Quantum logics as relational monoids

Gejza Jenča Anna Jenčová

June 24, 2015

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

< □ > < 個 > < 差 > < 差 > 差 の < @</p>

• Every effect algebra is a monoid in **Rel**.

(ロト (個) (E) (E) (E) (9)

- Every effect algebra is a monoid in **Rel**.
- Some well-known definitions in the theory of effect algebras, appear to come from 2-categorial structure of **RelMon**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Every effect algebra is a monoid in **Rel**.
- Some well-known definitions in the theory of effect algebras, appear to come from 2-categorial structure of **RelMon**.

 Maybe I will sketch some related result concerning test spaces.

- Every effect algebra is a monoid in **Rel**.
- Some well-known definitions in the theory of effect algebras, appear to come from 2-categorial structure of **RelMon**.

- Maybe I will sketch some related result concerning test spaces.
- Almost everything here has almost nonexistent proof.

...denoted by Rel.

...denoted by Rel.

Objects: sets.

...denoted by Rel.

- Objects: sets.
- Morphisms: binary relations; $f : A \rightarrow B$ in **Rel** is a set of pairs $f \subseteq A \times B$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

...denoted by Rel.

- Objects: sets.
- Morphisms: binary relations; $f : A \rightarrow B$ in **Rel** is a set of pairs $f \subseteq A \times B$.
- Identities: $id_A : A \rightarrow A$ is the identity relation.
- Composition: if f : A → B and g : B → C, then (a, c) ∈ g ∘ f iff there exists b ∈ B such that (a, b) ∈ f and (b, c) ∈ g.

The usual direct product of sets × : Rel × Rel → Rel is a bifunctor...

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The usual direct product of sets × : Rel × Rel → Rel is a bifunctor...

(ロト (個) (E) (E) (E) (9)

...so (Rel, ×, 1) is a monoidal category...

► The usual direct product of sets × : Rel × Rel → Rel is a bifunctor...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ...so (**Rel**, \times , 1) is a monoidal category...
- ...because (Set, \times , 1) is one.

► The usual direct product of sets × : Rel × Rel → Rel is a bifunctor...

- ▶ ...so (**Rel**, ×, 1) is a monoidal category...
- ...because (**Set**, \times , 1) is one.
- However, × is <u>not</u> the product in **ReI**, because...

- ► The usual direct product of sets × : Rel × Rel → Rel is a bifunctor...
- ...so (**Rel**, \times , 1) is a monoidal category...
- ...because (**Set**, \times , 1) is one.
- However, × is <u>not</u> the product in **Rel**, because...
- ...disjoint union ⊔ is product and, at the same time, coproduct in Rel.

Monoids in a monoidal category

Recall, that a <u>monoid</u> is a monoidal category $(C, \otimes, 1)$ is a triple (M, m, e), where *M* is an object of *C*, $m : M \otimes M \to M$ and $e : 1 \to M$ are arrows such that the diagrams

・ロト・日本・日本・日本・日本・日本・日本

► Monoids in (Set, ×, 1) are ordinary monoids.

- ► Monoids in (Set, ×, 1) are ordinary monoids.
- Monoids in the monoidal category of Abelian groups (Ab, ⊗, ℤ) are rings.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ▶ Monoids in (Set, ×, 1) are ordinary monoids.
- Monoids in the monoidal category of Abelian groups (Ab, ⊗, ℤ) are rings.
- Monoids in the monoidal category of complete join semilattices (Sup, ⊗, 2) are quantales.

- Monoids in (Set, ×, 1) are ordinary monoids.
- Monoids in the monoidal category of Abelian groups (Ab, ⊗, ℤ) are rings.
- Monoids in the monoidal category of complete join semilattices (Sup, ⊗, 2) are quantales.
- Monoids in the monoidal category of ordinary monoids (Mon, ×, 1) are commutative monoids.

So a monoid in the monoidal category (Rel, \times , 1) consists of

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- ▶ a set *M*,
- a relation $e: 1 \rightarrow M$ and
- a relation $*: M \times M \to M$.

such that some diagrams commute. We call these objects relational monoids When dealing with monoids in **Rel**, one should bear in mind that both $m : A \times A \rightarrow A$ and $e : 1 \rightarrow A$ are <u>relations</u>, and not mappings.

When dealing with monoids in **Rel**, one should bear in mind that both $m : A \times A \rightarrow A$ and $e : 1 \rightarrow A$ are <u>relations</u>, and not mappings. That means, among other things, that

e is (essentially) a <u>subset</u> of the underlying set, rather than an element;

ション 小田 マイビット ビー シックション

- it is misleading to write a * b = c to express the fact that
 (a, b) is in the relation * with c;
- we write $(a, b) \stackrel{*}{\mapsto} c$ instead.

Ordinary monoids are monoids in Rel.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in **Rel**.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in **Rel**.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Small categories are monoids in **Rel**:

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in **Rel**.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Small categories are monoids in **Rel**:
 - elements are arrows,

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in **Rel**.

ション 小田 マイビット ビー シックション

- Small categories are monoids in **Rel**:
 - elements are arrows,
 - the $e: 1 \rightarrow M$ is the selection of identity arrows.

Morphisms of monoids in Rel

The class of monoids in a monoidal category comes equipped with a standard notion of morphism:

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

homewer, this notion does not work in the examples we are interested in.

Rel as a 2-category

- A relation $f \subseteq A \times B$ is a <u>set</u> of pairs, so
- every homset **Rel**(A, B) is a poset under \subseteq .
- > That means, that **Rel** is enriched in **Pos**, in other words

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• **Rel** a (locally posetal/thin) 2-category.

Morphisms of monoids in Rel

There are several meaningful notions of morphisms of monoids in **Rel**. In this talk, we shall deal with two of them.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Category of relational monoids RelMon

By Category of relational monoids we mean a 2-category

- 0-cells are relational monoids,
- 1-cells are lax morphisms of relational monoids,
- ▶ 2-cells are the \subseteq of relations, inherited from **Rel**.

ション 小田 マイビット ビー シックション

Category of relational monoids RelMon

By Category of relational monoids we mean a 2-category

- 0-cells are relational monoids,
- 1-cells are lax morphisms of relational monoids,
- ▶ 2-cells are the \subseteq of relations, inherited from **Rel**.
- The category of small categories is a 1-subcategory of this category.

 The category of effect algebras is a subcategory of this category.

Effect algebras

An <u>effect algebra</u> (Foulis and Bennett [1994], Kôpka and Chovanec [1994], Giuntini and Greuling [1989]) is a partial algebra (E; +, 0, 1) with a binary partial operation + and two nullary operations 0, 1 such that + is commutative, associative and the following pair of conditions is satisfied:

- (E3) For every $a \in E$ there is a unique $a' \in E$ such that a + a' exists and a + a' = 1.
- (E4) If a + 1 is defined, then a = 0.

The + operation is then cancellative and 0 is a neutral element.

Because **RelMon** is a 2-category, so it has a lot of structure.

(ロト (個) (E) (E) (E) (9)

Why?

- Because **RelMon** is a 2-category, so it has a lot of structure.
- We can take the standard definitions of 2-categorial things from **RelMon** and examine what they mean for effect algebras.

Why?

- Because **RelMon** is a 2-category, so it has a lot of structure.
- We can take the standard definitions of 2-categorial things from **RelMon** and examine what they mean for effect algebras.
- We rediscover well-known notions, but now we know where they are coming from.

Let *E* be an effect algebra.

Let *E* be an effect algebra.

► \leq : $E \rightarrow E$ is a left Kan extension of + along the projection $p_1 : E \times E \rightarrow E$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let *E* be an effect algebra.

► \leq : $E \rightarrow E$ is a left Kan extension of + along the projection $p_1 : E \times E \rightarrow E$.

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

An effect algebra E satisfies the Riesz decomposition property iff ≥ is an endomorphism of E.

Adjoint pairs of morphisms in RelMon

Since **RelMon** is a 2-category, we may speak about adjoint pairs of morphisms in **RelMon**. Unwinding the definition, it turns out every left adjoint in **RelMon** is a mapping.

Let

- A, B be relational monoids,
- $f: A \rightarrow B$,
- $g: B \to A$.

Then the morphism *f* is left adjoint to the morphism *g*, if and only if *f* is a mapping and $g = f^{-1}$.

ション キョン キョン キョン しょう

From this, we obtain a characterization of left adjoints:

Proposition

A morphism $f : A \rightarrow B$ in **RelMon** is a left adjoint if and only if f is a mapping and

- ▶ for all $b_1, b_2 \in B$ and $a \in A$ such that $(b_1, b_2) \stackrel{*}{\mapsto} f(a)$,
- ▶ there exist $a_1, a_2 \in A$ such that $b_1 = f(a_1), b_2 = f(a_2)$ and $(a_1, a_2) \stackrel{*}{\mapsto} a$.

What if A and B are effect algebras?

Theorem

Let A, B be effect algebras, let $f : A \rightarrow B$ be a morphism of effect algebras. Then f is a left adjoint in **RelMon** iff

What if A and B are effect algebras?

Theorem

Let A, B be effect algebras, let $f : A \rightarrow B$ be a morphism of effect algebras. Then f is a left adjoint in **RelMon** iff

- f is surjective and
- the equivalence on A induced by f is an <u>effect algebra</u> <u>congruence</u> in the sense of (Gudder and Pulmannová [1998]).

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Monads in RelMon

Since **RelMon** is a 2-category, we may speak about monads in **RelMon**.

A monad in **RelMon** on a relational monoid A can be characterized as a preorder relation $\leq : A \rightarrow A$ such that

$$\begin{array}{cccc} A \times A \xrightarrow{\leq \times \leq} A \times A & 1 \xrightarrow{e} A \\ \downarrow^* & \not A & \downarrow \\ A \xrightarrow{\leq} A & A \end{array} \qquad \begin{array}{cccc} 1 \xrightarrow{e} A \\ e & \downarrow^{\leq} \\ e & A \end{array}$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

commute.

Monads arising from adjunctions in 2-categories

In every 2-category, an adjoint pair of morphisms gives rise to a monad.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Monads arising from adjunctions in 2-categories

In every 2-category, an adjoint pair of morphisms gives rise to a monad.

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

 In Cat, every monad arises from an adjoint pair (Eilenberg-Moore, Kleisli).

Monads arising from adjunctions in 2-categories

- In every 2-category, an adjoint pair of morphisms gives rise to a monad.
- In Cat, every monad arises from an adjoint pair (Eilenberg-Moore, Kleisli).
- But this is not true in every 2-category.
- In particular, in **Rel** the monads (=preorders) arising from adjunctions can be characterized as equivalence relations.

ション キョン キョン キョン しょう

Monads arising from adjunctions in RelMon

If a monad $\sim: A \rightarrow A$ arises from an adjunction, then

- \blacktriangleright ~ is an equivalence relation,
- the diagram

$$\begin{array}{c} A \times A \xrightarrow{\sim \times \sim} A \times A \\ \downarrow^* & \not A & * \downarrow \\ A \xrightarrow{\sim} A \end{array}$$

commutes and

• if x is a unit of A and $x \sim y$, then y is a unit of A.

Monads arising from adjunctions in RelMon

If the multiplication is actually a partial operation, we obtain another property of a monad arising from an adjunction:

If a₁ ∼ b₁, a₂ ∼ b₂ and both a₁ ∗ a₂ and b₁ ∗ b₂ exist, then a₁ ∗ a₂ ∼ b₁ ∗ b₂.

"Dimension equivalences" on effect algebras

For an effect algebra *E*, we may characterize monads $\sim: E \rightarrow E$ arising from adjunctions in **RelMon** as follows:

- ~ is an equivalence.
- If $a_1 \sim b_1$, $a_2 \sim b_2$ and both $a_1 + a_2$ and $b_1 + b_2$ exist, then $a_1 + a_2 \sim b_1 + b_2$.
- If $a \sim b_1 + b_2$, then there are a_1, a_2 such that $a = a_1 + a_2$, $a_1 \sim b_1, a_2 \sim b_2$.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

 E/\sim is then a partial monoid.

Example

- Take a Boolean algebra B; this is an effect algebra with + being the disjoint join.
- Introduce a equivalence on B by the rule

$$a \sim b \Leftrightarrow [0, a] \simeq [0, b]$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Then this is a dimension equivalence.

A more fancy example

Let A be an involutive ring with unit, in which

$$x^*x + y^*y = 0 \implies x = y = 0.$$

- Let P(A) be the set of all self-adjoint idempotents in A. For e, f ∈ P(A), write e ⊕ f = e + f iff ef = 0, otherwise let e ⊕ f be undefined. Then (P(A); ⊕, 0, 1) is an effect algebra.
- ► For *e*, *f* in P(A), write $e \sim f$ iff there is $w \in A$ such that $e = w^*w$ and $f = ww^*$.
- Then this is a dimension equivalence.

Theorem

(Dvurečenskij and Pulmannová [2000]) For every cancellative positive partial abelian monoid E and every dimension equivalence \sim on P, P/ \sim is a positive partial abelian monoid.

Theorem

(Dvurečenskij and Pulmannová [2000]) For every cancellative positive partial abelian monoid E and every dimension equivalence \sim on P, P/ \sim is a positive partial abelian monoid.

A new perspective:

Theorem

(Dvurečenskij and Pulmannová [2000]) For every cancellative positive partial abelian monoid E and every dimension equivalence \sim on P, P/ \sim is a positive partial abelian monoid.

A new perspective:

• P/\sim is the EM-object for the monad \sim .

Comonads

Let *E* be an effect algebra. A relation $i : E \to E$ is a comonad in **RelMon** iff

$$i = \{(x, x) : x \in I\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

where *I* is an order ideal of *E*.

Comonads

Let *E* be an effect algebra. A relation $i : E \to E$ is a comonad in **RelMon** iff

$$i = \{(x, x) : x \in I\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where I is an order ideal of E. I is then the EM object for i.

• A <u>test space</u> is a pair (X, \mathcal{T}) , where X is a set

(ロト (個) (E) (E) (E) (9)

Test spaces

- A <u>test space</u> is a pair (X, \mathcal{T}) , where X is a set
- and \mathcal{T} is a system of subsets of *X*, called tests,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Test spaces

- A <u>test space</u> is a pair (X, \mathcal{T}) , where X is a set
- and \mathcal{T} is a system of subsets of *X*, called tests,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

such that no two tests are comparable.

Test spaces

- A <u>test space</u> is a pair (X, \mathcal{T}) , where X is a set
- and \mathcal{T} is a system of subsets of X, called tests,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- such that no two tests are comparable.
- A subset of a test is an <u>event</u>.

► Two events a, b are said to be <u>orthogonal</u> (in symbols $a \perp b$) if they are disjoint and their union is an event.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Relations on events

- ► Two events *a*, *b* are said to be <u>orthogonal</u> (in symbols $a \perp b$) if they are disjoint and their union is an event.
- It is obvious that the set of all events of a test space equipped with the disjoint union of orthogonal events + and Ø is a partial commutative monoid.

Relations on events

- ► Two events *a*, *b* are said to be <u>orthogonal</u> (in symbols $a \perp b$) if they are disjoint and their union is an event.
- It is obvious that the set of all events of a test space equipped with the disjoint union of orthogonal events + and Ø is a partial commutative monoid.

If a ⊥ b and a ∪ b is a test, then they are <u>complements</u> of each other (in symbols a co b).

Algebraic test spaces

• A test space is <u>algebraic</u> if $co = co \circ co \circ co$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Algebraic test spaces

- A test space is <u>algebraic</u> if $co = co \circ co \circ co$.
- For an algebraic test space, the relation ~:= co o co, called perspectivity is an equivalence on events and

► the partial abelian monoid of events, factored by ~ is an orthoalgebra, i.e. and effect algebra with $a \land a' = 0$.

Proposition

Let (X, \mathcal{T}) be a test space. Let us write $(A, +, \emptyset)$ for the partial commutative monoid of the events of (X, \mathcal{T}) . The following are equivalent.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proposition

Let (X, \mathcal{T}) be a test space. Let us write $(A, +, \emptyset)$ for the partial commutative monoid of the events of (X, \mathcal{T}) . The following are equivalent.

ション キョン キョン キョン しょう

1. (X, \mathcal{T}) is algebraic.

Proposition

Let (X, \mathcal{T}) be a test space. Let us write $(A, +, \emptyset)$ for the partial commutative monoid of the events of (X, \mathcal{T}) . The following are equivalent.

- 1. (X, \mathcal{T}) is algebraic.
- 2. \sim is an equivalence relation and an oplax endomorphism of A.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Proposition

Let (X, \mathcal{T}) be a test space. Let us write $(A, +, \emptyset)$ for the partial commutative monoid of the events of (X, \mathcal{T}) . The following are equivalent.

- 1. (X, \mathcal{T}) is algebraic.
- 2. \sim is an equivalence relation and an oplax endomorphism of A .

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

3. ~ is a preorder and an oplax endomorphism of A.

Proposition

Let (X, \mathcal{T}) be a test space. Let us write $(A, +, \emptyset)$ for the partial commutative monoid of the events of (X, \mathcal{T}) . The following are equivalent.

- 1. (X, \mathcal{T}) is algebraic.
- 2. \sim is an equivalence relation and an oplax endomorphism of A .

ション キョン キョン キョン しょう

- 3. \sim is a preorder and an oplax endomorphism of A.
- 4. $(A, \tilde{+})$ is associative, where $\tilde{+} = \sim \circ +$.

Proposition

Let (X, \mathcal{T}) be a test space. Let us write $(A, +, \emptyset)$ for the partial commutative monoid of the events of (X, \mathcal{T}) . The following are equivalent.

- 1. (X, \mathcal{T}) is algebraic.
- 2. \sim is an equivalence relation and an oplax endomorphism of A.
- 3. \sim is a preorder and an oplax endomorphism of A.
- 4. $(A, \tilde{+})$ is associative, where $\tilde{+} = \sim \circ +$.

Moreover, if \sim is a preorder and \sim is an lax and oplax endomorphism of *A*, then *A*/ \sim is a Boolean algebra.

Thank you for your attention.

(ロト (個) (E) (E) (E) (9)

- A. Dvurečenskij and S. Pulmannová. <u>New Trends in Quantum</u> <u>Structures</u>. Kluwer, Dordrecht and Ister Science, Bratislava, 2000.
- D.J. Foulis and M.K. Bennett. Effect algebras and unsharp quantum logics. Found. Phys., 24:1325–1346, 1994.
- R. Giuntini and H. Greuling. Toward a formal language for unsharp properties. <u>Found. Phys.</u>, 19:931–945, 1989.
- S. Gudder and S. Pulmannová. Quotients of partial abelian monoids. <u>Algebra univers.</u>, 38:395–421, 1998.
- F. Kôpka and F. Chovanec. D-posets. <u>Math. Slovaca</u>, 44:21–34, 1994.