Topological clones

Michael Pinsker

Technische Universität Wien / Univerzita Karlova v Praze Funded by Austrian Science Fund (FWF) grant P27600

TACL 2015

Topological clones

Michael Pinsker

I: Algebras, function clones, abstract clones, Birkhoff's theorem

- I: Algebras, function clones, abstract clones, Birkhoff's theorem
- II: Topological clones, Topological Birkhoff

- I: Algebras, function clones, abstract clones, Birkhoff's theorem
- II: Topological clones, Topological Birkhoff

Commercial break: Reconstruction

- I: Algebras, function clones, abstract clones, Birkhoff's theorem
- **II:** Topological clones, Topological Birkhoff

Commercial break: Reconstruction

III: Logic: pp interpretations, Constraint Satisfaction Problems

- I: Algebras, function clones, abstract clones, Birkhoff's theorem
- **II:** Topological clones, Topological Birkhoff

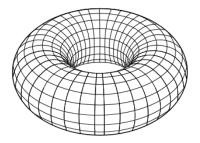
Commercial break: Reconstruction

- **III:** Logic: pp interpretations, Constraint Satisfaction Problems
- IV: Abstract clones revisited

- I: Algebras, function clones, abstract clones, Birkhoff's theorem
- II: Topological clones, Topological Birkhoff

Commercial break: Reconstruction

- **III:** Logic: pp interpretations, Constraint Satisfaction Problems
- IV: Topological clones revisited



I: Abstract clones

Let $\mathfrak{A} = (A; (f_i)_{i \in \tau})$ be an algebra with signature τ .

Let $\mathfrak{A} = (A; (f_i)_{i \in \tau})$ be an algebra with signature τ .

Every abstract τ -term *t* induces a term function $t^{\mathfrak{A}}$ on *A*.

Let $\mathfrak{A} = (A; (f_i)_{i \in \tau})$ be an algebra with signature τ .

Every abstract τ -term *t* induces a term function $t^{\mathfrak{A}}$ on *A*.

 $Clo(\mathfrak{A})$ ("clone of \mathfrak{A} ") is the set of its term functions.

Let $\mathfrak{A} = (A; (f_i)_{i \in \tau})$ be an algebra with signature τ .

Every abstract τ -term *t* induces a term function $t^{\mathfrak{A}}$ on *A*.

 $Clo(\mathfrak{A})$ ("clone of \mathfrak{A} ") is the set of its term functions.

 $Clo(\mathfrak{A})$ is a function clone:

- closed under composition: $f(g_1(x_1,...,x_m),...,g_n(x_1,...,x_m));$
- contains projections $\pi_i^n(x_1,\ldots,x_n) = x_i$.

Let $\mathfrak{A} = (A; (f_i)_{i \in \tau})$ be an algebra with signature τ .

Every abstract τ -term *t* induces a term function $t^{\mathfrak{A}}$ on *A*.

 $Clo(\mathfrak{A})$ ("clone of \mathfrak{A} ") is the set of its term functions.

 $Clo(\mathfrak{A})$ is a function clone:

- closed under composition: $f(g_1(x_1,...,x_m),...,g_n(x_1,...,x_m));$
- contains projections $\pi_i^n(x_1,\ldots,x_n) = x_i$.

Many properties of an algebra depend only on its function clone:

e.g. homomorphic images, subalgebras.

Let $\mathfrak{A} = (A; (f_i)_{i \in \tau})$ be an algebra with signature τ .

Every abstract τ -term *t* induces a term function $t^{\mathfrak{A}}$ on *A*.

 $Clo(\mathfrak{A})$ ("clone of \mathfrak{A} ") is the set of its term functions.

 $Clo(\mathfrak{A})$ is a function clone:

- closed under composition: $f(g_1(x_1,...,x_m),...,g_n(x_1,...,x_m));$
- contains projections $\pi_i^n(x_1,\ldots,x_n) = x_i$.

Many properties of an algebra depend only on its function clone:

e.g. homomorphic images, subalgebras.

Here: algebras up to "clone equivalence".

Function clones carry algebraic structure via equations.

Function clones carry algebraic structure via equations.

Can model this structure via multi-sorted algebra:

- one sort for each arity;
- composition functions;
- projections are distinguished elements (constants).

Function clones carry algebraic structure via equations.

Can model this structure via multi-sorted algebra:

- one sort for each arity;
- composition functions;
- projections are distinguished elements (constants).

Let $\mathfrak{C}, \mathfrak{D}$ be function clones. $\xi \colon \mathfrak{C} \to \mathfrak{D}$ clone homomorphism if

Function clones carry algebraic structure via equations.

Can model this structure via multi-sorted algebra:

- one sort for each arity;
- composition functions;
- projections are distinguished elements (constants).

Let \mathcal{C}, \mathcal{D} be function clones. $\xi \colon \mathcal{C} \to \mathcal{D}$ clone homomorphism if

- preserves arities;
- sends each projection π_i^n in \mathcal{C} to same projection in \mathcal{D} ;

commutes with composition:

 $\xi(f(g_1,\ldots,g_n))=\xi(f)(\xi(g_1),\ldots,\xi(g_n)).$

Function clones carry algebraic structure via equations.

Can model this structure via multi-sorted algebra:

- one sort for each arity;
- composition functions;
- projections are distinguished elements (constants).

Let \mathcal{C}, \mathcal{D} be function clones. $\xi \colon \mathcal{C} \to \mathcal{D}$ clone homomorphism if

- preserves arities;
- sends each projection π_i^n in \mathcal{C} to same projection in \mathcal{D} ;

• commutes with composition: $\xi(f(g_1,...,g_n)) = \xi(f)(\xi(g_1),...,\xi(g_n)).$

We write $\mathfrak{C} \to \mathfrak{D}$ if there exists a clone homomorphism from \mathfrak{C} to \mathfrak{D} .

Topological clones

Michael Pinsker

For an algebra \mathfrak{A} :

For an algebra \mathfrak{A} :

- \blacksquare H($\mathfrak{A})$...homomorphic images / factor algebras of \mathfrak{A}
- $S(\mathfrak{A})$...subalgebras of \mathfrak{A}
- P^{fin}(𝔄)... finite powers of 𝔅
- P(𝔅)...powers of 𝔅

For an algebra \mathfrak{A} :

- \blacksquare H($\mathfrak{A})$...homomorphic images / factor algebras of \mathfrak{A}
- $S(\mathfrak{A})$...subalgebras of \mathfrak{A}
- $P^{fin}(\mathfrak{A})$... finite powers of \mathfrak{A}
- P(𝔅)...powers of 𝔅

Similarly for function clone \mathbb{C} : it acts on congruence classes, invariant subsets, powers of its domain.

For an algebra \mathfrak{A} :

- \blacksquare H($\mathfrak{A})$...homomorphic images / factor algebras of \mathfrak{A}
- $S(\mathfrak{A})$...subalgebras of \mathfrak{A}
- $P^{fin}(\mathfrak{A})$... finite powers of \mathfrak{A}
- P(𝔅)...powers of 𝔅

Similarly for function clone \mathbb{C} : it acts on congruence classes, invariant subsets, powers of its domain. Write $H(\mathbb{C}), S(\mathbb{C}), P(\mathbb{C})$.

For an algebra \mathfrak{A} :

- \blacksquare H($\mathfrak{A})$... homomorphic images / factor algebras of \mathfrak{A}
- $S(\mathfrak{A})$...subalgebras of \mathfrak{A}
- P^{fin}(𝔄)... finite powers of 𝔄
- P(𝔅)...powers of 𝔅

Similarly for function clone C: it acts on congruence classes, invariant subsets, powers of its domain. Write H(C), S(C), P(C).

Theorem (Birkhoff 1935)

Let $\mathfrak{C}, \mathfrak{D}$ be function clones. TFAE:

For an algebra \mathfrak{A} :

- \blacksquare H($\mathfrak{A})$... homomorphic images / factor algebras of \mathfrak{A}
- $S(\mathfrak{A})$...subalgebras of \mathfrak{A}
- $P^{fin}(\mathfrak{A})$... finite powers of \mathfrak{A}
- P(𝔅)...powers of 𝔅

Similarly for function clone \mathbb{C} : it acts on congruence classes, invariant subsets, powers of its domain. Write $H(\mathbb{C}), S(\mathbb{C}), P(\mathbb{C})$.

Theorem (Birkhoff 1935)

Let $\mathfrak{C}, \mathfrak{D}$ be function clones. TFAE:

- D ∈ HSP(C);
- D can be obtained from C applying H, S, P;
- $\blacksquare \ \mathfrak{C} \to \mathfrak{D} \text{ surjectively.}$

Birkhoff II: Finite powers

Topological clones

Birkhoff II: Finite powers

Theorem (Birkhoff 1935)

Let \mathcal{C}, \mathcal{D} be function clones on a finite domain. TFAE:

- $\mathcal{D} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{C});$
- D can be obtained from C applying H, S, P^{fin};
- $\blacksquare \ \mathfrak{C} \to \mathfrak{D} \text{ surjectively.}$

Birkhoff II: Finite powers

Theorem (Birkhoff 1935)

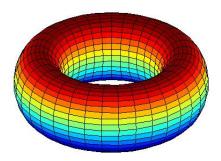
Let \mathbb{C}, \mathbb{D} be function clones on a finite domain. TFAE:

- $\mathcal{D} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{C});$
- D can be obtained from C applying H, S, P^{fin};
- $\mathcal{C} \to \mathcal{D}$ surjectively.

What about HSP^{fin} of infinite function clones?

Analogy with groups and monoids

Permutation group	Abstract group
Transformation monoid	Abstract monoid
Function clone	Abstract clone



II: Topological clones

Pointwise convergence

Topological clones

Michael Pinsker

Pointwise convergence

Functions clones carry also topological structure: Pointwise convergence on functions $f: D^n \rightarrow D$.

Pointwise convergence

Functions clones carry also topological structure:

Pointwise convergence on functions $f: D^n \to D$.

 $(f_i)_{i \in \omega}$ converges to f iff $f(\overline{c}) = f_i(\overline{c})$ eventually, for every $\overline{c} \in D^n$.

Functions clones carry also topological structure:

Pointwise convergence on functions $f: D^n \to D$.

 $(f_i)_{i \in \omega}$ converges to f iff $f(\overline{c}) = f_i(\overline{c})$ eventually, for every $\overline{c} \in D^n$.

Equivalently: D... discrete; D^{D^n} product topology.

Functions clones carry also topological structure:

Pointwise convergence on functions $f: D^n \to D$.

 $(f_i)_{i \in \omega}$ converges to f iff $f(\overline{c}) = f_i(\overline{c})$ eventually, for every $\overline{c} \in D^n$.

Equivalently: D... discrete; D^{D^n} product topology.

Set of all finitary functions $\bigcup_n D^{D^n} \dots$ sum space. Function clones subspace.

Functions clones carry also topological structure:

Pointwise convergence on functions $f: D^n \to D$.

 $(f_i)_{i \in \omega}$ converges to f iff $f(\overline{c}) = f_i(\overline{c})$ eventually, for every $\overline{c} \in D^n$.

Equivalently: D... discrete; D^{D^n} product topology.

Set of all finitary functions $\bigcup_n D^{D^n} \dots$ sum space. Function clones subspace.

If *D* countable: $\bigcup_n D^{D^n}$ is homeomorphic to the Baire space $\mathbb{N}^{\mathbb{N}}$.

Functions clones carry also topological structure:

Pointwise convergence on functions $f: D^n \to D$.

 $(f_i)_{i \in \omega}$ converges to f iff $f(\overline{c}) = f_i(\overline{c})$ eventually, for every $\overline{c} \in D^n$.

Equivalently: D... discrete; D^{D^n} product topology.

Set of all finitary functions $\bigcup_n D^{D^n} \dots$ sum space. Function clones subspace.

If *D* countable: $\bigcup_n D^{D^n}$ is homeomorphic to the Baire space $\mathbb{N}^{\mathbb{N}}$. Complete metric separable (=Polish) space.

Functions clones carry also topological structure:

Pointwise convergence on functions $f: D^n \to D$.

 $(f_i)_{i \in \omega}$ converges to f iff $f(\overline{c}) = f_i(\overline{c})$ eventually, for every $\overline{c} \in D^n$.

Equivalently: D... discrete; D^{D^n} product topology.

Set of all finitary functions $\bigcup_n D^{D^n} \dots$ sum space. Function clones subspace.

If *D* countable: $\bigcup_n D^{D^n}$ is homeomorphic to the Baire space $\mathbb{N}^{\mathbb{N}}$. Complete metric separable (=Polish) space.

For finite function clones: topology discrete.

Topological clones

Michael Pinsker

Definition

A topological clone is an abstract clone + topology such that composition is continuous.

Definition

A topological clone is an abstract clone + topology such that composition is continuous.

Structure preserving mappings: continuous clone homomorphisms.

Definition

A topological clone is an abstract clone + topology such that composition is continuous.

Structure preserving mappings: continuous clone homomorphisms.

Permutation group	Topological group	Abstract group
Transformation monoid	Topological monoid	Abstract monoid
Function clone	Topological clone	Abstract clone

Definition

A topological clone is an abstract clone + topology such that composition is continuous.

Structure preserving mappings: continuous clone homomorphisms.

Permutation group	Topological group	Abstract group
Transformation monoid	Topological monoid	Abstract monoid
Function clone	Topological clone	Abstract clone

Theorem (Variant of "Topological Birkhoff", Bodirsky + MP 2011)

Let \mathbb{C} , \mathbb{D} be function clones on an at most countable domain, where \mathbb{D} is finitely generated. TFAE:

Definition

A topological clone is an abstract clone + topology such that composition is continuous.

Structure preserving mappings: continuous clone homomorphisms.

Permutation group	Topological group	Abstract group
Transformation monoid	Topological monoid	Abstract monoid
Function clone	Topological clone	Abstract clone

Theorem (Variant of "Topological Birkhoff", Bodirsky + MP 2011)

Let \mathbb{C} , \mathbb{D} be function clones on an at most countable domain, where \mathbb{D} is finitely generated. TFAE:

- $\blacksquare \mathcal{D} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{C});$
- $\blacksquare \ {\mathfrak C} \to {\mathfrak D} \ {\it surjectively} + {\it uniformly continuously}.$

Topological clones

Michael Pinsker

For many closed function clones C, the algebraic structure determines the topological structure!

For many closed function clones C,

the algebraic structure determines the topological structure!

Every isomorphism between \mathbb{C} and another closed function clone \mathcal{D} is a homeomorphism ("reconstruction").

For many closed function clones C, the algebraic structure determines the topological structure!

Every isomorphism between \mathbb{C} and another closed function clone \mathcal{D} is a homeomorphism ("reconstruction").

Example: automorphism group, polymorphism clone of the random graph.

For many closed function clones C, the algebraic structure determines the topological structure!

Every isomorphism between \mathbb{C} and another closed function clone \mathcal{D} is a homeomorphism ("reconstruction").

Example: automorphism group, polymorphism clone of the random graph.

Impossible to construct non-continuous homomorphism between closed permutation groups on ω in ZF+DC (need full AC).

For many closed function clones C, the algebraic structure determines the topological structure!

Every isomorphism between \mathbb{C} and another closed function clone \mathcal{D} is a homeomorphism ("reconstruction").

Example: automorphism group, polymorphism clone of the random graph.

Impossible to construct non-continuous homomorphism between closed permutation groups on ω in ZF+DC (need full AC).

Michael Kompatscher, Wednesday 10:30, in ZFC:

For many closed function clones C, the algebraic structure determines the topological structure!

Every isomorphism between \mathbb{C} and another closed function clone \mathcal{D} is a homeomorphism ("reconstruction").

Example: automorphism group, polymorphism clone of the random graph.

Impossible to construct non-continuous homomorphism between closed permutation groups on ω in ZF+DC (need full AC).

Michael Kompatscher, Wednesday 10:30, in ZFC:

Two closed function clones which are isomorphic, but not topologically. (Bodirsky + Evans + Kompatscher + MP 2015)

С			4		3		2	8			9	1			B
7						A				6			4		
	E		8	D				F		5	2		С	7	
			0		7				B		D		6		E
4				9							E		1		
	6		2							0		5			3
	0	в	1	4		2			9				E		
	9	5			A	в	C	6			7				
	С		в		6		F	A	2		5			0	4
A		2			5	D	0			С	8	3	в		1
		0	F	в								D		2	
5			3		8				1		0	9	F		
3	8			5		6	E	0		F				9	
		С		F		1						в		E	
0							8				6	7			D
		4		A	D		7		E		С	2			5

III: pp interpretations, Constraint Satisfaction Problems

Topological clones

Michael Pinsker

Let $\Gamma = (A; (R_i)_{i \in \tau})$ be a relational structure.

Let $\Gamma = (A; (R_i)_{i \in \tau})$ be a relational structure.

Pol(Γ)... set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

Let $\Gamma = (A; (R_i)_{i \in \tau})$ be a relational structure.

 $\mathsf{Pol}(\Gamma)$... set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So $f(x_1, \ldots, x_n) \in \text{Pol}(\Gamma)$ iff $f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$ and all relations R of Γ .

Let $\Gamma = (A; (R_i)_{i \in \tau})$ be a relational structure.

 $\mathsf{Pol}(\Gamma)$... set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So $f(x_1,...,x_n) \in \text{Pol}(\Gamma)$ iff $f(r_1,...,r_n) \in R$ for all $r_1,...,r_n \in R$ and all relations R of Γ .

Elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

Let $\Gamma = (A; (R_i)_{i \in \tau})$ be a relational structure.

 $\mathsf{Pol}(\Gamma)$... set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So $f(x_1, ..., x_n) \in \text{Pol}(\Gamma)$ iff $f(r_1, ..., r_n) \in R$ for all $r_1, ..., r_n \in R$ and all relations R of Γ .

Elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

 $Pol(\Gamma)$ is a function clone:

- closed under composition
- contains projections.

Let $\Gamma = (A; (R_i)_{i \in \tau})$ be a relational structure.

 $\mathsf{Pol}(\Gamma)$... set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So $f(x_1,...,x_n) \in \text{Pol}(\Gamma)$ iff $f(r_1,...,r_n) \in R$ for all $r_1,...,r_n \in R$ and all relations R of Γ .

Elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

 $Pol(\Gamma)$ is a function clone:

- closed under composition
- contains projections.

```
Observe: Pol(\Gamma) \supseteq End(\Gamma) \supseteq Aut(\Gamma).
```

Automorphism group	Perm. group	Top. gr.	Abstr. gr.
Endomorphism monoid	Transf. monoid	Top. mon.	Abstr. mon.
Polymorphism clone	Function clone	Top. clone	Abstr. clone

Automorphism group	Perm. group	Top. gr.	Abstr. gr.
Endomorphism monoid	Transf. monoid	Top. mon.	Abstr. mon.
Polymorphism clone	Function clone	Top. clone	Abstr. clone

The closed function clones are precisely the polymorphism clones of structures.

Automorphism group	Perm. group	Top. gr.	Abstr. gr.
Endomorphism monoid	Transf. monoid	Top. mon.	Abstr. mon.
Polymorphism clone	Function clone	Top. clone	Abstr. clone

The closed function clones are precisely the polymorphism clones of structures.

Let Γ , Δ be relational structures.

Automorphism group	Perm. group	Top. gr.	Abstr. gr.
Endomorphism monoid	Transf. monoid	Top. mon.	Abstr. mon.
Polymorphism clone	Function clone	Top. clone	Abstr. clone

The closed function clones are precisely the polymorphism clones of structures.

Let Γ , Δ be relational structures.

What does $Pol(\Delta) \in HSP^{fin}(Pol(\Gamma))$ imply for Γ, Δ ?

A formula is primitive positive (pp) iff it is of the form

 $\exists x_1 \cdots \exists x_n \psi_1 \wedge \cdots \wedge \psi_m,$

where ψ_i are atomic.

A formula is primitive positive (pp) iff it is of the form

 $\exists x_1 \cdots \exists x_n \psi_1 \wedge \cdots \wedge \psi_m,$

where ψ_i are atomic.

Theorem (Bulatov + Jeavons + Krokhin 2000; Bodirsky + MP 2011) Let Γ , Δ be countable ω -categorical or finite relational structures. *TFAE*:

A formula is primitive positive (pp) iff it is of the form

 $\exists x_1 \cdots \exists x_n \psi_1 \wedge \cdots \wedge \psi_m,$

where ψ_i are atomic.

Theorem (Bulatov + Jeavons + Krokhin 2000; Bodirsky + MP 2011) Let Γ , Δ be countable ω -categorical or finite relational structures. *TFAE*:

■ $Pol(\Delta)$ contains a clone in $HSP^{fin}(Pol(\Gamma))$;

A formula is primitive positive (pp) iff it is of the form

 $\exists x_1 \cdots \exists x_n \psi_1 \wedge \cdots \wedge \psi_m,$

where ψ_i are atomic.

Theorem (Bulatov + Jeavons + Krokhin 2000; Bodirsky + MP 2011) Let Γ , Δ be countable ω -categorical or finite relational structures. *TFAE*:

■ $Pol(\Delta)$ contains a clone in $HSP^{fin}(Pol(\Gamma))$;

 \blacksquare \triangle has a pp interpretation in Γ :

it is a pp-definable homomorphic image of a pp-definable subuniverse of a finite power of a structure which is pp-definable in Γ .

pp interpretations and topological clones

Theorem (Bodirsky + MP '11)

Let Γ be countable ω -categorical or finite, and Δ be finite. TFAE:

■ $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;

 \blacksquare \triangle has a pp interpretation in Γ .

Theorem (Bodirsky + MP '11)

Let Γ be countable ω -categorical or finite, and Δ be finite. TFAE:

- $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;
- \blacksquare \triangle has a pp interpretation in Γ .

Remark: Continuity \implies uniform continuity since Γ is ω -categorical.

Theorem (Bodirsky + MP '11)

Let Γ be countable ω -categorical or finite, and Δ be finite. TFAE:

- $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;
- \blacksquare \triangle has a pp interpretation in Γ .

Remark: Continuity \implies uniform continuity since Γ is ω -categorical.

For ω -categorical Δ :

Theorem (Bodirsky + MP '11)

Let Γ be countable ω -categorical or finite, and Δ be finite. TFAE:

- $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;
- \blacksquare \triangle has a pp interpretation in Γ .

Remark: Continuity \implies uniform continuity since Γ is ω -categorical.

For ω -categorical Δ : have to require that $\xi[Pol(\Gamma)]$ is dense in the polymorphism clone of an ω -categorical structure.

Theorem (Bodirsky + MP '11)

Let Γ be countable ω -categorical or finite, and Δ be finite. TFAE:

- $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;
- Δ has a pp interpretation in Γ .

Remark: Continuity \implies uniform continuity since Γ is ω -categorical.

For ω -categorical Δ : have to require that $\xi[Pol(\Gamma)]$ is dense in the polymorphism clone of an ω -categorical structure.

Let 1 be the clone of projections on a 2-element set.

Theorem (Bodirsky + MP '11)

Let Γ be countable ω -categorical or finite, and Δ be finite. TFAE:

- $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;
- Δ has a pp interpretation in Γ .

Remark: Continuity \implies uniform continuity since Γ is ω -categorical.

For ω -categorical Δ : have to require that $\xi[Pol(\Gamma)]$ is dense in the polymorphism clone of an ω -categorical structure.

Let 1 be the clone of projections on a 2-element set.

Corollary (Bodirsky + MP '11)

Let Γ be countable ω -categorical or finite. TFAE:

- **Pol**(Γ) \rightarrow **1** continuously;
- All finite structures have a pp interpretation in Γ.

Topological clones

Michael Pinsker

Let Γ be a structure in a finite relational language.

Let Γ be a structure in a finite relational language.

Definition $CSP(\Gamma)$ is the decision problem:

Let Γ be a structure in a finite relational language.

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic statements about them.

Let Γ be a structure in a finite relational language.

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

Let Γ be a structure in a finite relational language.

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

 Γ is called the template of the CSP.

Let Γ be a structure in a finite relational language.

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

 Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Let Γ be a structure in a finite relational language.

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

 Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or can see it as pp sentence (existentially quantified conjunction).

Let Γ be a structure in a finite relational language.

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

 Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or can see it as pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite. But language finite.

Topological clones

Michael Pinsker

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$ Question: Is there a solution in \mathbb{Z} ?

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$ Question: Is there a solution in \mathbb{Z} ? Is CSP: template (\mathbb{Z} ; 1, +, \cdot , =)

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$ Question: Is there a solution in \mathbb{Z} ? Is CSP: template (\mathbb{Z} ; 1, +, \cdot , =)

n-colorability

Input: A finite undirected graph Question: Is it *n*-colorable?

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$ Question: Is there a solution in \mathbb{Z} ? Is CSP: template (\mathbb{Z} ; 1, +, \cdot , =)

n-colorability

Input: A finite undirected graph Question: Is it *n*-colorable? Is a CSP: template clique of size *n*

Topological clones

Michael Pinsker

Positive 1-in-3-SAT

Input: A finite set of triples of variables Question: Can one assign Boolean values to the variables so that every triple contains exactly one 1?

Positive 1-in-3-SAT

Input: A finite set of triples of variables Question: Can one assign Boolean values to the variables so that every triple contains exactly one 1? Is CSP: template ({0,1}; {(0,0,1), (0,1,0), (1,0,0)})

Positive 1-in-3-SAT

Input: A finite set of triples of variables Question: Can one assign Boolean values to the variables so that every triple contains exactly one 1? Is CSP: template ({0,1}; {(0,0,1), (0,1,0), (1,0,0)})

Betweenness

Input: A finite set of triples of variables Question: Is there a linear order on the variables such that for each triple (x, y, z) either x < y < z or z < y < x?

Positive 1-in-3-SAT

Input: A finite set of triples of variables Question: Can one assign Boolean values to the variables so that every triple contains exactly one 1? Is CSP: template ({0,1}; {(0,0,1), (0,1,0), (1,0,0)})

Betweenness

Input: A finite set of triples of variables Question: Is there a linear order on the variables such that for each triple (x, y, z) either x < y < z or z < y < x? Is CSP: template $(\mathbb{Q}; \{(x, y, z) \mid (x < y < z) \lor (z < y < x)\})$

Observation

If Δ has a pp interpretation in Γ , then CSP(Δ) is polynomial-time reducible to CSP(Γ).

Observation

If Δ has a pp interpretation in Γ , then CSP(Δ) is polynomial-time reducible to CSP(Γ).

Structure Π with polymorphism clone **1**:

 $\Pi:=(\{0,1\};\{(0,0,1),(0,1,0),(1,0,0)\})$

Observation

If Δ has a pp interpretation in Γ , then CSP(Δ) is polynomial-time reducible to CSP(Γ).

Structure Π with polymorphism clone **1**:

 $\Pi := (\{0,1\}; \{(0,0,1), (0,1,0), (1,0,0)\})$

 $CSP(\Pi)$ is positive 1-in-3-SAT. NP-complete.

Observation

If Δ has a pp interpretation in Γ , then CSP(Δ) is polynomial-time reducible to CSP(Γ).

Structure Π with polymorphism clone 1:

 $\Pi := (\{0,1\}; \{(0,0,1), (0,1,0), (1,0,0)\})$

 $CSP(\Pi)$ is positive 1-in-3-SAT. NP-complete.

Corollary

Let Γ be finite or countable ω -categorical.

If $Pol(\Gamma) \rightarrow 1$ continuously, then $CSP(\Gamma)$ is NP-hard.

Topological clones

Michael Pinsker

Observation (Bulatov + Krokhin + Jeavons 2000)

For every finite structure Γ there is a finite structure $\mathfrak{C}(\Gamma)$ such that

- f(x,...,x) = x for all polymorphisms of $\mathfrak{C}(\Gamma)$
- $CSP(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $CSP(\Gamma)$.

Observation (Bulatov + Krokhin + Jeavons 2000)

For every finite structure Γ there is a finite structure $\mathfrak{C}(\Gamma)$ such that

- f(x,...,x) = x for all polymorphisms of $\mathfrak{C}(\Gamma)$
- $CSP(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $CSP(\Gamma)$.

 $\mathfrak{C}(\Gamma)$ is called the idempotent core of Γ .

In a sense unique.

Observation (Bulatov + Krokhin + Jeavons 2000)

For every finite structure Γ there is a finite structure $\mathfrak{C}(\Gamma)$ such that

- f(x,...,x) = x for all polymorphisms of $\mathfrak{C}(\Gamma)$
- $CSP(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $CSP(\Gamma)$.

 $\mathfrak{C}(\Gamma)$ is called the idempotent core of Γ . In a sense unique.

Conjecture (Feder + Vardi 1993; Bulatov + Jeavons + Krokhin 2000)

Let Γ be finite. Then:

■ $Pol(\mathfrak{C}(\Gamma)) \rightarrow 1$ (and $CSP(\Gamma)$ is NP-complete), or

CSP(Γ) is polynomial-time solvable.

Observation (Bulatov + Krokhin + Jeavons 2000)

For every finite structure Γ there is a finite structure $\mathfrak{C}(\Gamma)$ such that

- f(x,...,x) = x for all polymorphisms of $\mathfrak{C}(\Gamma)$
- $CSP(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $CSP(\Gamma)$.

 $\mathfrak{C}(\Gamma)$ is called the idempotent core of Γ . In a sense unique.

Conjecture (Feder + Vardi 1993; Bulatov + Jeavons + Krokhin 2000)

Let Γ be finite. Then:

■ $Pol(\mathfrak{C}(\Gamma)) \rightarrow 1$ (and $CSP(\Gamma)$ is NP-complete), or

CSP(Γ) is polynomial-time solvable.

What does this mean for $Pol(\Gamma)$?

Topological clones

For every ω -categorical structure Γ there is an ω -categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Γ ") such that

- \blacksquare the automorphisms of $\mathfrak{C}(\Gamma)$ are dense in its endomorphisms
- $CSP(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $CSP(\Gamma)$.

For every ω -categorical structure Γ there is an ω -categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Γ ") such that

- the automorphisms of $\mathfrak{C}(\Gamma)$ are dense in its endomorphisms
- $CSP(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $CSP(\Gamma)$.

If \bar{c} is a finite tuple of elements of $\mathfrak{C}(\Gamma)$, then the CSP of the expansion $(\mathfrak{C}(\Gamma), \bar{c})$ is polynomial-time equivalent to the CSP of $\mathfrak{C}(\Gamma)$ (and of Γ).

For every ω -categorical structure Γ there is an ω -categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Γ ") such that

- the automorphisms of $\mathfrak{C}(\Gamma)$ are dense in its endomorphisms
- $CSP(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $CSP(\Gamma)$.

If \bar{c} is a finite tuple of elements of $\mathfrak{C}(\Gamma)$, then the CSP of the expansion $(\mathfrak{C}(\Gamma), \bar{c})$ is polynomial-time equivalent to the CSP of $\mathfrak{C}(\Gamma)$ (and of Γ).

Hence $f(x, \ldots, x) = x$ in the finite case.

For every ω -categorical structure Γ there is an ω -categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Γ ") such that

- the automorphisms of $\mathfrak{C}(\Gamma)$ are dense in its endomorphisms
- $CSP(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $CSP(\Gamma)$.

If \bar{c} is a finite tuple of elements of $\mathfrak{C}(\Gamma)$, then the CSP of the expansion $(\mathfrak{C}(\Gamma), \bar{c})$ is polynomial-time equivalent to the CSP of $\mathfrak{C}(\Gamma)$ (and of Γ).

Hence $f(x, \ldots, x) = x$ in the finite case.

Conjecture (Bodirsky + MP)

Let Γ be first-order definable in a countable finitely bounded homogeneous structure (implies ω -categorical). Then:

For every ω -categorical structure Γ there is an ω -categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Γ ") such that

- the automorphisms of $\mathfrak{C}(\Gamma)$ are dense in its endomorphisms
- $CSP(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $CSP(\Gamma)$.

If \bar{c} is a finite tuple of elements of $\mathfrak{C}(\Gamma)$, then the CSP of the expansion $(\mathfrak{C}(\Gamma), \bar{c})$ is polynomial-time equivalent to the CSP of $\mathfrak{C}(\Gamma)$ (and of Γ).

Hence $f(x, \ldots, x) = x$ in the finite case.

Conjecture (Bodirsky + MP)

Let Γ be first-order definable in a countable finitely bounded homogeneous structure (implies ω -categorical). Then:

- there exists a finite tuple c̄ such that Pol(𝔅(Γ), c̄) → 1 continuously (and CSP(Γ) is NP-complete), or
- **CSP**(Γ) is polynomial-time solvable.

IV: Topological clones revisited

Topological clones

Michael Pinsker

How does one obtain $\mathfrak{C}(\Gamma)$ from Γ ?

How does one obtain $\mathfrak{C}(\Gamma)$ from Γ ?

Let Γ, Δ be structures, same signature. Γ, Δ homomorphically equivalent if $\Gamma \rightarrow \Delta$ and $\Delta \rightarrow \Gamma$.

How does one obtain $\mathfrak{C}(\Gamma)$ from Γ ?

Let Γ, Δ be structures, same signature. Γ, Δ homomorphically equivalent if $\Gamma \rightarrow \Delta$ and $\Delta \rightarrow \Gamma$.

Observation. In that case, $CSP(\Gamma) = CSP(\Delta)$.

How does one obtain $\mathfrak{C}(\Gamma)$ from Γ ?

Let Γ, Δ be structures, same signature. Γ, Δ homomorphically equivalent if $\Gamma \rightarrow \Delta$ and $\Delta \rightarrow \Gamma$.

Observation. In that case, $CSP(\Gamma) = CSP(\Delta)$.

Theorem (Bodirsky 2006)

Every finite or ω -categorical structure Γ is homomorphically equivalent to a unique ω -categorical model-complete core $\mathfrak{C}(\Gamma)$.

How does one obtain $\mathfrak{C}(\Gamma)$ from Γ ?

Let Γ, Δ be structures, same signature. Γ, Δ homomorphically equivalent if $\Gamma \rightarrow \Delta$ and $\Delta \rightarrow \Gamma$.

Observation. In that case, $CSP(\Gamma) = CSP(\Delta)$.

Theorem (Bodirsky 2006)

Every finite or ω -categorical structure Γ is homomorphically equivalent to a unique ω -categorical model-complete core $\mathfrak{C}(\Gamma)$.

This reduction is not covered by pp interpretations.

How does one obtain $\mathfrak{C}(\Gamma)$ from Γ ?

Let Γ, Δ be structures, same signature. Γ, Δ homomorphically equivalent if $\Gamma \rightarrow \Delta$ and $\Delta \rightarrow \Gamma$.

Observation. In that case, $CSP(\Gamma) = CSP(\Delta)$.

Theorem (Bodirsky 2006)

Every finite or ω -categorical structure Γ is homomorphically equivalent to a unique ω -categorical model-complete core $\mathfrak{C}(\Gamma)$.

This reduction is not covered by pp interpretations.

```
How does Pol(\mathfrak{C}(\Gamma)) relate to Pol(\Gamma)?
```

Topological clones

Michael Pinsker

Let $\mathfrak{A} = (A; (f_i^{\mathfrak{A}})_{i \in \tau})$ be an algebra.

Let $\mathfrak{A} = (A; (f_i^{\mathfrak{A}})_{i \in \tau})$ be an algebra. Let *B* be a set, and let $h_1 : B \to A$ and $h_2 : A \to B$ be functions.

Let $\mathfrak{A} = (A; (f_i^{\mathfrak{A}})_{i \in \tau})$ be an algebra. Let *B* be a set, and let $h_1 : B \to A$ and $h_2 : A \to B$ be functions.

Define an algebra \mathfrak{B} on B with signature τ by setting

 $f_i^{\mathfrak{B}}(\bar{x}) := h_2(f_i^{\mathfrak{A}}(h_1(\bar{x}))).$

Let $\mathfrak{A} = (A; (f_i^{\mathfrak{A}})_{i \in \tau})$ be an algebra. Let *B* be a set, and let $h_1 : B \to A$ and $h_2 : A \to B$ be functions.

Define an algebra \mathfrak{B} on B with signature τ by setting

$$f_i^{\mathfrak{B}}(\bar{x}) := h_2(f_i^{\mathfrak{A}}(h_1(\bar{x}))).$$

 ${\mathfrak B}$ is called a double shrink of ${\mathfrak A}.$

Let $\mathfrak{A} = (A; (f_i^{\mathfrak{A}})_{i \in \tau})$ be an algebra. Let *B* be a set, and let $h_1 : B \to A$ and $h_2 : A \to B$ be functions.

Define an algebra \mathfrak{B} on B with signature τ by setting

$$f_i^{\mathfrak{B}}(\bar{x}) := h_2(f_i^{\mathfrak{A}}(h_1(\bar{x}))).$$

 \mathfrak{B} is called a double shrink of \mathfrak{A} .

Problem: the double shrink of a finite algebra can be infinite.

Let $\mathfrak{A} = (A; (f_i^{\mathfrak{A}})_{i \in \tau})$ be an algebra. Let *B* be a set, and let $h_1 : B \to A$ and $h_2 : A \to B$ be functions.

Define an algebra \mathfrak{B} on B with signature τ by setting

$$f_i^{\mathfrak{B}}(\bar{x}) := h_2(f_i^{\mathfrak{A}}(h_1(\bar{x}))).$$

 \mathfrak{B} is called a double shrink of \mathfrak{A} .

Problem: the double shrink of a finite algebra can be infinite.

WANTED: New name!

Let $\mathfrak{A} = (A; (f_i^{\mathfrak{A}})_{i \in \tau})$ be an algebra. Let *B* be a set, and let $h_1 : B \to A$ and $h_2 : A \to B$ be functions.

Define an algebra \mathfrak{B} on B with signature τ by setting

$$f_i^{\mathfrak{B}}(\bar{x}) := h_2(f_i^{\mathfrak{A}}(h_1(\bar{x}))).$$

 \mathfrak{B} is called a double shrink of \mathfrak{A} .

Problem: the double shrink of a finite algebra can be infinite.

WANTED: New name!

Proposition

Let Γ , Δ be structures, where Γ is ω -categorical. TFAE:

- \blacksquare Δ is homomorphically equivalent to a pp definable structure of Γ
- Pol(Δ) contains a double shrink of Pol(Γ).

Topological clones

 $D(\mathfrak{A})$... all double shrinks of \mathfrak{A} .

 $D(\mathfrak{A})$... all double shrinks of \mathfrak{A} .

Note: Double shrink does not preserve equations. Nor projections.

 $D(\mathfrak{A})$... all double shrinks of \mathfrak{A} .

Note: Double shrink does not preserve equations. Nor projections.

Let \mathcal{C}, \mathcal{D} be function clones.

Function $\xi \colon \mathfrak{C} \to \mathfrak{D}$ called weak homomorphism iff

 $D(\mathfrak{A})$... all double shrinks of \mathfrak{A} .

Note: Double shrink does not preserve equations. Nor projections.

Let $\mathfrak{C}, \mathfrak{D}$ be function clones.

Function $\xi \colon \mathfrak{C} \to \mathfrak{D}$ called weak homomorphism iff

- it preserves arities
- it preserves linear equations:

 $\xi(f(\pi_{i_1}^m, \ldots, \pi_{i_n}^m)) = \xi(f)(\xi(\pi_{i_1}^m), \ldots, \xi(\pi_{i_n}^m))$

 $D(\mathfrak{A})$... all double shrinks of \mathfrak{A} .

Note: Double shrink does not preserve equations. Nor projections.

Let ${\mathfrak C}, {\mathfrak D}$ be function clones.

Function $\xi \colon \mathfrak{C} \to \mathfrak{D}$ called weak homomorphism iff

- it preserves arities
- it preserves linear equations:

 $\xi(f(\pi_{i_1}^m,\ldots,\pi_{i_n}^m)) = \xi(f)(\xi(\pi_{i_1}^m),\ldots,\xi(\pi_{i_n}^m))$

If there exists such a function, we write $\mathcal{C} \rightsquigarrow \mathcal{D}$.

 $D(\mathfrak{A})$... all double shrinks of \mathfrak{A} .

Note: Double shrink does not preserve equations. Nor projections.

Let ${\mathfrak C}, {\mathfrak D}$ be function clones.

Function $\xi \colon \mathfrak{C} \to \mathfrak{D}$ called weak homomorphism iff

- it preserves arities
- it preserves linear equations:

$$\xi(f(\pi_{i_1}^m,\ldots,\pi_{i_n}^m)) = \xi(f)(\xi(\pi_{i_1}^m),\ldots,\xi(\pi_{i_n}^m))$$

If there exists such a function, we write $\mathcal{C} \rightsquigarrow \mathcal{D}$.

Theorem (Barto + MP 2015)

Let $\mathfrak{C}, \mathfrak{D}$ be function clones. TFAE:

■ D ∈ D P(C);

 $\blacksquare \ \mathfrak{D}$ can be obtained from \mathfrak{C} by $\mathsf{D},\mathsf{H},\mathsf{S},\mathsf{P}.$

 $\blacksquare \ \mathfrak{C} \rightsquigarrow \mathfrak{D} \ surjectively.$

Topological clones

Michael Pinsker

Theorem (Barto + MP 2015)

Let \mathbb{C}, \mathbb{D} be function clones, \mathbb{D} finite. TFAE:

- $\mathcal{D} \in \mathsf{D}\mathsf{P}^{\mathsf{fin}}(\mathfrak{C});$
- D can be obtained from C by D, H, S, P^{fin} ;
- $\blacksquare \ \mathfrak{C} \rightsquigarrow \mathfrak{D} \ \textit{surjectively} + \textit{uniformly continuously}.$

Theorem (Barto + MP 2015)

Let \mathbb{C}, \mathbb{D} be function clones, \mathbb{D} finite. TFAE:

- $\mathcal{D} \in \mathsf{D}\mathsf{P}^{\mathsf{fin}}(\mathfrak{C});$
- \mathcal{D} can be obtained from \mathcal{C} by D, H, S, P^{fin} ;
- $\blacksquare \ \mathfrak{C} \rightsquigarrow \mathfrak{D} \ \textit{surjectively} + \textit{uniformly continuously}.$

Meditation: What happened to \mathcal{D} which is finitely generated?

Theorem (Barto + MP 2015)

Let $\mathfrak{C}, \mathfrak{D}$ be function clones, \mathfrak{D} finite. TFAE:

- $\mathcal{D} \in \mathsf{D}\mathsf{P}^{\mathsf{fin}}(\mathfrak{C});$
- D can be obtained from C by D, H, S, P^{fin} ;
- $\blacksquare \ \mathfrak{C} \rightsquigarrow \mathfrak{D} \ \textit{surjectively} + \textit{uniformly continuously}.$

Meditation: What happened to \mathcal{D} which is finitely generated?

Theorem (Barto + MP 2015)

Let Γ be finite or ω -categorical, let Δ be finite. TFAE:

- Δ can be obtained from Γ by homomorphic equivalence, adding of constants to model-complete cores, and pp interpretations.
- $Pol(\Gamma) \rightsquigarrow Pol(\Delta)$ uniformly continously.

Old Conjecture (Bodirsky + MP)

Let Γ be definable in a countable finitely bounded homogeneous structure (implies ω -categorical). Then:

■ there exists a finite tuple c̄ such that Pol(𝔅(Γ), c̄) → 1 continuously (and CSP(Γ) is NP-complete), or

CSP(Γ) is polynomial-time solvable.

Old Conjecture (Bodirsky + MP)

Let Γ be definable in a countable finitely bounded homogeneous structure (implies ω -categorical). Then:

there exists a finite tuple c̄ such that Pol(𝔅(Γ), c̄) → 1 continuously (and CSP(Γ) is NP-complete), or

CSP(Γ) is polynomial-time solvable.

New Conjecture

Let Γ be as above or finite. Then:

- Pol(Γ) → 1 uniformly continuously (and CSP(Γ) is NP-complete), or
- **CSP**(Γ) is polynomial-time solvable.

Old Conjecture (Bodirsky + MP)

Let Γ be definable in a countable finitely bounded homogeneous structure (implies ω -categorical). Then:

there exists a finite tuple c̄ such that Pol(𝔅(Γ), c̄) → 1 continuously (and CSP(Γ) is NP-complete), or

CSP(Γ) is polynomial-time solvable.

New Conjecture

Let Γ be as above or finite. Then:

- Pol(Γ) → 1 uniformly continuously (and CSP(Γ) is NP-complete), or
- **CSP**(Γ) is polynomial-time solvable.

Observation: Old \implies New.

Topological clones

Michael Pinsker

 "Right" (for the moment) abstraction of function clones for CSP are weak clone homomorphisms.

 "Right" (for the moment) abstraction of function clones for CSP are weak clone homomorphisms.

Autom. group	Perm. gr.	Top. gr.	Abstr. gr.	-
Endom. monoid	Transf. mon.	Top. mon.	Abstr. mon.	-
Polym. clone	Function clone	Top. clone	Abstr. clone	Weak abstr. clone

 "Right" (for the moment) abstraction of function clones for CSP are weak clone homomorphisms.

Autom. group	Perm. gr.	Top. gr.	Abstr. gr.	-
Endom. monoid	Transf. mon.	Top. mon.	Abstr. mon.	-
Polym. clone	Function clone	Top. clone	Abstr. clone	Weak abstr. clone

Any mapping between transformation monoids is a weak homomorphism.

 "Right" (for the moment) abstraction of function clones for CSP are weak clone homomorphisms.

Autom. group	Perm. gr.	Top. gr.	Abstr. gr.	-
Endom. monoid	Transf. mon.	Top. mon.	Abstr. mon.	-
Polym. clone	Function clone	Top. clone	Abstr. clone	Weak abstr. clone

Any mapping between transformation monoids is a weak homomorphism. Any better name?

 "Right" (for the moment) abstraction of function clones for CSP are weak clone homomorphisms.

Autom. group	Perm. gr.	Top. gr.	Abstr. gr.	-
Endom. monoid	Transf. mon.	Top. mon.	Abstr. mon.	-
Polym. clone	Function clone	Top. clone	Abstr. clone	Weak abstr. clone

- Any mapping between transformation monoids is a weak homomorphism. Any better name?
- Cannot expect weak homomorphism theorem with Δ infinite.

 "Right" (for the moment) abstraction of function clones for CSP are weak clone homomorphisms.

Autom. group	Perm. gr.	Top. gr.	Abstr. gr.	-
Endom. monoid	Transf. mon.	Top. mon.	Abstr. mon.	-
Polym. clone	Function clone	Top. clone	Abstr. clone	Weak abstr. clone

- Any mapping between transformation monoids is a weak homomorphism. Any better name?
- Cannot expect weak homomorphism theorem with Δ infinite.
- Variant: preservation of equation of the form $g = \alpha(f(\beta_1(\pi_{i_1}^m), \dots, \beta_n(\pi_{i_n}^m)))$, where $\alpha, \beta_1, \dots, \beta_n$ are (unary) permutations.

Topological clones

Michael Pinsker

Avoids talking about (and proving) model-complete core $\mathfrak{C}(\Gamma)$.

Avoids talking about (and proving) model-complete core C(Γ).

 No loss of nice properties of Γ when going to C(Γ) (e.g., finitely bounded, Ramsey property).

Avoids talking about (and proving) model-complete core C(Γ).

- No loss of nice properties of Γ when going to C(Γ) (e.g., finitely bounded, Ramsey property).
- Explains importance of pseudolinear equations $g = \alpha(f(\beta_1(\pi_{i_1}^m), \dots, \beta_n(\pi_{i_n}^m))).$

Avoids talking about (and proving) model-complete core C(Γ).

- No loss of nice properties of Γ when going to C(Γ) (e.g., finitely bounded, Ramsey property).
- Explains importance of pseudolinear equations $g = \alpha(f(\beta_1(\pi_{i_1}^m), \dots, \beta_n(\pi_{i_n}^m))).$

Conjecture nicer.

Avoids talking about (and proving) model-complete core C(Γ).

- No loss of nice properties of Γ when going to C(Γ) (e.g., finitely bounded, Ramsey property).
- Explains importance of pseudolinear equations $g = \alpha(f(\beta_1(\pi_{i_1}^m), \dots, \beta_n(\pi_{i_n}^m))).$
- Conjecture nicer.
- Conjecture weaker (for infinite Γ)?

Avoids talking about (and proving) model-complete core C(Γ).

- No loss of nice properties of Γ when going to C(Γ) (e.g., finitely bounded, Ramsey property).
- Explains importance of pseudolinear equations $g = \alpha(f(\beta_1(\pi_{i_1}^m), \dots, \beta_n(\pi_{i_n}^m))).$
- Conjecture nicer.
- Conjecture weaker (for infinite Γ)?
- Useful?

Topological clones

Michael Pinsker

■ Is there a countable Γ such that $Pol(\Gamma) \rightarrow 1$, but not continuously?

- Is there a countable Γ such that $Pol(\Gamma) \rightarrow 1$, but not continuously?
- Is there a closed clone C such that 1 ∈ HSP(C), but 1 ∉ HSP^{fin}(C)?

- Is there a countable Γ such that $Pol(\Gamma) \rightarrow 1$, but not continuously?
- Is there a closed clone C such that 1 ∈ HSP(C), but 1 ∉ HSP^{fin}(C)?
- Is there a countable Γ such that $Pol(\Gamma) \rightsquigarrow 1$, but not continuously?

- Is there a countable Γ such that $Pol(\Gamma) \rightarrow 1$, but not continuously?
- Is there a closed clone C such that 1 ∈ HSP(C), but 1 ∉ HSP^{fin}(C)?
- Is there a countable Γ such that $Pol(\Gamma) \rightsquigarrow 1$, but not continuously?
- If so, is AC needed?

- Is there a countable Γ such that $Pol(\Gamma) \rightarrow 1$, but not continuously?
- Is there a closed clone C such that 1 ∈ HSP(C), but 1 ∉ HSP^{fin}(C)?
- Is there a countable Γ such that $Pol(\Gamma) \rightsquigarrow 1$, but not continuously?
- If so, is AC needed?
- Is there a better name than "double shrink"?

Reference

L. Barto, J. Opršal, and M. Pinsker *The wonderland of the double shrink* In preparation.

Wayne Ferrebee, Torus with Spearman, Bagpipes and Barnacle