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The completeness problem

I Logic: Hilbert-style axiomatic system / algebraic semantics.

I Many-valued logics: MTL and its expansions.

• Weaker forms: standard completeness SC (∅ `L ϕ⇐⇒ ∅ |=[0,1]∗ ϕ),
finite standard completeness FSC
(γ1, ..., γn `L ϕ⇐⇒ γ1, ..., γn |=[0,1]∗ ϕ)

• Strong completeness wrt classes of algebras (for any Γ ,
Γ `L ϕ⇐⇒ Γ |=K ϕ.)

• Strong standard completeness SSC (Γ `L ϕ ⇐⇒ Γ |=[0,1]∗ ϕ)

• Strong standard canonical completeness SSCC: language with
rational constants & strong completeness wrt. a canonical standard
algebra [0, 1]Q∗ (where c [0,1]∗ = c).
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What is known: general results

I MTL strongly complete wrt the class of standard algebras
based on left-continuous t-norms

I BL is finitely complete wrt the class of standard algebras based
on continuous t-norms.

standard completeness cases

• Łukasiewicz and Product logics: finite standard completeness (wrt
[0, 1]Ł / [0, 1]Π)

• BL: finite standard completeness (wrt a particular standard
BL-algebra [0, 1]BL)

• Gödel logic: strong standard complete (the only BL expansion with
this property!).
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What is known: strong completeness

I Montagna [2006] gives a method to get strong standard
axiomatizations of the BL-extensions (wrt all the continuous
t-norm based standard algebras) using:

I Storage operator ∗ (with its corresponding axioms/rules)
I An infinitary rule

R :
{χ ∨ (ϕ→ ψn)} for all n

χ ∨ (ϕ→ ψ∗)

From here:
1. Ł+ ∆ axiomatic system + R is strongly standard complete

(wrt [0, 1]Ł)
2. Π + ∆ axiomatic system + R is strongly standard complete

(wrt [0, 1]Π)
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What is known: Pavelka completeness

Language with truth constants : definition of new type of standard
completeness, between finite and strong ones.

|ϕ|LΓ = sup{c : Γ `L c → ϕ}
‖ ϕ ‖LΓ = inf{e(ϕ)for eevaluation : e[Γ ] = {1}}

L is Pavelka complete when |ϕ|LΓ =‖ ϕ ‖LΓ for all formulas.
L SSCC ⇒ L Pavelka complete ⇒ L FSCC.
Łukasiewicz logic with rational truth constants has an finitary
axiomatic system Pavelka complete: Ł+ book-keeping axioms

c&d ↔ c ∗Ł d c → d ↔ c ⇒Ł d

(but this is not SSCC)
this cannot be done with finitary rules if some connective is
non-continuous!
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What is known: Pavelka completeness II

cf. Prop. 17, [Cintula, 2015]
Let A be an expansion of an standard MTL algebra with a
non-continuous connective, and LA an axiomatic system for A.
Then no finitary rational expansion of LA enjoys the Pavelka-style
completeness.

I Infinitary Proof (of ϕ from Γ ): tree with finite depth where
I root is ϕ;
I leafs are axioms or belong to Γ ;
I for each node θ with descendants Θ = {θi}, there is an

inference rule Σ
ψ and a substitution σ with σ(ψ) = θ and

σ(Σ) = Θ.
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What is known: Pavelka completeness III

Cintula and Esteva et. al. propose infinitary rules to manage the
discontinuity points of the operations.

I Π logic + ∆ op.:
{ϕ→c}c∈(0,1)Q

¬ϕ
{c→ϕ}c∈(0,1)Q

ϕ

I General approach for standard algebra of a left-continuous
t-norm + canonical constants + extra operations monotonic
component-wise: AS validates a certain infinitary rule for each
discontinuity point & is seminilinear =⇒ AS is Pavelka
complete.
* large variety of additional operations managed
* many cases: uncountable infinitary rules
* how to know when is a logic with infinitary rules semilinear?..
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Starting point: ∆, constants and semilinearity

C∗ = the countable subalgebra of [0, 1]∗ gen. by [0, 1] ∩ Q.
[0, 1]C∗ is the standar algebra of ∗ with C∗ canonically interpreted.

Definition
MTLC∆ is the extension of MTL∆ with the book-keeping axioms for
the elements of C∗ over the operations ∗, ⇒∗ and ∆.

Semilinearity Lemma

Let L be an implicative logic expandinga MTLC∆, such that there is
a finite number of infinitary inference rules, and all the rules of L
are closed under ∨. Then L is complete wrt the linear algebras of
its eq. algebraic semantics.

awith axioms/rules or new operations
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The density rule

Idea: discontinuity points could be treated all at the same time
(i.e., with a unique rule)

I Takeuti and Titani’s density (sequents) rule from first order

Γ ` χ ∨ (ϕ→ x) ∨ (x → ψ)

Γ ` χ ∨ (ϕ→ ψ)

where x is propositional variable not in Γ ∪ {χ, ϕ, ψ}.
I Can be translated to an infinitary Hilbert’s rule based on

constants

Density rule

D∞ :
{(ϕ→ c) ∨ (c → ψ)}c∈C∗

(ϕ→ ψ)

note: D∞ is closed under ∨
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An axiomatic system SSCC for [0,1]C∗

Definition
MTL∞∗ is the extension of MTLC∆ with D∞.

MTL∞∗ is strongly complete wrt linearly ordered algebras of the
class (where the axioms and rules from MTL∞∗ hold).

Lemma: density of constants
If A is a linearly ordered MTL∞∗ -algebra, then for any a < b ∈ A
there is c ∈ C∗ such that a < cA < b.
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Strong standard canonical completeness

Density of constants wrt the elements of linearly ordered algebras
limits cardinality of these and allows to prove that σ : A→ [0, 1]
with σ(a) = sup{c ∈ C∗ : cA ≤ a} = inf{c ∈ C∗ : a ≤ cA} is an
embedding from A into the canonical standard algebra of ∗.

Completeness
For any set of formulas Γ ∪ {ϕ}

Γ `MTL∞∗ ϕ ⇐⇒ Γ |=[0,1]C∗
ϕ
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Expansions: representable operations

I We can also expand MTL∞ with new operations. Which ones?

I intuitively: Representable operations are such whose images
can be reached as limits of the images on the rationals from
some direction (so the ∨D∞ rule applies).

I Our formal suggestions: operations whose universe can be
divided in regions left or right continuous and monotone
increasing or decreasing component wise (regularity
conditions).

I σ must be an embedding for the new operations: regions shall
be expressable in the logic, and new rules managing the
regularity conditions shall be added to the axiomatic system.
In order to easily get semilinearity, we require a finite amount
of regions.

17 / 28



The problem Preliminaries A new approach: ∆ and the density rule Expansions Conclusions

Expansions: representable operations

I We can also expand MTL∞ with new operations. Which ones?
I intuitively: Representable operations are such whose images

can be reached as limits of the images on the rationals from
some direction (so the ∨D∞ rule applies).

I Our formal suggestions: operations whose universe can be
divided in regions left or right continuous and monotone
increasing or decreasing component wise (regularity
conditions).

I σ must be an embedding for the new operations: regions shall
be expressable in the logic, and new rules managing the
regularity conditions shall be added to the axiomatic system.
In order to easily get semilinearity, we require a finite amount
of regions.

17 / 28



The problem Preliminaries A new approach: ∆ and the density rule Expansions Conclusions

Expansions: representable operations

I We can also expand MTL∞ with new operations. Which ones?
I intuitively: Representable operations are such whose images

can be reached as limits of the images on the rationals from
some direction (so the ∨D∞ rule applies).

I Our formal suggestions: operations whose universe can be
divided in regions left or right continuous and monotone
increasing or decreasing component wise (regularity
conditions).

I σ must be an embedding for the new operations: regions shall
be expressable in the logic, and new rules managing the
regularity conditions shall be added to the axiomatic system.
In order to easily get semilinearity, we require a finite amount
of regions.

17 / 28



The problem Preliminaries A new approach: ∆ and the density rule Expansions Conclusions

Expansions: representable operations

I We can also expand MTL∞ with new operations. Which ones?
I intuitively: Representable operations are such whose images

can be reached as limits of the images on the rationals from
some direction (so the ∨D∞ rule applies).

I Our formal suggestions: operations whose universe can be
divided in regions left or right continuous and monotone
increasing or decreasing component wise (regularity
conditions).

I σ must be an embedding for the new operations: regions shall
be expressable in the logic, and new rules managing the
regularity conditions shall be added to the axiomatic system.
In order to easily get semilinearity, we require a finite amount
of regions.

17 / 28



The problem Preliminaries A new approach: ∆ and the density rule Expansions Conclusions

Representable operations: formalization

Definition
? : [0, 1]n → [0, 1] has a simplifiable universe when there is
k ∈ ω and {Ui}i≤k , (Ui are its regions) such that

1.
⋃

i≤k Ui = [0, 1]n, and for i ≤ k , Ui = U1
i × ...,Un

i with U j
i

being a closed interval of [0, 1].
2. For i ≤ k , ? is component-wise continuous in Ui and

component-wise monotonic in the interior of Ui ;
3. For each (x1, ..., xn) ∈ [0, 1]n, either it is a tuple of rationals or

there exists Uj such that for each 1 ≤ i ≤ n, xi ∈ U i
j and

a < xi if ? is left-continuous in that region/component and
a > xi otherwise.

? : [0, 1]n → [0, 1] is representable if it has a simplifiable universe.

18 / 28
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Representable functions: examples

example

♣(x) :={
x if b ≤ 0.5
1.2− x if x > 0.5

Functions that are not representable are, for instance
I those with punctual discontinuities in non-rational points
I those whose regions cannot be expressed in the logic...
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Axiomatic system I

I OP : finite set of representable operations.
I The new language has a symbol ? for each ? ∈ OP ,
I C∗ (the new constants of the language) are the (countable)

subalgebra generated by the rationals with all the operations
considered.[0, 1]C∗(OP) is the corresopnding s

I Some rules will be added...

Raisowa-implicativity:

(∨CONG?)
γ ∨ {ϕ1 ↔ ψ1, ..., ϕn ↔ ψn}

γ ∨ (?(ϕ1, ..., ϕn)→ ?(ψ1, ..., ψn))

(∨CONG♣)
γ ∨ (ϕ↔ ψ)

γ ∨ (♣ϕ→ ♣ψ)
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Axiomatic system II

Some notation previous to the regularity rules:

I regularity characteristics of ? in a region U in component i :
monotonicity: η?Ui continuity: δ?Ui
increasing: η?Ui = + left: δ?Ui = L
decreasing: η?Ui = − right: δ?Ui = R

η♣[0,0.5] = +, η♣[0.5,1] = −,
δ♣[0,0.5] = L, δ♣[0.5,1] = L

I impl(+, ϕ, ψ) = impl(L, ϕ, ψ) = ϕ→ ψ
impl(−, ϕ, ψ) = impl(R, ϕ, ψ) = ψ → ϕ

I Extreme uncontrolled (under continuity) points:

χU i (x) = x ↔ extrU i

extrU i =

{
minU i if δ?U

i

= L

maxU i if δ?U
i

= R
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Monotonicity rules

For each region U of the simplified universe of ?, and each
component i :

(∨M?U
i )

γ ∨ {(ϕ1, ..., ϕi , ...., ϕn) ∈ U, x ∈ U i ,

impl(η?Ui , x , ψ), impl(η?Ui , ψ, ϕi )}
γ ∨ χU i (x) ∨ (?(ϕ1, ..., ψ, ..., ϕn)→ ?(ϕ1, ..., ϕi , ..., ϕn))

where x does not appear in any other formula

(∨M♣[0,0.5])
γ ∨ {ϕ→ 0.5, x → ψ,ψ → ϕ}
γ ∨ (x ↔ 0) ∨ (♣(ψ)→ ♣(ϕ)

(∨M♣[0.5,1])
γ ∨ {0.5→ ϕ,ψ → x , ϕ→ ψ}
γ ∨ (x ↔ 0.5) ∨ (♣(ψ)→ ♣(ϕ)
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Continuity rules

If ? is left-continuous and increasing in U i (δ?Ui = L, η?Ui = +)
or right-continuous and decreasing (δ?Ui = R, η?Ui = −):

(C?Ui )

γ ∨ {(ϕ1, ..., ϕn) ∈ U, x → ?(ϕ1, ..., ϕn),

{χU i (d) ∨ impl(δ?Ui , xi , d) ∨
?(ϕ1, ..., d , ..., ϕn)→ x}d∈U i∩C∗}
γ ∨ (?(ϕ1, ..., ϕi , ..., ϕn)→ x)

If ? is left-continuous and decreasing in U i (δ?Ui = L, η?Ui = −)
or right-continuous and increasing (δ?Ui = R, η?Ui = +):

(C?Ui )

γ ∨ {(ϕ1, ..., ϕn) ∈ U, ?(ϕ1, ..., ϕn)→ x ,

{χU i (d) ∨ impl(δ?Ui , xi , d) ∨
x → ?(ϕ1, ..., d , ..., ϕn)}d∈U i∩C∗}
γ ∨ (x → ?(ϕ1, ..., ϕi , ..., ϕn))

where x does not appear in other formulas.
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What was that?

0

1

1c1

?c1

?c1 < x, c1 <�
?U1
1 '

d <�
?U1
1 '

x

'

?'

0

1

1c1

?c1

?c1 > x, c1 >�
?U1
1 '

d >�
?U1
1 '

x

'

?'

0

1

1c1

?c1

?c1 < x, c1 <�
?U1
1 '

d <�
?U1
1 '

x

'

?'

(∨C♣[0,0.5])

γ ∨ {ϕ→ 0.5, x → ♣(ϕ)
{(c ↔ 0) ∨ (ϕ→ c) ∨ (♣(c)→ x)}c∈[0,0.5]∩C∗}

γ ∨ (♣(ϕ)→ x)

(∨C♣[0.5,1])

γ ∨ {0.5→ ϕ,♣(ϕ)→ x
{(c ↔ 0.5) ∨ (ϕ→ c) ∨ (x → ♣(c)}c∈[0.5,1]∩C∗}

γ ∨ (x → ♣(ϕ)
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Completeness again

Definition
MTL∞∗ (OP) = MTL∞∗ over the language with ? and C∗ plus:

I book-keeping axioms (for C∗) for each ? in OP .
I congruence rule of each ?
I regularity rules for each ?

I Previous rules hold the premises of the Semilinearity Lemma,
so MTL∞∗ (OP) is strongly complete wrt linearly ordered
algebras from its class.

I σ(x) = sup{c ∈ C∗ : cA ≤ x} = inf{c ∈ C∗ : cA ≥ x} is an
embedding from each linearly ordered A into [0, 1]C∗(OP).

Theorem

Γ `MTL∞∗ (OP) ϕ ⇐⇒ Γ |=[0,1]C∗ (OP) ϕ
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Some remarks

I It is not possible, in general, to give a finite axiomatization for
Pavelka complete logics (and so, for strong standard canonical
complete logics).

I The first-order density rule can be adapted to obtain a rule
determining the density of the constant elements over the
linearly-ordered algebras.

I The ∆ operation allows a uniform proof of strong
completeness wrt chains.

I This is enough for the MTL logics. We can treat some of its
expansions too, when the operations behave somehow
regularly.

I Is ∆ truly necessary?
I Can we treat a wider family of operations?
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Thank you!

F. Montagna.
Notes on strong completeness in Łukasiewicz, product and BL logics
and in their first-order extensions.
In Algebraic and Proof-theoretic Aspects of Non-classical Logics,
pages 247–274, 2006.

P. Cintula.
A note on axiomatizations of pavelka-style complete fuzzy logics.
Fuzzy Sets and Systems, (0), 2014.

F. Esteva, L. Godo, and C. Noguera.
On completeness results for predicate Łukasiewicz, product, Gödel
and nilpotent minimum logics expanded with truth-constants.
Mathware and Soft Computing, 14(3):223–246, 2007.
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