Admissible Bases via Stable Canonical Rules

Nick Bezhanishvili David Gabelaia Silvio Ghilardi Mamuka Jibladze

June 25 - 2015

B.& G.& G.& J.

Admissible bases

Ischia 2015 1 / 25

We review a recent application of multi-conclusion rules, giving a new proof for decidability of rule admissibility in **IPC**, **K4**, **S4**.

Rule admissibility in these systems is a problem having a long history. For **IPC**:

- Friedman 1975 (raises the problem);
- Rybakov 1984 (first solution);
- Rozière 1992 (another syntactic solution);
- Ghilardi 1999 (alternative solution using unification theory);
- lemhoff 2001 (r.e. basis);
- Jerabek 2007 (complexity); 2008 (independent basis); 2009 (canonical rules dichotomy);
- Goudsmit, 2015 (Rybakov method revisited);
- present contribution, 2015.

We review a recent application of multi-conclusion rules, giving a new proof for decidability of rule admissibility in **IPC**, **K4**, **S4**. Rule admissibility in these systems is a problem having a long history. For **IPC**:

- Friedman 1975 (raises the problem);
- Rybakov 1984 (first solution);
- Rozière 1992 (another syntactic solution);
- Ghilardi 1999 (alternative solution using unification theory);
- lemhoff 2001 (r.e. basis);
- Jerabek 2007 (complexity); 2008 (independent basis); 2009 (canonical rules dichotomy);
- Goudsmit, 2015 (Rybakov method revisited);
- present contribution, 2015.

We review a recent application of multi-conclusion rules, giving a new proof for decidability of rule admissibility in **IPC**, **K4**, **S4**. Rule admissibility in these systems is a problem having a long history. For **IPC**:

- Friedman 1975 (raises the problem);
- Rybakov 1984 (first solution);
- Rozière 1992 (another syntactic solution);
- Ghilardi 1999 (alternative solution using unification theory);
- lemhoff 2001 (r.e. basis);
- Jerabek 2007 (complexity); 2008 (independent basis); 2009 (canonical rules dichotomy);
- Goudsmit, 2015 (Rybakov method revisited);
- present contribution, 2015.

We review a recent application of multi-conclusion rules, giving a new proof for decidability of rule admissibility in **IPC**, **K4**, **S4**. Rule admissibility in these systems is a problem having a long history. For **IPC**:

- Friedman 1975 (raises the problem);
- Rybakov 1984 (first solution);
- Rozière 1992 (another syntactic solution);
- Ghilardi 1999 (alternative solution using unification theory);
- lemhoff 2001 (r.e. basis);
- Jerabek 2007 (complexity); 2008 (independent basis); 2009 (canonical rules dichotomy);
- Goudsmit, 2015 (Rybakov method revisited);
- present contribution, 2015.

We review a recent application of multi-conclusion rules, giving a new proof for decidability of rule admissibility in **IPC**, **K4**, **S4**. Rule admissibility in these systems is a problem having a long history. For **IPC**:

- Friedman 1975 (raises the problem);
- Rybakov 1984 (first solution);
- Rozière 1992 (another syntactic solution);
- Ghilardi 1999 (alternative solution using unification theory);
- lemhoff 2001 (r.e. basis);
- Jerabek 2007 (complexity); 2008 (independent basis); 2009 (canonical rules dichotomy);
- Goudsmit, 2015 (Rybakov method revisited);
- present contribution, 2015.

We review a recent application of multi-conclusion rules, giving a new proof for decidability of rule admissibility in **IPC**, **K4**, **S4**. Rule admissibility in these systems is a problem having a long history. For **IPC**:

- Friedman 1975 (raises the problem);
- Rybakov 1984 (first solution);
- Rozière 1992 (another syntactic solution);
- Ghilardi 1999 (alternative solution using unification theory);
- Iemhoff 2001 (r.e. basis);
- Jerabek 2007 (complexity); 2008 (independent basis); 2009 (canonical rules dichotomy);
- Goudsmit, 2015 (Rybakov method revisited);
- present contribution, 2015.

We review a recent application of multi-conclusion rules, giving a new proof for decidability of rule admissibility in **IPC**, **K4**, **S4**. Rule admissibility in these systems is a problem having a long history. For **IPC**:

- Friedman 1975 (raises the problem);
- Rybakov 1984 (first solution);
- Rozière 1992 (another syntactic solution);
- Ghilardi 1999 (alternative solution using unification theory);
- lemhoff 2001 (r.e. basis);
- Jerabek 2007 (complexity); 2008 (independent basis); 2009 (canonical rules dichotomy);
- Goudsmit, 2015 (Rybakov method revisited);
- present contribution, 2015.

We review a recent application of multi-conclusion rules, giving a new proof for decidability of rule admissibility in **IPC**, **K4**, **S4**. Rule admissibility in these systems is a problem having a long history. For **IPC**:

- Friedman 1975 (raises the problem);
- Rybakov 1984 (first solution);
- Rozière 1992 (another syntactic solution);
- Ghilardi 1999 (alternative solution using unification theory);
- lemhoff 2001 (r.e. basis);
- Jerabek 2007 (complexity); 2008 (independent basis); 2009 (canonical rules dichotomy);
- Goudsmit, 2015 (Rybakov method revisited);
- present contribution, 2015.

We review a recent application of multi-conclusion rules, giving a new proof for decidability of rule admissibility in **IPC**, **K4**, **S4**. Rule admissibility in these systems is a problem having a long history. For **IPC**:

- Friedman 1975 (raises the problem);
- Rybakov 1984 (first solution);
- Rozière 1992 (another syntactic solution);
- Ghilardi 1999 (alternative solution using unification theory);
- lemhoff 2001 (r.e. basis);
- Jerabek 2007 (complexity); 2008 (independent basis); 2009 (canonical rules dichotomy);
- Goudsmit, 2015 (Rybakov method revisited);
- present contribution, 2015.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We review a recent application of multi-conclusion rules, giving a new proof for decidability of rule admissibility in **IPC**, **K4**, **S4**. Rule admissibility in these systems is a problem having a long history. For **IPC**:

- Friedman 1975 (raises the problem);
- Rybakov 1984 (first solution);
- Rozière 1992 (another syntactic solution);
- Ghilardi 1999 (alternative solution using unification theory);
- lemhoff 2001 (r.e. basis);
- Jerabek 2007 (complexity); 2008 (independent basis); 2009 (canonical rules dichotomy);
- Goudsmit, 2015 (Rybakov method revisited);
- present contribution, 2015.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Canonical rules via stable maps

3 Rule Dichotomy Property and Admissible Bases

• • • • • • • • • • • • •

A *multiple-conclusion rule* is a pair of finite sets of formulae $\langle \Gamma, S \rangle$.

If $\Gamma = \{\gamma_1, \dots, \gamma_n\}, S = \{\delta_1, \dots, \delta_m\}$, we write the rule $\langle \Gamma, S \rangle$ as Γ/S or as $\frac{\gamma_1, \dots, \gamma_n}{\delta_1 \mid \dots \mid \delta_m} (R)$

The formulae $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$ are said to be the *premises* of the rule (*R*) and the formulae $S = \{\delta_1, \ldots, \delta_m\}$ are said to be the *conclusions* of the rule (*R*).

The rule (*R*) is *valid* in a modal algebra (A, \Diamond) iff for every valuation *V*

 $V(\gamma_1) = 1 \& \cdots \& V(\gamma_n) = 1 \quad \Rightarrow \quad V(\delta_1) = 1 \text{ or } \cdots \text{ or } V(\delta_m) = 1.$

Thus rule validity defines a universal class (not a variety!).

A D A A B A A B A A B A B B

A *multiple-conclusion rule* is a pair of finite sets of formulae $\langle \Gamma, S \rangle$.

If $\Gamma = \{\gamma_1, \dots, \gamma_n\}, S = \{\delta_1, \dots, \delta_m\}$, we write the rule $\langle \Gamma, S \rangle$ as Γ/S or as $\frac{\gamma_1, \dots, \gamma_n}{\delta_1 \mid \dots \mid \delta_m} (R)$

The formulae $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$ are said to be the *premises* of the rule (*R*) and the formulae $S = \{\delta_1, \ldots, \delta_m\}$ are said to be the *conclusions* of the rule (*R*).

The rule (R) is valid in a modal algebra (A, \Diamond) iff for every valuation V

 $V(\gamma_1) = 1 \& \cdots \& V(\gamma_n) = 1 \implies V(\delta_1) = 1 \text{ or } \cdots \text{ or } V(\delta_m) = 1$.

Thus *rule validity defines a universal class* (not a variety!).

Multiple-conclusion rules recently gained attention in the literature from many points of view.

From an algebraic and semantic point of view (Kracht 07, Jerabek 09, N. & G. Bezhanishvili & lemhoff 2014), they constitute an essential tool for investigating classes of algebras beyond varieties and they supply nice axiomatizations.

From a completely different research perspective, *the proof-theoretic oriented community* (since Avron 96) realized that standard sequent formalisms are insufficient to handle complex logics and moved to more expressive hypersequent calculi.

Multiple-conclusion rules recently gained attention in the literature from many points of view.

From an algebraic and semantic point of view (Kracht 07, Jerabek 09, N. & G. Bezhanishvili & lemhoff 2014), they constitute an essential tool for investigating classes of algebras beyond varieties and they supply nice axiomatizations.

From a completely different research perspective, *the proof-theoretic oriented community* (since Avron 96) realized that standard sequent formalisms are insufficient to handle complex logics and moved to more expressive hypersequent calculi.

Multiple-conclusion rules recently gained attention in the literature from many points of view.

From an algebraic and semantic point of view (Kracht 07, Jerabek 09, N. & G. Bezhanishvili & lemhoff 2014), they constitute an essential tool for investigating classes of algebras beyond varieties and they supply nice axiomatizations.

From a completely different research perspective, *the proof-theoretic oriented community* (since Avron 96) realized that standard sequent formalisms are insufficient to handle complex logics and moved to more expressive hypersequent calculi.

・ロト ・ 四ト ・ ヨト ・ ヨト

Derived Rules

- Let \mathcal{R} be a set of multiple-conclusion rules; a multiple-conclusion rule Γ/S is *derivable from* \mathcal{R} , written $\mathcal{R} \vdash \Gamma/S$, iff every modal algebra validating all rules in \mathcal{R} also validates Γ/S .
- In the terminology of modal rule systems¹ (Jerabek 09, N. & G. Bezhanishvili & lemhoff 2014), it can be proved that this equivalently means that Γ/S belongs to the smallest modal rule system including \mathcal{R} .
- A *Hilbert style* calculus for recognizing $\mathcal{R} \vdash \Gamma/S$ is built in (N. Bezhanishvili & Ghilardi 2014).

Derived Rules

Let \mathcal{R} be a set of multiple-conclusion rules; a multiple-conclusion rule Γ/S is *derivable from* \mathcal{R} , written $\mathcal{R} \vdash \Gamma/S$, iff every modal algebra validating all rules in \mathcal{R} also validates Γ/S .

In the terminology of modal rule systems¹ (Jerabek 09, N. & G. Bezhanishvili & lemhoff 2014), it can be proved that this equivalently means that Γ/S belongs to the smallest modal rule system including \mathcal{R} .

A *Hilbert style* calculus for recognizing $\mathcal{R} \vdash \Gamma/S$ is built in (N. Bezhanishvili & Ghilardi 2014).

¹These rules systems are also known as *multi-conclusion consequence relations*

Derived Rules

- Let \mathcal{R} be a set of multiple-conclusion rules; a multiple-conclusion rule Γ/S is *derivable from* \mathcal{R} , written $\mathcal{R} \vdash \Gamma/S$, iff every modal algebra validating all rules in \mathcal{R} also validates Γ/S .
- In the terminology of modal rule systems¹ (Jerabek 09, N. & G. Bezhanishvili & lemhoff 2014), it can be proved that this equivalently means that Γ/S belongs to the smallest modal rule system including \mathcal{R} .
- A *Hilbert style* calculus for recognizing $\mathcal{R} \vdash \Gamma/S$ is built in (N. Bezhanishvili & Ghilardi 2014).

¹These rules systems are also known as *multi-conclusion consequence relations*

2 Canonical rules via stable maps

3 Rule Dichotomy Property and Admissible Bases

B.& G.& G.& J.

A (10) A (10)

A *stable embedding* of a modal algebra $\mathfrak{A} = (A, \Diamond)$ into a modal algebra $\mathfrak{B} = (B, \Diamond)$ is an injective Boolean morphism $\mu : A \to B$ such that we have $\Diamond \mu(x) \le \mu(\Diamond x)$ for all $x \in A$.

A class C of modal algebras is said to be *stable* iff whenever $\mathfrak{B} \in C$ and \mathfrak{A} has a stable embedding into \mathfrak{B} , then $\mathfrak{A} \in C$ too.

We have dual notions for general frames. $\mathfrak{F} = (W, R, P)$ is a *stable image* of $\mathfrak{F}' = (W', R', P')$ iff there is a continuous (i.e. $S \in P \Rightarrow f^{-1}(S) \in P'$) surjective map $f : W' \to W$ such that xRy implies f(x)R'f(y) for all $x, y \in W'$.

A class of (ordinary, general or descriptive) frames is said to be *stable* iff it is closed under stable images.

A *stable embedding* of a modal algebra $\mathfrak{A} = (A, \Diamond)$ into a modal algebra $\mathfrak{B} = (B, \Diamond)$ is an injective Boolean morphism $\mu : A \to B$ such that we have $\Diamond \mu(x) \le \mu(\Diamond x)$ for all $x \in A$.

A class C of modal algebras is said to be *stable* iff whenever $\mathfrak{B} \in C$ and \mathfrak{A} has a stable embedding into \mathfrak{B} , then $\mathfrak{A} \in C$ too.

We have dual notions for general frames. $\mathfrak{F} = (W, R, P)$ is a *stable image* of $\mathfrak{F}' = (W', R', P')$ iff there is a continuous (i.e. $S \in P \Rightarrow f^{-1}(S) \in P')$ surjective map $f : W' \to W$ such that *xRy implies* f(x)R'f(y) for all $x, y \in W'$.

A class of (ordinary, general or descriptive) frames is said to be *stable* iff it is closed under stable images.

・ロト ・ 四ト ・ ヨト ・ ヨト

A *stable embedding* of a modal algebra $\mathfrak{A} = (A, \Diamond)$ into a modal algebra $\mathfrak{B} = (B, \Diamond)$ is an injective Boolean morphism $\mu : A \to B$ such that we have $\Diamond \mu(x) \le \mu(\Diamond x)$ for all $x \in A$.

A class C of modal algebras is said to be *stable* iff whenever $\mathfrak{B} \in C$ and \mathfrak{A} has a stable embedding into \mathfrak{B} , then $\mathfrak{A} \in C$ too.

We have dual notions for general frames. $\mathfrak{F} = (W, R, P)$ is a *stable image* of $\mathfrak{F}' = (W', R', P')$ iff there is a continuous (i.e. $S \in P \Rightarrow f^{-1}(S) \in P'$) surjective map $f : W' \to W$ such that xRy implies f(x)R'f(y) for all $x, y \in W'$.

A class of (ordinary, general or descriptive) frames is said to be *stable* iff it is closed under stable images.

< 日 > < 同 > < 回 > < 回 > < 回 > <

A *stable embedding* of a modal algebra $\mathfrak{A} = (A, \Diamond)$ into a modal algebra $\mathfrak{B} = (B, \Diamond)$ is an injective Boolean morphism $\mu : A \to B$ such that we have $\Diamond \mu(x) \le \mu(\Diamond x)$ for all $x \in A$.

A class C of modal algebras is said to be *stable* iff whenever $\mathfrak{B} \in C$ and \mathfrak{A} has a stable embedding into \mathfrak{B} , then $\mathfrak{A} \in C$ too.

We have dual notions for general frames. $\mathfrak{F} = (W, R, P)$ is a *stable image* of $\mathfrak{F}' = (W', R', P')$ iff there is a continuous (i.e. $S \in P \Rightarrow f^{-1}(S) \in P'$) surjective map $f : W' \to W$ such that xRy implies f(x)R'f(y) for all $x, y \in W'$.

A class of (ordinary, general or descriptive) frames is said to be *stable* iff it is closed under stable images.

Stable Canonical Rules

Given a domain (i.e. clopen) $d \subseteq W'$, we say that a stable map f from $\mathfrak{F} = (W, R, P)$ into $\mathfrak{F}' = (W', R', P')$ satisfies the closed domain condition for d iff $f^{-1}(\Diamond d) = \Diamond f^{-1}(d)$ i.e. iff for all x

 $d \cap \uparrow f(x) \neq \varnothing \Rightarrow d \cap f(\uparrow x) \neq \varnothing.$

We introduce now a class of rules, called 'stable canonical rules', see N. & G. Bezhanishvili, R. lemhoff (2014). No transitivity is assumed.

< ロ > < 同 > < 回 > < 回 >

Stable Canonical Rules

Definition

Let $\mathfrak{F} = (F, R)$ be a finite frame and \mathfrak{D} be a set of domains in *F*; the stable canonical rule $\rho(\mathfrak{F}, \mathfrak{D})$ is the multi-conclusion rule:

$$\frac{\bigvee_{i=1}^{n} x_{a_i}, \{\delta_{ij} \mid i \neq j\}, \{x_{a_i} \rightarrow \Box \bigvee_{a_i R b} x_b\}_i, \{\phi_d \mid d \in \mathfrak{D}\}}{\neg x_{a_1} \mid \cdots \mid \neg x_{a_n}}$$

where we suppose that $F = \{a_1, \ldots, a_n\}$ and

•
$$\delta_{ij} := \neg (\mathbf{x}_{a_i} \wedge \mathbf{x}_{a_i});$$

•
$$\phi_d := \bigwedge_i \bigwedge_{b \in d, a_i Rb} (x_b \to \Diamond x_b).$$

Completeness

Proposition

A general frame (W, R, P) refutes $\rho(\mathfrak{F}, \mathfrak{D})$ iff there is a stable surjective map from (W, R, P) onto $\mathfrak{F} = (F, R_F)$ satisfying the closed domain condition for all $d \in \mathfrak{D}$.

We have a completeness result here (without transitivity hypothesis):

Theorem (N. & G. Bezhanishvili & lemhoff 2014)

Given a rule Γ/S one can always find a finite set of stable canonical rules equivalent to it over **K**.

< ロ > < 同 > < 回 > < 回 >

Completeness

Proposition

A general frame (W, R, P) refutes $\rho(\mathfrak{F}, \mathfrak{D})$ iff there is a stable surjective map from (W, R, P) onto $\mathfrak{F} = (F, R_F)$ satisfying the closed domain condition for all $d \in \mathfrak{D}$.

We have a completeness result here (without transitivity hypothesis):

Theorem (N. & G. Bezhanishvili & lemhoff 2014)

Given a rule Γ/S one can always find a finite set of stable canonical rules equivalent to it over **K**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Completeness

Proposition

A general frame (W, R, P) refutes $\rho(\mathfrak{F}, \mathfrak{D})$ iff there is a stable surjective map from (W, R, P) onto $\mathfrak{F} = (F, R_F)$ satisfying the closed domain condition for all $d \in \mathfrak{D}$.

We have a completeness result here (without transitivity hypothesis):

Theorem (N. & G. Bezhanishvili & lemhoff 2014)

Given a rule Γ/S one can always find a finite set of stable canonical rules equivalent to it over **K**.

Fmp

A stable rule is a stable canonical rule of the kind $\rho(\mathfrak{F}, \emptyset)$. A modal calculus *K* is *stable* iff so is the class of modal algebras validating it (equivalently: the class of descriptive frames validating it).

Theorem (N. & G. Bezhanishvili & lemhoff 2014)

- (i) A modal calculus K is stable iff it is axiomatizable via stable rules.
- (ii) A stable modal calculus enjoys the finite model property (fmp).

Fmp

A stable rule is a stable canonical rule of the kind $\rho(\mathfrak{F}, \emptyset)$. A modal calculus *K* is *stable* iff so is the class of modal algebras validating it (equivalently: the class of descriptive frames validating it).

Theorem (N. & G. Bezhanishvili & lemhoff 2014)

- (i) A modal calculus K is stable iff it is axiomatizable via stable rules.
- (ii) A stable modal calculus enjoys the finite model property (fmp).

Fmp

A stable rule is a stable canonical rule of the kind $\rho(\mathfrak{F}, \emptyset)$. A modal calculus *K* is *stable* iff so is the class of modal algebras validating it (equivalently: the class of descriptive frames validating it).

Theorem (N. & G. Bezhanishvili & lemhoff 2014)

- (i) A modal calculus K is stable iff it is axiomatizable via stable rules.
- (ii) A stable modal calculus enjoys the finite model property (fmp).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fmp and Bpp

To get better proof-theoretic properties, rule $\rho(\mathfrak{F}, \emptyset)$ is modified into the rule $\rho^+(\mathfrak{F}, \emptyset)$ below:

$$\frac{\bigvee_{i=1}^{n} x_{a_i}, \quad \bigwedge_{i \neq j} \neg (x_{a_i} \land x_{a_j}), \quad \bigwedge_{i=1}^{n} (x_{a_i} \rightarrow \Box r_{a_i}), \quad \bigwedge_{i=1}^{n} (r_{a_i} \rightarrow \bigvee_{b \in \mathcal{R}_F(a_i)} x_b)}{\neg x_{a_1} \mid \cdots \mid \neg x_{a_n}}$$

Lemma

Rules $\rho(\mathfrak{F}, \emptyset)$ and $\rho^+(\mathfrak{F}, \emptyset)$ are inter-derivable.

-		
H X.	$(\Rightarrow X)$	G.& J.
D.G	u.u	u.u u.

< ロ > < 同 > < 回 > < 回 >

Fmp and Bpp

To get better proof-theoretic properties, rule $\rho(\mathfrak{F}, \emptyset)$ is modified into the rule $\rho^+(\mathfrak{F}, \emptyset)$ below:

$$\frac{\bigvee_{i=1}^{n} x_{a_i}, \quad \bigwedge_{i \neq j} \neg (x_{a_i} \land x_{a_j}), \quad \bigwedge_{i=1}^{n} (x_{a_i} \rightarrow \Box r_{a_i}), \quad \bigwedge_{i=1}^{n} (r_{a_i} \rightarrow \bigvee_{b \in \mathcal{R}_F(a_i)} x_b)}{\neg x_{a_1} \mid \cdots \mid \neg x_{a_n}}$$

Lemma

Rules $\rho(\mathfrak{F}, \emptyset)$ and $\rho^+(\mathfrak{F}, \emptyset)$ are inter-derivable.

B.&		

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bpp for Stable Calculi

Theorem (N. B. & S. G. 2014)

Any modal calculus axiomatized by rules of the kind $\rho^+(\mathfrak{F}, \emptyset)$ enjoys bounded proof property (bpp) and fmp.

Corollary

Let *C* be a stable class of (ordinary) Kripke frames such that membership of a finite frame in *C* is decidable. Then validity of a formula (more generally, of a rule) in *C* is decidable as well.

Bpp for Stable Calculi

Theorem (N. B. & S. G. 2014)

Any modal calculus axiomatized by rules of the kind $\rho^+(\mathfrak{F}, \emptyset)$ enjoys bounded proof property (bpp) and fmp.

Corollary

Let C be a stable class of (ordinary) Kripke frames such that membership of a finite frame in C is decidable. Then validity of a formula (more generally, of a rule) in C is decidable as well.

2) Canonical rules via stable maps

3 Rule Dichotomy Property and Admissible Bases

< 6 b

Dichotomy property

The following result was established in the context of the multi-conclusion reformulation of canonical rules in the sense of M. Zakharyaschev:

Theorem (Jerabek 2009)

Over various common logics (including K4, S4, GL, ...), a canonical rule is either admissible or equivalent to an assumption-free rule.

We investigate the same property in the context of our stable canonical rules.

A (10) A (10)

Dichotomy property

The following result was established in the context of the multi-conclusion reformulation of canonical rules in the sense of M. Zakharyaschev:

Theorem (Jerabek 2009)

Over various common logics (including K4, S4, GL, ...), a canonical rule is either admissible or equivalent to an assumption-free rule.

We investigate the same property in the context of our stable canonical rules.

< ロ > < 同 > < 回 > < 回 >

Dichotomy property

The following result was established in the context of the multi-conclusion reformulation of canonical rules in the sense of M. Zakharyaschev:

Theorem (Jerabek 2009)

Over various common logics (including K4, S4, GL,...), a canonical rule is either admissible or equivalent to an assumption-free rule.

We investigate the same property in the context of our stable canonical rules.

< ロ > < 同 > < 回 > < 回 >

Admissible Rules

We let $(S_{n,\ell}^m)$ be the rule

$$\frac{\bigwedge_{l=1}^{\ell}(\Box x_{l} \to x_{l}) \land \bigwedge_{k=1}^{m} \Box(r_{k} \to \Box(r_{k} \lor \Box^{+}q)) \to \bigvee_{i=1}^{n} \Box p_{i}}{\Box^{+}q \to \rho_{1}| \dots |\Box^{+}q \to \rho_{n}}$$
(1)

and (T_m) be the rule

$$\frac{\bigwedge_{k=1}^{m}(\Diamond r_{k} \to \Diamond (r_{k} \land \Box^{+}q)) \to \bigvee_{i=1}^{n} \Box p_{i}}{\Box^{+}q \to p_{1}|\ldots|\Box^{+}q \to p_{n}}$$
(2)

Proposition

The rules $(S_{n,\ell}^m)$ are admissible in **K4** for all $n, m, \ell \in \omega$, and the rules (T_m) are admissible in **K4** for all $m \in \omega$.

A (10) A (10)

A Semantic Ingredient

From now on, all frames are assumed to be transitive.

Definition

A stable canonical rule $\rho(\mathfrak{F}, \mathfrak{D})$ is called *r*-*trivial* if for every $S \subseteq W$, there is a reflexive $w^{\circ} \in W$ such that

• $S \subseteq R[w^\circ]$; and

• for all $U \in \mathfrak{D}$, if $U \cap R[w^{\circ}] \neq \emptyset$, then $U \cap (\{w^{\circ}\} \cup R^{+}[S]) \neq \emptyset$.

A stable canonical rule $\rho(\mathfrak{F}, \mathfrak{D})$ is called *u*-trivial if for every $S \subseteq W$, there is $w^{\bullet} \in W$ such that

• $S \subseteq R[w^{\bullet}]$; and

• for all $U \in \mathfrak{D}$, if $U \cap R[w^{\bullet}] \neq \emptyset$, then $U \cap R^+[S] \neq \emptyset$.

A stable canonical rule is *trivial* if it is both r-trivial and u-trivial.

The intuitionistic version of r-triviality is also used in J. Goudsmit's thesis under the name of 'adequate extendability'.

The dichotomy property can now be stated as follows.

Theorem

The following are equivalent:

- (1) $\rho(\mathfrak{F},\mathfrak{D})$ is admissible.
- ② $\rho(\mathfrak{F},\mathfrak{D})$ is derivable from $\{S_{n,\ell}^m : m, n, \ell \in \omega\} \cup \{T_m : m \in \omega\}.$
- $\bigcirc \rho(\mathfrak{F},\mathfrak{D})$ is not trivial.
- ($\mathfrak{F},\mathfrak{D}$) is not equivalent to an assumption-free rule.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The intuitionistic version of r-triviality is also used in J. Goudsmit's thesis under the name of 'adequate extendability'.

The dichotomy property can now be stated as follows.

Theorem

The following are equivalent:

- (1) $\rho(\mathfrak{F},\mathfrak{D})$ is admissible.
- ② $\rho(\mathfrak{F},\mathfrak{D})$ is derivable from { $S_{n,\ell}^m$: $m, n, \ell \in \omega$ } ∪ { T_m : $m \in \omega$ }.
- \bigcirc $\rho(\mathfrak{F},\mathfrak{D})$ is not trivial.
- If $\rho(\mathfrak{F},\mathfrak{D})$ is not equivalent to an assumption-free rule.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The intuitionistic version of r-triviality is also used in J. Goudsmit's thesis under the name of 'adequate extendability'.

The dichotomy property can now be stated as follows.

Theorem

The following are equivalent:

- $\rho(\mathfrak{F},\mathfrak{D})$ is admissible.
- ② $\rho(\mathfrak{F},\mathfrak{D})$ is derivable from { $S_{n,\ell}^m$: $m, n, \ell \in \omega$ } ∪ { T_m : $m \in \omega$ }.
- \bigcirc $\rho(\mathfrak{F},\mathfrak{D})$ is not trivial.
- $\rho(\mathfrak{F},\mathfrak{D})$ is not equivalent to an assumption-free rule.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof of (3) \Rightarrow (2) (Sketch): if $\rho(\mathfrak{F}, \mathfrak{D})$ is not derivable from $\{S_{n,\ell}^m : m, n, \ell \in \omega\} \cup \{T_m : m \in \omega\}$, by algebraic completeness, there is a transitive descriptive frame (W, R, P), where these rules are valid and $\rho(\mathfrak{F}, \mathfrak{D})$ fails.

Then there is a continuous stable morphism from W onto \mathfrak{F} satisfying (CDC) for \mathfrak{D} .

This morphism and the shapes of $S_{n,\ell}^m$, T_m are used to build the points x^{\bullet} , x° required by the triviality condition.

イロト イ団ト イヨト イヨト

Proof of (3) \Rightarrow (2) (Sketch): if $\rho(\mathfrak{F}, \mathfrak{D})$ is not derivable from $\{S_{n,\ell}^m : m, n, \ell \in \omega\} \cup \{T_m : m \in \omega\}$, by algebraic completeness, there is a transitive descriptive frame (*W*, *R*, *P*), where these rules are valid and $\rho(\mathfrak{F}, \mathfrak{D})$ fails.

Then there is a continuous stable morphism from W onto \mathfrak{F} satisfying (CDC) for \mathfrak{D} .

This morphism and the shapes of $S_{n,\ell}^m$, T_m are used to build the points x^{\bullet} , x° required by the triviality condition.

イロト イ理ト イヨト イヨト

Proof of (3) \Rightarrow (2) (Sketch): if $\rho(\mathfrak{F}, \mathfrak{D})$ is not derivable from $\{S_{n,\ell}^m : m, n, \ell \in \omega\} \cup \{T_m : m \in \omega\}$, by algebraic completeness, there is a transitive descriptive frame (*W*, *R*, *P*), where these rules are valid and $\rho(\mathfrak{F}, \mathfrak{D})$ fails.

Then there is a continuous stable morphism from W onto \mathfrak{F} satisfying (CDC) for \mathfrak{D} .

This morphism and the shapes of $S_{n,\ell}^m$, T_m are used to build the points x^{\bullet} , x° required by the triviality condition.

イロン イ理 とくほ とくほ とう

Proof of (4) \Rightarrow (3) (Sketch): this is the most difficult point.

We need a Lemma saying that a rule $\rho(\mathfrak{F}, \mathfrak{D})$ is equivalent to an assumption-free rule iff every stable morphism from a clopen upset of a transitive descriptive frame (W, R, P) onto \mathfrak{F} that satisfies (CDC) for \mathfrak{D} can be extended to the whole of W.

Then triviality is used to prove that such extensions indeed exist.

Proof of (4) \Rightarrow (3) (Sketch): this is the most difficult point.

We need a Lemma saying that a rule $\rho(\mathfrak{F}, \mathfrak{D})$ is equivalent to an assumption-free rule iff every stable morphism from a clopen upset of a transitive descriptive frame (W, R, P) onto \mathfrak{F} that satisfies (CDC) for \mathfrak{D} can be extended to the whole of W.

Then triviality is used to prove that such extensions indeed exist.

< ロ > < 同 > < 回 > < 回 >

Proof of (4) \Rightarrow (3) (Sketch): this is the most difficult point.

We need a Lemma saying that a rule $\rho(\mathfrak{F}, \mathfrak{D})$ is equivalent to an assumption-free rule iff every stable morphism from a clopen upset of a transitive descriptive frame (W, R, P) onto \mathfrak{F} that satisfies (CDC) for \mathfrak{D} can be extended to the whole of W.

Then triviality is used to prove that such extensions indeed exist.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Corollary

The rules $\{S_{n,\ell}^m : m, n \in \omega\} \cup \{T_m : m \in \omega\}$ form an admissible basis for **K4**.

The admissible basis $\{S_{n,\ell}^m : m, n \in \omega\} \cup \{T_m : m \in \omega\}$ is equivalent to known admissible bases. Since rule admissibility is Π_1^0 and derivability from a recursive set of rules is Σ_1^0 , we get:

Corollary

Admissibility of inference rules in **K4** is decidable.

A more practical procedure would compute, for a given rule, a set of stable canonical rules equivalent to it and check triviality for each of them.

Corollary

The rules $\{S_{n,\ell}^m : m, n \in \omega\} \cup \{T_m : m \in \omega\}$ form an admissible basis for **K4**.

The admissible basis $\{S_{n,\ell}^m : m, n \in \omega\} \cup \{T_m : m \in \omega\}$ is equivalent to known admissible bases. Since rule admissibility is Π_1^0 and derivability from a recursive set of rules is Σ_1^0 , we get:

Corollary

Admissibility of inference rules in K4 is decidable.

A more practical procedure would compute, for a given rule, a set of stable canonical rules equivalent to it and check triviality for each of them.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Corollary

The rules $\{S_{n,\ell}^m : m, n \in \omega\} \cup \{T_m : m \in \omega\}$ form an admissible basis for **K4**.

The admissible basis $\{S_{n,\ell}^m : m, n \in \omega\} \cup \{T_m : m \in \omega\}$ is equivalent to known admissible bases. Since rule admissibility is Π_1^0 and derivability from a recursive set of rules is Σ_1^0 , we get:

Corollary

Admissibility of inference rules in K4 is decidable.

A more practical procedure would compute, for a given rule, a set of stable canonical rules equivalent to it and check triviality for each of them.

Corollary

The rules $\{S_{n,\ell}^m : m, n \in \omega\} \cup \{T_m : m \in \omega\}$ form an admissible basis for **K4**.

The admissible basis $\{S_{n,\ell}^m : m, n \in \omega\} \cup \{T_m : m \in \omega\}$ is equivalent to known admissible bases. Since rule admissibility is Π_1^0 and derivability from a recursive set of rules is Σ_1^0 , we get:

Corollary

Admissibility of inference rules in K4 is decidable.

A more practical procedure would compute, for a given rule, a set of stable canonical rules equivalent to it and check triviality for each of them.

Little modifications adjust the above results to S4 and to IPC. For S4, we just take out the rules T_m . We give few more details for IPC.

Let (G_n) be the rule (this is a version of Visser's *n*-th rule):

 $\frac{(\bigvee_{i=1}^n p_i \to q) \to \bigvee_{i=1}^n p_i}{q \to p_1 | \dots | q \to p_n}$

Stable canonical rules $\gamma(\mathfrak{F}, \mathfrak{D})$ in intuitionistic language can be introduced with straightforward modifications to the modal case. Completeness for these rules holds too.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Little modifications adjust the above results to S4 and to IPC. For S4, we just take out the rules T_m . We give few more details for IPC.

Let (G_n) be the rule (this is a version of Visser's *n*-th rule):

$$\frac{(\bigvee_{i=1}^n p_i \to q) \to \bigvee_{i=1}^n p_i}{q \to p_1 | \dots | q \to p_n}$$

Stable canonical rules $\gamma(\mathfrak{F},\mathfrak{D})$ in intuitionistic language can be introduced with straightforward modifications to the modal case. Completeness for these rules holds too.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(3)

Little modifications adjust the above results to S4 and to IPC. For S4, we just take out the rules T_m . We give few more details for IPC.

Let (G_n) be the rule (this is a version of Visser's *n*-th rule):

$$\frac{(\bigvee_{i=1}^{n} p_{i} \to q) \to \bigvee_{i=1}^{n} p_{i}}{q \to p_{1} | \dots | q \to p_{n}}$$
(3)

Stable canonical rules $\gamma(\mathfrak{F}, \mathfrak{D})$ in intuitionistic language can be introduced with straightforward modifications to the modal case. Completeness for these rules holds too.

Theorem

The following are equivalent:

- $\gamma(\mathfrak{F},\mathfrak{D})$ is admissible.
- **2** $\gamma(\mathfrak{F},\mathfrak{D})$ is derivable from $\{G_n : n \in \omega\}$.
- \mathfrak{G} $\gamma(\mathfrak{F},\mathfrak{D})$ is not r-trivial.
- $\gamma(\mathfrak{F},\mathfrak{D})$ is not equivalent to an assumption-free rule.

Corollary

Rule admissibility in **IPC** is decidable; the rules $\{G_n : n \in \omega\}$ form an admissible basis.

イロト 不得 トイヨト イヨト

Theorem

The following are equivalent:

- $\gamma(\mathfrak{F},\mathfrak{D})$ is admissible.
- **2** $\gamma(\mathfrak{F},\mathfrak{D})$ is derivable from $\{G_n : n \in \omega\}$.
- \mathfrak{G} $\gamma(\mathfrak{F},\mathfrak{D})$ is not r-trivial.
- $\gamma(\mathfrak{F},\mathfrak{D})$ is not equivalent to an assumption-free rule.

Corollary

Rule admissibility in **IPC** is decidable; the rules $\{G_n : n \in \omega\}$ form an admissible basis.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- unlike the Zakharyaschev-Jerabek canonical rules, stable canonical rules work above **K** too;
- whether some dichotomy property holds above K is unclear;
- rule admissibility and unification over **K** are long-standing open problems;
- in any case, stable canonical rules are a powerful tool for analyzing modal logics, and also rule admissibility.

THANKS FOR ATTENTION !

< ロ > < 同 > < 回 > < 回 >

- unlike the Zakharyaschev-Jerabek canonical rules, stable canonical rules work above **K** too;
- whether some dichotomy property holds above K is unclear;
- rule admissibility and unification over **K** are long-standing open problems;
- in any case, stable canonical rules are a powerful tool for analyzing modal logics, and also rule admissibility.

THANKS FOR ATTENTION !

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- unlike the Zakharyaschev-Jerabek canonical rules, stable canonical rules work above K too;
- whether some dichotomy property holds above K is unclear;
- rule admissibility and unification over **K** are long-standing open problems;
- in any case, stable canonical rules are a powerful tool for analyzing modal logics, and also rule admissibility.

THANKS FOR ATTENTION !

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- unlike the Zakharyaschev-Jerabek canonical rules, stable canonical rules work above **K** too;
- whether some dichotomy property holds above K is unclear;
- rule admissibility and unification over **K** are long-standing open problems;
- in any case, stable canonical rules are a powerful tool for analyzing modal logics, and also rule admissibility.

THANKS FOR ATTENTION !

< 口 > < 同 > < 回 > < 回 > < 回 > <

- unlike the Zakharyaschev-Jerabek canonical rules, stable canonical rules work above **K** too;
- whether some dichotomy property holds above K is unclear;
- rule admissibility and unification over K are long-standing open problems;
- in any case, stable canonical rules are a powerful tool for analyzing modal logics, and also rule admissibility.

THANKS FOR ATTENTION !

< 口 > < 同 > < 回 > < 回 > < 回 > <

- unlike the Zakharyaschev-Jerabek canonical rules, stable canonical rules work above **K** too;
- whether some dichotomy property holds above K is unclear;
- rule admissibility and unification over **K** are long-standing open problems;
- in any case, stable canonical rules are a powerful tool for analyzing modal logics, and also rule admissibility.

THANKS FOR ATTENTION !

< 回 > < 三 > < 三 >