Quantum logics as relational monoids

Gejza Jenča

Anna Jenčová

June 24, 2015

What？

$$
\text { 4ロ } \downarrow \text { 4句 } \downarrow \text { 引 三 }
$$

What?

- Every effect algebra is a monoid in Rel.

What?

- Every effect algebra is a monoid in Rel.
- Some well-known definitions in the theory of effect algebras, appear to come from 2-categorial structure of RelMon.

What?

- Every effect algebra is a monoid in Rel.
- Some well-known definitions in the theory of effect algebras, appear to come from 2-categorial structure of RelMon.
- Maybe I will sketch some related result concerning test spaces.

What?

- Every effect algebra is a monoid in Rel.
- Some well-known definitions in the theory of effect algebras, appear to come from 2-categorial structure of RelMon.
- Maybe I will sketch some related result concerning test spaces.
- Almost everything here has almost nonexistent proof.

The category of sets and relations

...denoted by Rel.

The category of sets and relations

...denoted by Rel.

- Objects: sets.

The category of sets and relations

...denoted by Rel.

- Objects: sets.
- Morphisms: binary relations; $f: A \rightarrow B$ in Rel is a set of pairs $f \subseteq A \times B$.

The category of sets and relations

...denoted by Rel.

- Objects: sets.
- Morphisms: binary relations; $f: A \rightarrow B$ in Rel is a set of pairs $f \subseteq A \times B$.
- Identities: $i d_{A}: A \rightarrow A$ is the identity relation.
- Composition: if $f: A \rightarrow B$ and $g: B \rightarrow C$, then $(a, c) \in g \circ f$ iff there exists $b \in B$ such that $(a, b) \in f$ and $(b, c) \in g$.

Rel is a monoidal category

- The usual direct product of sets \times : $\mathbf{R e l} \times \mathbf{R e l} \rightarrow$ Rel is a bifunctor...

Rel is a monoidal category

- The usual direct product of sets \times : $\mathbf{R e l} \times \mathbf{R e l} \rightarrow$ Rel is a bifunctor...
- ...so (Rel, $\times, 1$) is a monoidal category...

Rel is a monoidal category

- The usual direct product of sets \times : $\mathbf{R e l} \times \mathbf{R e l} \rightarrow$ Rel is a bifunctor...
- ...so (Rel, $\times, 1$) is a monoidal category...
- ...because (Set, $\times, 1$) is one.

Rel is a monoidal category

- The usual direct product of sets \times : $\mathbf{R e l} \times \mathbf{R e l} \rightarrow$ Rel is a bifunctor...
- ...so (Rel, $\times, 1$) is a monoidal category...
- ...because (Set, $\times, 1$) is one.
- However, \times is not the product in Rel, because...

Rel is a monoidal category

- The usual direct product of sets \times : $\mathbf{R e l} \times \mathbf{R e l} \rightarrow$ Rel is a bifunctor...
- ...so (Rel, $\times, 1$) is a monoidal category...
- ...because (Set, $\times, 1$) is one.
- However, \times is not the product in Rel, because...
- ...disjoint union \sqcup is product and, at the same time, coproduct in Rel.

Monoids in a monoidal category

Recall, that a monoid is a monoidal category $(C, \otimes, 1)$ is a triple (M, m, e), where M is an object of $C, m: M \otimes M \rightarrow M$ and $e: 1 \rightarrow M$ are arrows such that the diagrams

Examples of monoids

- Monoids in (Set, $\times, 1$) are ordinary monoids.

Examples of monoids

- Monoids in (Set, $\times, 1$) are ordinary monoids.
- Monoids in the monoidal category of Abelian groups $(\mathbf{A b}, \otimes, \mathbb{Z})$ are rings.

Examples of monoids

- Monoids in (Set, $\times, 1$) are ordinary monoids.
- Monoids in the monoidal category of Abelian groups $(\mathbf{A b}, \otimes, \mathbb{Z})$ are rings.
- Monoids in the monoidal category of complete join semilattices (Sup, $\otimes, 2$) are quantales.

Examples of monoids

- Monoids in (Set, $\times, 1$) are ordinary monoids.
- Monoids in the monoidal category of Abelian groups $(\mathbf{A b}, \otimes, \mathbb{Z})$ are rings.
- Monoids in the monoidal category of complete join semilattices (Sup, $\otimes, 2$) are quantales.
- Monoids in the monoidal category of ordinary monoids (Mon, $\times, 1$) are commutative monoids.

Monoids in Rel

So a monoid in the monoidal category (Rel, $\times, 1$) consists of

- a set M,
- a relation e : $1 \rightarrow M$ and
- a relation *: $M \times M \rightarrow M$.
such that some diagrams commute.
We call these objects relational monoids

When dealing with monoids in Rel, one should bear in mind that both $m: A \times A \rightarrow A$ and $e: 1 \rightarrow A$ are relations, and not mappings.

When dealing with monoids in Rel, one should bear in mind that both $m: A \times A \rightarrow A$ and $e: 1 \rightarrow A$ are relations, and not mappings. That means, among other things, that

- e is (essentially) a subset of the underlying set, rather than an element;
- it is misleading to write $a * b=c$ to express the fact that (a, b) is in the relation $*$ with c;
- we write $(a, b) \stackrel{*}{\mapsto} c$ instead.

Classes of monoids in Rel

- Ordinary monoids are monoids in Rel.

Classes of monoids in Rel

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.

Classes of monoids in Rel

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in Rel.

Classes of monoids in Rel

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in Rel.
- Small categories are monoids in Rel:

Classes of monoids in Rel

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in Rel.
- Small categories are monoids in Rel:
- elements are arrows,

Classes of monoids in Rel

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in Rel.
- Small categories are monoids in Rel:
- elements are arrows,
- the $e: 1 \rightarrow M$ is the selection of identity arrows.

Morphisms of monoids in Rel

The class of monoids in a monoidal category comes equipped with a standard notion of morphism:

homewer, this notion does not work in the examples we are interested in.

Rel as a 2-category

- A relation $f \subseteq A \times B$ is a set of pairs, so
- every homset $\operatorname{Rel}(A, B)$ is a poset under \subseteq.
- That means, that Rel is enriched in Pos, in other words
- Rel a (locally posetal/thin) 2-category.

Morphisms of monoids in Rel

There are several meaningful notions of morphisms of monoids in Rel. In this talk, we shall deal with two of them.

Lax morphism

$$
\begin{gathered}
(h \circ *) \subseteq(* \circ(h \times h)) \\
h \circ e \subseteq e
\end{gathered}
$$

Oplax morphism

$$
\begin{gathered}
(h \circ *) \supseteq(* \circ(h \times h)) \\
e \subseteq h \circ e
\end{gathered}
$$

Category of relational monoids RelMon

By Category of relational monoids we mean a 2-category

- 0-cells are relational monoids,
- 1-cells are lax morphisms of relational monoids,
- 2-cells are the \subseteq of relations, inherited from Rel.

Category of relational monoids RelMon

By Category of relational monoids we mean a 2-category

- 0-cells are relational monoids,
- 1-cells are lax morphisms of relational monoids,
- 2-cells are the \subseteq of relations, inherited from Rel.
- The category of small categories is a 1-subcategory of this category.
- The category of effect algebras is a subcategory of this category.

Effect algebras

An effect algebra (Foulis and Bennett [1994], Kôpka and Chovanec [1994], Giuntini and Greuling [1989]) is a partial algebra
$(E ;+, 0,1)$ with a binary partial operation + and two nullary operations 0,1 such that + is commutative, associative and the following pair of conditions is satisfied:
(E3) For every $a \in E$ there is a unique $a^{\prime} \in E$ such that $a+a^{\prime}$ exists and $a+a^{\prime}=1$.
(E4) If $a+1$ is defined, then $a=0$.
The + operation is then cancellative and 0 is a neutral element.

Why?

- Because ReIMon is a 2-category, so it has a lot of structure.

Why?

- Because RelMon is a 2-category, so it has a lot of structure.
- We can take the standard definitions of 2-categorial things from RelMon and examine what they mean for effect algebras.

Why?

- Because RelMon is a 2-category, so it has a lot of structure.
- We can take the standard definitions of 2-categorial things from RelMon and examine what they mean for effect algebras.
- We rediscover well-known notions, but now we know where they are coming from.

Easy and nice

Let E be an effect algebra.

Easy and nice

Let E be an effect algebra.

- $\leq: E \rightarrow E$ is a left Kan extension of + along the projection $p_{1}: E \times E \rightarrow E$.

Easy and nice

Let E be an effect algebra.

- $\leq: E \rightarrow E$ is a left Kan extension of + along the projection $p_{1}: E \times E \rightarrow E$.
- An effect algebra E satisfies the Riesz decomposition property iff \geq is an endomorphism of E.

Adjoint pairs of morphisms in RelMon

Since RelMon is a 2-category, we may speak about adjoint pairs of morphisms in RelMon. Unwinding the definition, it turns out every left adjoint in RelMon is a mapping.
Let

- A, B be relational monoids,
- $f: A \rightarrow B$,
- $g: B \rightarrow A$.

Then the morphism f is left adjoint to the morphism g, if and only if f is a mapping and $g=f^{-1}$.

Left adjoints in RelMon

From this, we obtain a characterization of left adjoints:

Proposition

A morphism $f: A \rightarrow B$ in RelMon is a left adjoint if and only if f is a mapping and

- for all $b_{1}, b_{2} \in B$ and $a \in A$ such that $\left(b_{1}, b_{2}\right) \stackrel{*}{\mapsto} f(a)$,
- there exist $a_{1}, a_{2} \in A$ such that $b_{1}=f\left(a_{1}\right), b_{2}=f\left(a_{2}\right)$ and $\left(a_{1}, a_{2}\right) \stackrel{*}{\mapsto} a$.

What if A and B are effect algebras?

Theorem
Let A, B be effect algebras, let $f: A \rightarrow B$ be a morphism of effect algebras. Then f is a left adjoint in RelMon iff

What if A and B are effect algebras?

Theorem

Let A, B be effect algebras, let $f: A \rightarrow B$ be a morphism of effect algebras. Then f is a left adjoint in RelMon iff

- f is surjective and
- the equivalence on A induced by f is an effect algebra congruence in the sense of (Gudder and Pulmannová [1998]).

Monads in RelMon

Since RelMon is a 2-category, we may speak about monads in RelMon.
A monad in RelMon on a relational monoid A can be characterized as a preorder relation $\leq: A \rightarrow A$ such that

commute.

Monads arising from adjunctions in 2-categories

- In every 2-category, an adjoint pair of morphisms gives rise to a monad.

Monads arising from adjunctions in 2-categories

- In every 2-category, an adjoint pair of morphisms gives rise to a monad.
- In Cat, every monad arises from an adjoint pair
(Eilenberg-Moore, Kleisli).

Monads arising from adjunctions in 2-categories

- In every 2-category, an adjoint pair of morphisms gives rise to a monad.
- In Cat, every monad arises from an adjoint pair (Eilenberg-Moore, Kleisli).
- But this is not true in every 2-category.
- In particular, in Rel the monads (=preorders) arising from adjunctions can be characterized as equivalence relations.

Monads arising from adjunctions in RelMon

If a monad $\sim: A \rightarrow A$ arises from an adjunction, then

- ~ is an equivalence relation,
- the diagram

commutes and
- if x is a unit of A and $x \sim y$, then y is a unit of A.

Monads arising from adjunctions in RelMon

If the multiplication is actually a partial operation, we obtain another property of a monad arising from an adjunction:

- If $a_{1} \sim b_{1}, a_{2} \sim b_{2}$ and both $a_{1} * a_{2}$ and $b_{1} * b_{2}$ exist, then $a_{1} * a_{2} \sim b_{1} * b_{2}$.

"Dimension equivalences" on effect algebras

For an effect algebra E, we may characterize monads $\sim: E \rightarrow E$ arising from adjunctions in RelMon as follows:

- ~ is an equivalence.
- If $a_{1} \sim b_{1}, a_{2} \sim b_{2}$ and both $a_{1}+a_{2}$ and $b_{1}+b_{2}$ exist, then $a_{1}+a_{2} \sim b_{1}+b_{2}$.
- If $a \sim b_{1}+b_{2}$, then there are a_{1}, a_{2} such that $a=a_{1}+a_{2}$, $a_{1} \sim b_{1}, a_{2} \sim b_{2}$.
E / \sim is then a partial monoid.

Example

- Take a Boolean algebra B; this is an effect algebra with + being the disjoint join.
- Introduce a equivalence on B by the rule

$$
a \sim b \Leftrightarrow[0, a] \simeq[0, b]
$$

Then this is a dimension equivalence.

A more fancy example

- Let A be an involutive ring with unit, in which

$$
x^{*} x+y^{*} y=0 \Longrightarrow x=y=0
$$

- Let $P(A)$ be the set of all self-adjoint idempotents in A. For $e, f \in P(A)$, write $e \oplus f=e+f$ iff ef $=0$, otherwise let $e \oplus f$ be undefined. Then $(P(A) ; \oplus, 0,1)$ is an effect algebra.
- For e, f in $P(A)$, write $e \sim f$ iff there is $w \in A$ such that $e=w^{*} w$ and $f=w w^{*}$.
- Then this is a dimension equivalence.

Theorem

(Dvurečenskij and Pulmannová [2000]) For every cancellative positive partial abelian monoid E and every dimension equivalence \sim on $P, P / \sim$ is a positive partial abelian monoid.

Theorem

(Dvurečenskij and Pulmannová [2000]) For every cancellative positive partial abelian monoid E and every dimension equivalence \sim on $P, P / \sim$ is a positive partial abelian monoid.
A new perspective:

Theorem

(Dvurečenskij and Pulmannová [2000]) For every cancellative positive partial abelian monoid E and every dimension equivalence
\sim on $P, P / \sim$ is a positive partial abelian monoid.
A new perspective:

- P / \sim is the EM-object for the monad \sim.

Comonads

Let E be an effect algebra. A relation $i: E \rightarrow E$ is a comonad in RelMon iff

$$
i=\{(x, x): x \in I\}
$$

where I is an order ideal of E.

Comonads

Let E be an effect algebra. A relation $i: E \rightarrow E$ is a comonad in RelMon iff

$$
i=\{(x, x): x \in I\}
$$

where I is an order ideal of E. I is then the EM object for i.

Test spaces

- A test space is a pair (X, \mathcal{T}), where X is a set

Test spaces

- A test space is a pair (X, \mathcal{T}), where X is a set
- and \mathcal{T} is a system of subsets of X, called tests,

Test spaces

- A test space is a pair (X, \mathcal{T}), where X is a set
- and \mathcal{T} is a system of subsets of X, called tests,
- such that no two tests are comparable.

Test spaces

- A test space is a pair (X, \mathcal{T}), where X is a set
- and \mathcal{T} is a system of subsets of X, called tests,
- such that no two tests are comparable.
- A subset of a test is an event.

Relations on events

- Two events a, b are said to be orthogonal (in symbols $a \perp b$) if they are disjoint and their union is an event.

Relations on events

- Two events a, b are said to be orthogonal (in symbols $a \perp b$) if they are disjoint and their union is an event.
- It is obvious that the set of all events of a test space equipped with the disjoint union of orthogonal events + and \emptyset is a partial commutative monoid.

Relations on events

- Two events a, b are said to be orthogonal (in symbols $a \perp b$) if they are disjoint and their union is an event.
- It is obvious that the set of all events of a test space equipped with the disjoint union of orthogonal events + and \emptyset is a partial commutative monoid.
- If $a \perp b$ and $a \cup b$ is a test, then they are complements of each other (in symbols a co b).

Algebraic test spaces

- A test space is algebraic if $\mathrm{co}=\mathrm{co} \mathrm{\circ} \circ \mathrm{co} \circ \mathrm{co}$.

Algebraic test spaces

- A test space is algebraic if $\mathrm{co}=\mathrm{co} \mathrm{\circ} \mathrm{co} \circ \mathrm{co}$.
- For an algebraic test space, the relation $\sim:=c o \circ c o$, called perspectivity is an equivalence on events and
- the partial abelian monoid of events, factored by \sim is an orthoalgebra, i.e. and effect algebra with $a \wedge a^{\prime}=0$.

A characterization of algebraic test spaces

Proposition

Let (X, \mathcal{T}) be a test space. Let us write $(A,+, \emptyset)$ for the partial commutative monoid of the events of (X, \mathcal{T}). The following are equivalent.

A characterization of algebraic test spaces

Proposition

Let (X, \mathcal{T}) be a test space. Let us write $(A,+, \emptyset)$ for the partial commutative monoid of the events of (X, \mathcal{T}). The following are equivalent.

1. (X, \mathcal{T}) is algebraic.

A characterization of algebraic test spaces

Proposition

Let (X, \mathcal{T}) be a test space. Let us write $(A,+, \emptyset)$ for the partial commutative monoid of the events of (X, \mathcal{T}). The following are equivalent.

1. (X, \mathcal{T}) is algebraic.
2. \sim is an equivalence relation and an oplax endomorphism of A.

A characterization of algebraic test spaces

Proposition

Let (X, \mathcal{T}) be a test space. Let us write $(A,+, \emptyset)$ for the partial commutative monoid of the events of (X, \mathcal{T}). The following are equivalent.

1. (X, \mathcal{T}) is algebraic.
2. \sim is an equivalence relation and an oplax endomorphism of A.
3. \sim is a preorder and an oplax endomorphism of A.

A characterization of algebraic test spaces

Proposition

Let (X, \mathcal{T}) be a test space. Let us write $(A,+, \emptyset)$ for the partial commutative monoid of the events of (X, \mathcal{T}). The following are equivalent.

1. (X, \mathcal{T}) is algebraic.
2. \sim is an equivalence relation and an oplax endomorphism of A.
3. \sim is a preorder and an oplax endomorphism of A.
4. $(A, \tilde{+})$ is associative, where $\tilde{+}=\sim 0+$.

A characterization of algebraic test spaces

Proposition

Let (X, \mathcal{T}) be a test space. Let us write $(A,+, \emptyset)$ for the partial commutative monoid of the events of (X, \mathcal{T}). The following are equivalent.

1. (X, \mathcal{T}) is algebraic.
2. \sim is an equivalence relation and an oplax endomorphism of A.
3. \sim is a preorder and an oplax endomorphism of A.
4. $(A, \tilde{+})$ is associative, where $\tilde{+}=\sim 0+$.

Moreover, if \sim is a preorder and \sim is an lax and oplax endomorphism of A, then A / \sim is a Boolean algebra.

Thank you for your attention.
A. Dvurečenskij and S. Pulmannová. New Trends in Quantum Structures. Kluwer, Dordrecht and Ister Science, Bratislava, 2000.
D.J. Foulis and M.K. Bennett. Effect algebras and unsharp quantum logics. Found. Phys., 24:1325-1346, 1994.
R. Giuntini and H . Greuling. Toward a formal language for unsharp properties. Found. Phys., 19:931-945, 1989.
S. Gudder and S. Pulmannová. Quotients of partial abelian monoids. Algebra univers., 38:395-421, 1998.
F. Kôpka and F. Chovanec. D-posets. Math. Slovaca, 44:21-34, 1994.

