific but not logical necessity" or "obligation", then (N) is **not plausible**:

Lemmon:

"nothing is a scientific law or a moral obligation as a matter of logic".

$$\begin{array}{ll} (1) \ \Box(p \to q) \to \Box(\Box p \to \Box q) & (2) \ \Box p \to p \\ (1') \ \Box(p \to q) \to (\Box p \to \Box q) & (2') \ \Box p \to \Diamond p \\ (4) \ \Box p \to \Box \Box p & (5) \ \neg \Box p \to \Box \neg \Box p \end{array}$$

E1:
$$PC+...+(1')+(2)$$

E2: $PC+...+(1')+(2)$
E3: $PC+...+(1)+(2)$
E4: $E2+(4)$
E5: $E2+(5)$

D1:
$$PC+...+(1')+(2')$$

D2: $PC+...+(1')+(2')$
D3: $PC+...+(D)+(1)+(2')$
D4: $D2+...+(4)$
D5: $D2+...+(5)$

Relational and algebraic semantics

Kripke frame with impossible worlds:

$$\mathcal{F} = (W, S, N)$$
 where:

 $-W \neq \emptyset;$

$$-S \subseteq N \times W;$$

 $-N \subseteq W$ is the set of **normal worlds**.

Interpretation of formulas is standard except if $w \in W \setminus N$, for every formula φ ,

$$w \not\Vdash \Box \varphi$$
 and $w \not\Vdash \Diamond \varphi$.

Regular Boolean algebras expansions:

 $\mathbb{B} = (B, \top, \bot, \neg, \land, \lor, f), \text{ such that:}$ $- (B, \top, \bot, \neg, \land, \lor) \text{ is a Boolean algebra;}$ $- f : B \to B \text{ is additive:}$

$$f(a \lor b) = f(a) \lor f(b)$$
 for all $a, b \in B$.

f is not necessarily normal, i.e. $f(\perp) = \perp$ not true in general.

Discrete duality

For any Kripke frame with impossible worlds $\mathbb{F} = (W, S, N)$, the *complex algebra* associated with \mathbb{F} is $\mathbb{F}^+ := (\mathcal{P}(W), f_S)$ where $f_S : \mathcal{P}(W) \to \mathcal{P}(W)$ is defined by the following assignment:

 $X \mapsto \{w \in W \mid w \notin N \text{ or } wSv \text{ for some } v \in X\} = N^c \cup S^{-1}[X].$

For every perfect r-BAE $\mathbb{A} = (\mathbb{B}, f)$, the *atom structure with impossible worlds* associated with \mathbb{A} is $\mathbb{A}_+ := (At(\mathbb{A}), S_f, N)$, where $At(\mathbb{A})$ is the collection of atoms of \mathbb{A} , $N := \{x \in At(\mathbb{A}) \mid x \nleq f(\bot)\}$ and for all $x, y \in At(\mathbb{A})$ such that $x \nleq f(\bot)$,

$$xS_f y$$
 iff $x \leq f(y)$.

Proposition

For every Kripke frame with impossible worlds $\mathbb F$ and every perfect r-BAE $\mathbb A,$

$$(\mathbb{F}^+)_+ \cong \mathbb{F}$$
 and $(\mathbb{A}_+)^+ \cong \mathbb{A}$.

With each additive map $f : \mathbb{A} \to \mathbb{B}$ between perfect r-BAEs, we may associate its *normalization*, that is a map

 $\diamond_f u = \bigvee \{ j \in J^\infty(\mathbb{B}) \mid j \leq f(i) \text{ for some } i \in J^\infty(\mathbb{A}) \text{ such that } i \leq u \}.$

With each additive map $f : \mathbb{A} \to \mathbb{B}$ between perfect r-BAEs, we may associate its *normalization*, that is a map

 $\diamond_f u = \bigvee \{ j \in J^\infty(\mathbb{B}) \mid j \leq f(i) \text{ for some } i \in J^\infty(\mathbb{A}) \text{ such that } i \leq u \}.$

By definition, the normalization of f is completely join-preserving. Since perfect lattices are complete, this implies that the normalization is an adjoints, i.e., there exists a map $\blacksquare_f : \mathbb{B} \to \mathbb{A}$ such that for every $u \in \mathbb{A}$ and $v \in \mathbb{B}$,

 $\diamond_f u \leq v \text{ iff } u \leq \blacksquare_f v.$

Algebraic and Algorithmic Sahlqvist Theory

Sahlqvist theory

sufficient syntactic conditions on modal formulas:

- to have a first order correspondent;
- to be canonical.

Sahlqvist theory extended:

- to (normal) logics on a weaker propositional base (BDL, lattices);
- to more general shapes than Sahlqvist (inductive, recursive).

Our Results

- Algorithmic correspondence theory for regular modal logics on a BDL base;
- Syntactic identification of r-inductive and r-Sahlqvist inequalities;
- Success of Algorithm ALBA^r on r-inductive inequalities;
- Jónsson-style canonicity for r-Sahlqvist inequalities.

The following axioms in Lemmon's system are r-Sahlqvist, and hence canonical.

(2) $\Box p \to p$ (2') $\Box p \to \Diamond p$ (4) $\Box p \to \Box \Box p$ (5) $\neg \Box p \to \Box \neg \Box p$.

$\forall p(\Box p \leq p)$

- $\text{iff} \quad \forall p \forall \mathbf{i} \forall \mathbf{m}[(\mathbf{i} \leq \Box p \And p \leq \mathbf{m}) \Rightarrow \mathbf{i} \leq \mathbf{m}]$ (first appr.)
- $\text{iff} \quad \forall p \forall \mathbf{i} \forall \mathbf{m}[(\mathbf{i} \leq \Box \top \And \blacklozenge \mathbf{i} \leq p \And p \leq \mathbf{m}) \Rightarrow \mathbf{i} \leq \mathbf{m}] \quad (\Box \text{-adjunction})$
- $\text{iff} \quad \forall i \forall m [(i \leq \Box \top \And \blacklozenge i \leq m) \Rightarrow i \leq m]$

(Ackermann rule)

- $\mathsf{iff} \quad \forall \mathbf{i} [\mathbf{i} \leq \Box \top \Rightarrow \mathbf{i} \leq \blacklozenge \mathbf{i}]$
- iff $\forall x (Nx \rightarrow Rxx).$

Elementary frame condition	First-order formula
Normality	$\forall x \mathbf{N} x$
Closure under normality	$\forall x \forall y (Nx \land Rxy \rightarrow Ny)$
Pre-normal reflexivity	$\forall x (Nx \rightarrow Rxx)$
Pre-normal transitivity	$\forall x \forall y \forall z (Nx \land Ny \land Rxy \land Ryz \rightarrow Rxz)$
Pre-normal euclideanness	$\forall x \forall y \forall z (Nx \land Ny \land Rxy \land Rxz \rightarrow Ryz)$

Table : Elementary frame conditions

Modal axiom	Elementary frame condition
$\Box ho o ho$	Pre-normal reflexivity
$\Box ho ightarrow \Box \Box ho$	Pre-normal transitivity and closure
	under normality
$ eg \neg \Box p ightarrow \Box \neg \Box p$	Normality and pre-normal euclideanness
$\Box(p \to q) \to (\Box p \to \Box q)$	Т
$\square(p ightarrow q) ightarrow \square(\squarep ightarrow \squareq)$	Pre-normal transitivity

Table : Lemmon's modal axioms and their elementary frame conditions