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The completeness problem

» Logic: Hilbert-style axiomatic system / algebraic semantics.
» Many-valued logics: MTL and its expansions.

o Weaker forms: standard completeness SC (0 -, ¢ <= 0 F=0,1]. ©),
finite standard completeness FSC

(Y15 Y P 0 = 71,70 Epo,1]. ©)

e Strong completeness wrt classes of algebras (for any I,
I'trp<«=1T Fxe)

e Strong standard completeness SSC (I't, ¢ <= I' Fp 1), ©)

e Strong standard canonical completeness SSCC: language with

rational constants & strong completeness wrt. a canonical standard
algebra [0,1]Q (where ¢l®l- = ¢).
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What is known: general results

» MTL strongly complete wrt the class of standard algebras
based on left-continuous t-norms

» BL is finitely complete wrt the class of standard algebras based
on continuous t-norms.

standard completeness cases

e tukasiewicz and Product logics: finite standard completeness (wrt
[0, l]l'_ /10, 1]I‘I)

e BL: finite standard completeness (wrt a particular standard
BL-algebra [0,1]5.)

e Godel logic: strong standard complete (the only BL expansion with
this property!).
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Preliminaries

What is known: strong completeness

» Montagna [2006] gives a method to get strong standard
axiomatizations of the BL-extensions (wrt all the continuous
t-norm based standard algebras) using:

» Storage operator * (with its corresponding axioms/rules)
» An infinitary rule
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» Montagna [2006] gives a method to get strong standard
axiomatizations of the BL-extensions (wrt all the continuous
t-norm based standard algebras) using:

» Storage operator * (with its corresponding axioms/rules)
» An infinitary rule

R {x V(¢ = ¥")} for all n
' X V(e —¢)

From here:
1. £+ A axiomatic system + R is strongly standard complete
(wrt [0,1]4)
2. M 4+ A axiomatic system + R is strongly standard complete
(wrt [0,1])
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What is known: Pavelka completeness

Language with truth constants : definition of new type of standard
completeness, between finite and strong ones.

ol = sup{c: 'y T— ¢}
| ¢ Hfﬂ = inf{e(p)for eevaluation : e[I'] = {1}}

L is Pavelka complete when |p|% =|| ¢ ||% for all formulas.
L SSCC = L Pavelka complete = £ FSCC.

tukasiewicz logic with rational truth constants has an finitary
axiomatic system Pavelka complete: £+ book-keeping axioms

c&drcxyd CT—dec=yd
(but this is not SSCC)

this cannot be done with finitary rules if some connective is

non-continuous!
8/28
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cf. Prop. 17, [Cintula, 2015]

Let A be an expansion of an standard MTL algebra with a
non-continuous connective, and £a an axiomatic system for A.
Then no finitary rational expansion of La enjoys the Pavelka-style
completeness.
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What is known: Pavelka completeness Il

cf. Prop. 17, [Cintula, 2015]

Let A be an expansion of an standard MTL algebra with a
non-continuous connective, and £a an axiomatic system for A.
Then no finitary rational expansion of La enjoys the Pavelka-style
completeness.

» Infinitary Proof (of ¢ from I'): tree with finite depth where
> root is ;
» leafs are axioms or belong to I';
» for each node 6 with descendants © = {6;}, there is an
inference rule % and a substitution ¢ with o(v) = 6 and
o(X)=0.
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Preliminaries

What is known: Pavelka completeness Il

Cintula and Esteva et. al. propose infinitary rules to manage the
discontinuity points of the operations.

{p—=Clecio,)g {fe=vlec0,1)g
—p ¢
» General approach for standard algebra of a left-continuous

t-norm + canonical constants + extra operations monotonic
component-wise: AS validates a certain infinitary rule for each
discontinuity point & is seminilinear = AS is Pavelka
complete.

* large variety of additional operations managed

* many cases: uncountable infinitary rules

* how to know when is a logic with infinitary rules semilinear?..

» [1 logic + A op.:

v
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[0,1]¢ is the standar algebra of * with C, canonically interpreted.
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Starting point: A, constants and semilinearity

Cs« = the countable subalgebra of [0, 1], gen. by [0,1] N Q.
[0,1]¢ is the standar algebra of * with C, canonically interpreted.

Definition

MTLCA is the extension of MTL with the book-keeping axioms for
the elements of C, over the operations %, =, and A.

Semilinearity Lemma

Let £ be an implicative logic expanding? MTLS, such that there is
a finite number of infinitary inference rules, and all the rules of £
are closed under V. Then L is complete wrt the linear algebras of
its eq. algebraic semantics.

“with axioms/rules or new operations
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A new approach: A and the density rule

The density rule

Idea: discontinuity points could be treated all at the same time
(i.e., with a unique rule)

» Takeuti and Titani's density (sequents) rule from first order

I'xV(e—x)V(x =)
I'ExV(e—1v)

where x is propositional variable not in I" U {x, ¢, ¥ }.
» Can be translated to an infinitary Hilbert's rule based on

constants

Density rule

o . P =23V (E—=¢)}eec.
' (o — )

note: D is closed under Vv
13 /28
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A new approach: A and the density rule

An axiomatic system SSCC for [0, 1]¢

Definition
MTL is the extension of MTLS with D*. J

MTLS is strongly complete wrt linearly ordered algebras of the
class (where the axioms and rules from MTLS® hold).

Lemma: density of constants

If A'is a linearly ordered MTL°-algebra, then forany a< be A
there is ¢ € C, such that a < €* < b.
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A new approach: A and the density rule

Strong standard canonical completeness

Density of constants wrt the elements of linearly ordered algebras
limits cardinality of these and allows to prove that o : A — [0, 1]
with o(a) =sup{c € C, : cA <a} =inf{ceC: a<P}isan
embedding from A into the canonical standard algebra of x.
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A new approach: A and the density rule

Strong standard canonical completeness

Density of constants wrt the elements of linearly ordered algebras
limits cardinality of these and allows to prove that o : A — [0, 1]
with o(a) =sup{c € C, : cA <a} =inf{ceC: a<P}isan
embedding from A into the canonical standard algebra of x.

Completeness
For any set of formulas I" U {¢}

I'byrie ¢ =T FEpae ¢
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Expansions: representable operations

» We can also expand MTL® with new operations. Which ones?

» intuitively: Representable operations are such whose images
can be reached as limits of the images on the rationals from
some direction (so the VD rule applies).

» Our formal suggestions: operations whose universe can be
divided in regions left or right continuous and monotone
increasing or decreasing component wise (regularity
conditions).

» o must be an embedding for the new operations: regions shall
be expressable in the logic, and new rules managing the
regularity conditions shall be added to the axiomatic system.
In order to easily get semilinearity, we require a finite amount
of regions.

17/28



Expansions

Representable operations: formalization

Definition
*:[0,1]" — [0, 1] has a simplifiable universe when there is
k € w and {Ui}i<k, (U; are its regions) such that
1. Uik Ui =1[0,1]", and for i < k, U; = U} x ..., UF with U/
being a closed interval of [0, 1].
2. For i < k, % is component-wise continuous in U; and
component-wise monotonic in the interior of U;;

3. For each (x,...,xn) € [0,1]", either it is a tuple of rationals or
there exists U; such that for each 1 </ < n, x; € Uj and
a < x; if x is left-continuous in that region/component and
a > x; otherwise.
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Definition
*:[0,1]" — [0, 1] has a simplifiable universe when there is
k € w and {Ui}i<k, (U; are its regions) such that
1. Uik Ui =1[0,1]", and for i < k, U; = U} x ..., UF with U/
being a closed interval of [0, 1].
2. For i < k, % is component-wise continuous in U; and
component-wise monotonic in the interior of U;;

3. For each (x,...,xn) € [0,1]", either it is a tuple of rationals or
there exists U; such that for each 1 </ < n, x; € Uj and
a < x; if x is left-continuous in that region/component and
a > x; otherwise.

*:[0,1]" — [0, 1] is representable if it has a simplifiable universe.
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Expansions

Representable functions: examples

example

1
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Expansions

Representable functions: examples

example

1 i) [U,I.'
{a*b' =L &(x)
=

Us = [z,1] X if b<0.5

{fij =L 12-x ifx>05
0 =

0

Functions that are not representable are, for instance
» those with punctual discontinuities in non-rational points

» those whose regions cannot be expressed in the logic...
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Axiomatic system |

>

OP: finite set of representable operations.
The new language has a symbol x for each x € OP,

v

v

C (the new constants of the language) are the (countable)
subalgebra generated by the rationals with all the operations
considered.[0, 1]S(OP) is the corresopnding s

v

Some rules will be added...
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» OP: finite set of representable operations.
» The new language has a symbol x for each x € OP,

» C, (the new constants of the language) are the (countable)
subalgebra generated by the rationals with all the operations
considered.[0, 1]S(OP) is the corresopnding s

» Some rules will be added...
Raisowa-implicativity:

vV {901 < '(zblv ey Pn 7 ";ZJn}
vV (;((pla '--79017) - ;(1#1, ,Q,Z)n))

(VCONG*)

TV (p o)
YV (dop — 1))

(VCONG*)
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Some notation previous to the regularity rules:

» regularity characteristics of x in a region U in component i:
monotonicity: 77 | continuity: 7Y
increasing: 77,-*U =+ | left: 51.*U — 1
decreasing: n,-*U = — | right: 5;‘/ =R

,7-1-[0,0.5] _ +7774-[0.5,1] —_—
5&[0,0‘5] — L’(;J.[O.S,l] —L

> impl(+, ¢, ) = impl(L, p,¢) = ¢ — ¢
impl(—, ,¥) = impl(R, p,¥) = ¢ — ¢
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Expansions

Axiomatic system ||

Some notation previous to the regularity rules:

» regularity characteristics of x in a region U in component i:
monotonicity: 17,-*U ‘ continuity: 5,-*“
increasing: n*U = + | left: 67V = L

decreasing: n*V = — | right: 67V = R

,7-1-[0,0.5] _ +7774-[0.5,1] —_—
5&[0,0‘5] — L’(;J.[O.S,l] —L

> impl(+, ¢, ) = impl(L, 0, 9) = ¢ = ¢
impl(—, ¢, ) = impl(R, o, ) = ¢ — ¢
» Extreme uncontrolled (under continuity) points:

xui(x) = x < extry

minU if oV =L
extryi = S i

max U’ if *Y = R
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Expansions

Monotonicity rules

For each region U of the simplified universe of x, and each
component /:

YV A(P1, ey Piy ooy on) € Uy x € U,
impl(nrY, x, ), impl(ntY, ¥, i)}
YV XU (X) V (%01, s Yy ooy @) = F(P1, -0 Qi ooy 1))

(VM)

where x does not appear in any other formula
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Expansions

Monotonicity rules

For each region U of the simplified universe of x, and each
component /:

7V {(9017 ooy Piy ”~~790n) cU,xe Ui7
impl(nzY, x, ), impl(nY, ), i)}
YV XU (X) V (%01, s Yy ooy @) = F(P1, -0 Qi ooy 1))

(VM)

where x does not appear in any other formula

(VM*0.0.51)7 Vi{p = 05,x =90 — ¢}
YV (x < 0) V (S(¥) — (p)

(\/M‘.[O's’ll) vV {ﬁ — ¥, ¢ j X, _L’@[J}
TV (x4 0.5)V (b(1) — &(y)
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Expansions

Continuity rules

If x is left-continuous and increasing in U’ (6*V = L, n*V = +)
or right-continuous and decreasing (7Y = R,V = —):

YV (1 ey ) € Usx = K1, s 20),
{xw(d) V impl(5:, x;, d) v

*(p1; -y dy oy 00) = X}gevine, }
Y \ (;(9017 ceey Py eeny cp,,) — X)

(G
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Expansions

Continuity rules

If x is left-continuous and increasing in U’ (5*” =L 77 =)
or right-continuous and decreasing (7Y = R,V = —):

PV {91 00) € Us X = H(p1, 0 00),
{xui(d) vV impl(67Y, x;, d) v
*(@15 -+ d, oy 00) = X}aevine,
YV (*(P1, ooy @iy ooy Pn) = X)

(G

If x is left-continuous and decreasing in U’ (5*” =LnpV=-)
or right-continuous and increasing (7Y = R,V = +):

YV A1, s on) € U, (1,5 0n) = x
{xui(d) v impl(67Y, x;, d) v
X — ;(9017 ey d, cens @n)}dEUiﬁC*}
TV (X = P15 ens Pis ooes Pn))

<)

where x does not appear in other formulas.
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Expansions

What was that?

0. ‘e 1 0 vt 1 0 T

A e, I

A<ty JT e ety

: : J'Ul : 6*(/'] : : : 6«(]]
*c1 < x,c1 <1 @ *xCc1 > x,c1 > @ *c1 < x,c1 <1 @

24 /28



Expansions

What was that?

0 fag | 1 0 por 1 0 i 1

: X : : H s ! : . : :

A<ty JT e ety

: : 5L : 5*UL : : : 5*UL
*c1 < ;01 <1 p *c1 > x,01 >0 @ *cp < w01 <01 p

7 V{p = 05,x = &(p)
(vCH005]) {(c+=0)V(p—7) X(*(E) = X)}eefo,05)nc. }
YV (d(p) = x)

V{05 = o, d(p) = x
{(€<0.5)V(p =7)V(x = &()}ceps,1nc. }
TV (x = ()

(\/C*[Oﬁ,l] )
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Expansions
Completeness again

Definition

MTL°(OP) = MTLS® over the language with x and C, plus:
» book-keeping axioms (for C,) for each x in OP.
» congruence rule of each x

> regularity rules for each

» Previous rules hold the premises of the Semilinearity Lemma,
so MTL°(OP) is strongly complete wrt linearly ordered
algebras from its class.

» o(x) =sup{c € Cy: P < x} =inf{c € Cy:T” > x} is an
embedding from each linearly ordered A into [0,1]¢(OP).

Theorem

I'Fyrieor) ¢ <=1 Fp1¢0p) ¢
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Conclusions
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» |t is not possible, in general, to give a finite axiomatization for
Pavelka complete logics (and so, for strong standard canonical
complete logics).

» The first-order density rule can be adapted to obtain a rule
determining the density of the constant elements over the
linearly-ordered algebras.

» The A operation allows a uniform proof of strong
completeness wrt chains.

» This is enough for the MTL logics. We can treat some of its
expansions too, when the operations behave somehow
regularly.

> |s A truly necessary?

» Can we treat a wider family of operations?
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Thank youl!
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