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What?

I Every effect algebra is a monoid in Rel.
I Some well-known definitions in the theory of effect algebras,

appear to come from 2-categorial structure of RelMon.
I Maybe I will sketch some related result concerning test

spaces.
I Almost everything here has almost nonexistent proof.
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The category of sets and relations

...denoted by Rel.

I Objects: sets.
I Morphisms: binary relations; f : A → B in Rel is a set of pairs

f ⊆ A × B.
I Identities: idA : A → A is the identity relation.
I Composition: if f : A → B and g : B → C, then (a, c) ∈ g ◦ f iff

there exists b ∈ B such that (a, b) ∈ f and (b , c) ∈ g.
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Rel is a monoidal category

I The usual direct product of sets × : Rel × Rel→ Rel is a
bifunctor...

I ...so (Rel,×, 1) is a monoidal category...
I ...because (Set,×, 1) is one.
I However, × is not the product in Rel, because...
I ...disjoint union t is product and, at the same time, coproduct

in Rel.
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Monoids in a monoidal category

Recall, that a monoid is a monoidal category (C,⊗, 1) is a triple
(M,m, e), where M is an object of C, m : M ⊗M → M and
e : 1→ M are arrows such that the diagrams

1 ⊗M
e⊗idM //

'
%%

M ⊗M

m
��

M ⊗ 1
idM⊗eoo

'
yy

M

(M ⊗M) ⊗M ' //

m⊗idM
��

M ⊗ (M ⊗M)

idM⊗m
��

M ⊗M

m
&&

M ⊗M

m
xx

M



Examples of monoids

I Monoids in (Set,×, 1) are ordinary monoids.

I Monoids in the monoidal category of Abelian groups
(Ab,⊗,Z) are rings.

I Monoids in the monoidal category of complete join
semilattices (Sup,⊗, 2) are quantales.

I Monoids in the monoidal category of ordinary monoids
(Mon,×, 1) are commutative monoids.
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Monoids in Rel

So a monoid in the monoidal category (Rel,×, 1) consists of
I a set M,
I a relation e : 1→ M and
I a relation ∗ : M ×M → M.

such that some diagrams commute.
We call these objects relational monoids



When dealing with monoids in Rel, one should bear in mind that
both m : A × A → A and e : 1→ A are relations, and not
mappings.

That means, among other things, that
I e is (essentially) a subset of the underlying set, rather than an

element;
I it is misleading to write a ∗ b = c to express the fact that
(a, b) is in the relation ∗ with c;

I we write (a, b)
∗
7−→ c instead.
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I elements are arrows,
I the e : 1→ M is the selection of identity arrows.
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Morphisms of monoids in Rel

The class of monoids in a monoidal category comes equipped with
a standard notion of morphism:

M ×M h×h //

∗

��

M′ ×M′

∗

��
M h // M′

homewer, this notion does not work in the examples we are
interested in.



Rel as a 2-category

I A relation f ⊆ A × B is a set of pairs, so
I every homset Rel(A ,B) is a poset under ⊆.
I That means, that Rel is enriched in Pos, in other words
I Rel a (locally posetal/thin) 2-category.



Morphisms of monoids in Rel

There are several meaningful notions of morphisms of monoids in
Rel. In this talk, we shall deal with two of them.

M ×M h×h //

∗

��

M′ ×M′

∗

��

t

M h // M′

Lax morphism

(h ◦ ∗) ⊆ (∗ ◦ (h × h))

h ◦ e ⊆ e

M ×M h×h //

∗

��

M′ ×M′

∗

��

w

M h // M′

Oplax morphism

(h ◦ ∗) ⊇ (∗ ◦ (h × h))

e ⊆ h ◦ e



Category of relational monoids RelMon

By Category of relational monoids we mean a 2-category
I 0-cells are relational monoids,
I 1-cells are lax morphisms of relational monoids,
I 2-cells are the ⊆ of relations, inherited from Rel.

I The category of small categories is a 1-subcategory of this
category.

I The category of effect algebras is a subcategory of this
category.
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Effect algebras

An effect algebra (Foulis and Bennett [1994], Kôpka and Chovanec
[1994], Giuntini and Greuling [1989]) is a partial algebra
(E; +, 0, 1) with a binary partial operation + and two nullary
operations 0, 1 such that + is commutative, associative and the
following pair of conditions is satisfied:

(E3) For every a ∈ E there is a unique a′ ∈ E such that a + a′

exists and a + a′ = 1.

(E4) If a + 1 is defined, then a = 0.

The + operation is then cancellative and 0 is a neutral element.



Why?

I Because RelMon is a 2-category, so it has a lot of structure.

I We can take the standard definitions of 2-categorial things
from RelMon and examine what they mean for effect
algebras.

I We rediscover well-known notions, but now we know where
they are coming from.
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Easy and nice

Let E be an effect algebra.

I ≤ : E → E is a left Kan extension of + along the projection
p1 : E × E → E.

I An effect algebra E satisfies the Riesz decomposition
property iff ≥ is an endomorphism of E.
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Adjoint pairs of morphisms in RelMon

Since RelMon is a 2-category, we may speak about adjoint pairs of
morphisms in RelMon. Unwinding the definition, it turns out every
left adjoint in RelMon is a mapping.
Let
I A ,B be relational monoids,
I f : A → B,
I g : B → A .

Then the morphism f is left adjoint to the morphism g, if and only if
f is a mapping and g = f−1.



Left adjoints in RelMon

From this, we obtain a characterization of left adjoints:

Proposition
A morphism f : A → B in RelMon is a left adjoint if and only if f is
a mapping and

I for all b1, b2 ∈ B and a ∈ A such that (b1, b2)
∗
7−→ f(a),

I there exist a1, a2 ∈ A such that b1 = f(a1), b2 = f(a2) and
(a1, a2)

∗
7−→ a.



What if A and B are effect algebras?

Theorem
Let A ,B be effect algebras, let f : A → B be a morphism of effect
algebras. Then f is a left adjoint in RelMon iff

I f is surjective and
I the equivalence on A induced by f is an effect algebra

congruence in the sense of (Gudder and Pulmannová [1998]).
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Monads in RelMon

Since RelMon is a 2-category, we may speak about monads in
RelMon.
A monad in RelMon on a relational monoid A can be characterized
as a preorder relation ≤: A → A such that

A × A ≤×≤ //

∗

��

A × A

∗

��
A

≤
// A

AI
1 e //

e ��

{�
A

≤

��
A

commute.



Monads arising from adjunctions in 2-categories

I In every 2-category, an adjoint pair of morphisms gives rise to
a monad.

I In Cat, every monad arises from an adjoint pair
(Eilenberg-Moore, Kleisli).

I But this is not true in every 2-category.
I In particular, in Rel the monads (=preorders) arising from

adjunctions can be characterized as equivalence relations.
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Monads arising from adjunctions in RelMon

If a monad ∼: A → A arises from an adjunction, then

I ∼ is an equivalence relation,
I the diagram

A × A ∼×∼ //

∗

��

A × A

∗

��
A ∼

// A

AI

commutes and
I if x is a unit of A and x ∼ y, then y is a unit of A .



Monads arising from adjunctions in RelMon

If the multiplication is actually a partial operation, we obtain
another property of a monad arising from an adjunction:
I If a1 ∼ b1, a2 ∼ b2 and both a1 ∗ a2 and b1 ∗ b2 exist, then

a1 ∗ a2 ∼ b1 ∗ b2.



“Dimension equivalences” on effect algebras

For an effect algebra E, we may characterize monads ∼: E → E
arising from adjunctions in RelMon as follows:
I ∼ is an equivalence.
I If a1 ∼ b1, a2 ∼ b2 and both a1 + a2 and b1 + b2 exist, then

a1 + a2 ∼ b1 + b2.
I If a ∼ b1 + b2, then there are a1, a2 such that a = a1 + a2,

a1 ∼ b1, a2 ∼ b2.

E/ ∼ is then a partial monoid.



Example

I Take a Boolean algebra B; this is an effect algebra with +
being the disjoint join.

I Introduce a equivalence on B by the rule

a ∼ b ⇔ [0, a] ' [0, b]

Then this is a dimension equivalence.



A more fancy example

I Let A be an involutive ring with unit, in which

x∗x + y∗y = 0 =⇒ x = y = 0.

I Let P(A) be the set of all self-adjoint idempotents in A . For
e, f ∈ P(A), write e ⊕ f = e + f iff ef = 0, otherwise let e ⊕ f
be undefined. Then (P(A);⊕, 0, 1) is an effect algebra.

I For e, f in P(A), write e ∼ f iff there is w ∈ A such that
e = w∗w and f = ww∗.

I Then this is a dimension equivalence.



Theorem
(Dvurečenskij and Pulmannová [2000]) For every cancellative
positive partial abelian monoid E and every dimension equivalence
∼ on P, P/ ∼ is a positive partial abelian monoid.

A new perspective:
I P/ ∼ is the EM-object for the monad ∼.
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Comonads

Let E be an effect algebra. A relation i : E → E is a comonad in
RelMon iff

i = {(x, x) : x ∈ I}

where I is an order ideal of E.

I is then the EM object for i.
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Test spaces

I A test space is a pair (X ,T ), where X is a set

I and T is a system of subsets of X , called tests,
I such that no two tests are comparable.
I A subset of a test is an event.
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Relations on events

I Two events a, b are said to be orthogonal (in symbols a ⊥ b)
if they are disjoint and their union is an event.

I It is obvious that the set of all events of a test space equipped
with the disjoint union of orthogonal events + and ∅ is a
partial commutative monoid.

I If a ⊥ b and a ∪ b is a test, then they are complements of
each other (in symbols a co b).
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Algebraic test spaces

I A test space is algebraic if co = co ◦ co ◦ co.

I For an algebraic test space, the relation ∼:= co ◦ co, called
perspectivity is an equivalence on events and

I the partial abelian monoid of events, factored by ∼ is an
orthoalgebra, i.e. and effect algebra with a ∧ a′ = 0.
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A characterization of algebraic test spaces

Proposition
Let (X ,T ) be a test space. Let us write (A ,+, ∅) for the partial
commutative monoid of the events of (X ,T ). The following are
equivalent.

1. (X ,T ) is algebraic.

2. ∼ is an equivalence relation and an oplax endomorphism of A.

3. ∼ is a preorder and an oplax endomorphism of A.

4. (A , +̃) is associative, where +̃ = ∼ ◦+.

Moreover, if ∼ is a preorder and ∼ is an lax and oplax
endomorphism of A , then A/ ∼ is a Boolean algebra.
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Thank you for your attention.
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