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Every effect algebra is a monoid in Rel.

Some well-known definitions in the theory of effect algebras,
appear to come from 2-categorial structure of RelMon.

Maybe | will sketch some related result concerning test
spaces.

Almost everything here has almost nonexistent proof.
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The category of sets and relations

...denoted by Rel.
» Objects: sets.

» Morphisms: binary relations; f : A — B in Rel is a set of pairs
fCAxB.

» Identities: ida : A — A is the identity relation.

» Composition: if f: A - Bandg: B — C,then(a,c) € gofiff
there exists b € B such that (a, b) € f and (b, c) € g.
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...s0 (Rel, x, 1) is a monoidal category...
...because (Set, x, 1) is one.
However, x is not the product in Rel, because...
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...disjoint union LI is product and, at the same time, coproduct
in Rel.



Monoids in a monoidal category

Recall, that a monoid is a monoidal category (C,®, 1) is a triple
(M, m, e), where M is an object of C, m: M® M — M and
e : 1 — M are arrows such that the diagrams

e®idy idy®e

1IM—MIM—MQR1

M
(MeM)oM = Mo (M® M)
m®idMl/ lid[\/l@m
Me M MeM
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Monoids in (Set, %, 1) are ordinary monoids.
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Monoids in the monoidal category of Abelian groups
(Ab,®,Z) are rings.

Monoids in the monoidal category of complete join
semilattices (Sup, ®, 2) are quantales.

Monoids in the monoidal category of ordinary monoids
(Mon, x, 1) are commutative monoids.

v
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Monoids in Rel

So a monoid in the monoidal category (Rel, x, 1) consists of
» asetM,
» arelatione: 1 - Mand
» arelation x : Mx M — M.

such that some diagrams commute.
We call these objects relational monoids
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When dealing with monoids in Rel, one should bear in mind that
bothm:AXA —- Aande:1— A are relations, and not
mappings.That means, among other things, that
» e is (essentially) a subset of the underlying set, rather than an
element;
» it is misleading to write a * b = ¢ to express the fact that
(a, b) is in the relation = with c;

> we write (a, b) > ¢ instead.
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Classes of monoids in Rel
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Ordinary monoids are monoids in Rel.

v

Hypergroups/hypermonoids are monoids in Rel.

v

Partial monoids (including effect algebras and some of their
generalizations) are monoids in Rel.
Small categories are monoids in Rel:

» elements are arrows,
» the e : 1 — M is the selection of identity arrows.

v



Morphisms of monoids in Rel

The class of monoids in a monoidal category comes equipped with
a standard notion of morphism:

M x M—20 vy s e

M h M

homewer, this notion does not work in the examples we are
interested in.



Rel as a 2-category
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A relation f C A x B is a set of pairs, so
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every homset Rel(A, B) is a poset under C.

v

That means, that Rel is enriched in Pos, in other words

v

Rel a (locally posetal/thin) 2-category.



Morphisms of monoids in Rel

There are several meaningful notions of morphisms of monoids in
Rel. In this talk, we shall deal with two of them.

M x M—8 o Mx M—2 o
M h M M h M
Lax morphism Oplax morphism

(hox) < (xo(hxh)) (hox)2 (xo(hxh))

hoece eChoe
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Category of relational monoids RelMon

By Category of relational monoids we mean a 2-category

» 0-cells are relational monoids,
» 1-cells are lax morphisms of relational monoids,
» 2-cells are the C of relations, inherited from Rel.

» The category of small categories is a 1-subcategory of this
category.

» The category of effect algebras is a subcategory of this
category.



Effect algebras

An effect algebra (Foulis and Bennett [1994], Képka and Chovanec

[1994], Giuntini and Greuling [1989]) is a partial algebra

(E; +,0,1) with a binary partial operation + and two nullary

operations 0, 1 such that + is commutative, associative and the

following pair of conditions is satisfied:

(E3) Forevery a € E there is a unique a’ € E such that a 4+ a’
existsanda+a’ = 1.

(E4) If a + 1 is defined, then a = 0.
The + operation is then cancellative and 0 is a neutral element.
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Why?

» Because RelMon is a 2-category, so it has a lot of structure.

» We can take the standard definitions of 2-categorial things
from RelMon and examine what they mean for effect
algebras.

» We rediscover well-known notions, but now we know where
they are coming from.
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Easy and nice

Let E be an effect algebra.

» <: E — E is a left Kan extension of + along the projection
p1: EXE — E.

» An effect algebra E satisfies the Riesz decomposition
property iff > is an endomorphism of E.



Adjoint pairs of morphisms in RelMon

Since RelMon is a 2-category, we may speak about adjoint pairs of
morphisms in RelMon. Unwinding the definition, it turns out every
left adjoint in RelMon is a mapping.
Let

» A, B be relational monoids,

» f:A—> B,

» g:B—> A.
Then the morphism f is left adjoint to the morphism g, if and only if
f is a mapping and g = .



Left adjoints in RelMon

From this, we obtain a characterization of left adjoints:

Proposition
A morphism f : A — B in RelMon is a left adjoint if and only if f is
a mapping and
> for all by, b, € B and a € A such that (by, bo) — f(a),
» there exist a1, ap € A such that by = f(ay), bo = f(a2) and
(a1, a0) s a.



What if A and B are effect algebras?

Theorem
Let A, B be effect algebras, let f : A — B be a morphism of effect
algebras. Then f is a left adjoint in RelMon iff



What if A and B are effect algebras?

Theorem
Let A, B be effect algebras, let f : A — B be a morphism of effect
algebras. Then f is a left adjoint in RelMon iff

» f is surjective and

» the equivalence on A induced by f is an effect algebra
congruence in the sense of (Gudder and Pulmannova [1998]).



Monads in RelMon

Since RelMon is a 2-category, we may speak about monads in
RelMon.

A monad in RelMon on a relational monoid A can be characterized
as a preorder relation <: A — A such that

<X<

AXA—=AXA 1

/l\*ﬂ*j

A
<

LA
%4
e

A
E
A

commute.
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Monads arising from adjunctions in 2-categories

» In every 2-category, an adjoint pair of morphisms gives rise to
a monad.

» In Cat, every monad arises from an adjoint pair
(Eilenberg-Moore, Kleisli).

» But this is not true in every 2-category.

» In particular, in Rel the monads (=preorders) arising from
adjunctions can be characterized as equivalence relations.



Monads arising from adjunctions in RelMon

If a monad ~: A — A arises from an adjunction, then

» ~ is an equivalence relation,
» the diagram
AxAZSAxA
o
A

A

commutes and
» if x is a unit of A and x ~ y, then y is a unit of A.



Monads arising from adjunctions in RelMon

If the multiplication is actually a partial operation, we obtain
another property of a monad arising from an adjunction:
» If a4 ~ by, @ ~ bo and both a; * a» and by * b, exist, then
a *32~b1 *bg.



“Dimension equivalences” on effect algebras

For an effect algebra E, we may characterize monads ~: E — E
arising from adjunctions in RelMon as follows:

» ~ is an equivalence.
» If a; ~ by, a ~ bo and both a; + a> and by + b, exist, then
ai + ax ~ by + bo.
» If a ~ by + by, then there are a4, a» such that a = a; + ao,
a ~ b1, as ~ bz.
E/ ~ is then a partial monoid.



Example

» Take a Boolean algebra B; this is an effect algebra with +
being the disjoint join.
» Introduce a equivalence on B by the rule

a~be[0,a] =]0,b]

Then this is a dimension equivalence.



A more fancy example

v

Let A be an involutive ring with unit, in which

XxX+y'y=0 = x=y=0.

v

Let P(A) be the set of all self-adjoint idempotents in A. For
e, fe P(A), write e® f = e + fiff ef = 0, otherwise let e & f
be undefined. Then (P(A); ®,0, 1) is an effect algebra.

For e, fin P(A), write e ~ f iff there is w € A such that
e = w*wand f = ww*.

v

v

Then this is a dimension equivalence.
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Theorem

(Dvurecenskij and Pulmannova [2000]) For every cancellative
positive partial abelian monoid E and every dimension equivalence
~on P, P/ ~ is a positive partial abelian monoid.

A new perspective:

» P/ ~ is the EM-object for the monad ~.
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where [ is an order ideal of E.



Comonads

Let E be an effect algebra. A relation i : E — E is a comonad in
RelMon iff
i={(x,x):xel}

where [ is an order ideal of E. I is then the EM object for i.



Test spaces

» A test space is a pair (X, 7"), where X is a set



Test spaces

» A test space is a pair (X, 7"), where X is a set
» and 7 is a system of subsets of X, called tests,



Test spaces

» A test space is a pair (X, 7"), where X is a set
» and 7 is a system of subsets of X, called tests,
» such that no two tests are comparable.



Test spaces

v

A test space is a pair (X,7"), where X is a set
and 7 is a system of subsets of X, called tests,

v

v

such that no two tests are comparable.

v

A subset of a test is an event.




Relations on events

» Two events a, b are said to be orthogonal (in symbols a L b)
if they are disjoint and their union is an event.



Relations on events

» Two events a, b are said to be orthogonal (in symbols a L b)
if they are disjoint and their union is an event.

» It is obvious that the set of all events of a test space equipped
with the disjoint union of orthogonal events + and 0 is a
partial commutative monoid.



Relations on events

» Two events a, b are said to be orthogonal (in symbols a L b)
if they are disjoint and their union is an event.

» It is obvious that the set of all events of a test space equipped
with the disjoint union of orthogonal events + and 0 is a
partial commutative monoid.

» Ifa L band aU b is atest, then they are complements of
each other (in symbols a co b).
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Algebraic test spaces

» A test space is algebraic if co = cooco o co.

» For an algebraic test space, the relation ~:= co o co, called
perspectivity is an equivalence on events and

» the partial abelian monoid of events, factored by ~ is an
orthoalgebra, i.e. and effect algebra with a A a’ = 0.



A characterization of algebraic test spaces

Proposition

Let (X,T) be a test space. Let us write (A, +,0) for the partial
commutative monoid of the events of (X, 7). The following are
equivalent.



A characterization of algebraic test spaces

Proposition

Let (X,T) be a test space. Let us write (A, +,0) for the partial
commutative monoid of the events of (X, 7). The following are
equivalent.

1. (X, T) is algebraic.



A characterization of algebraic test spaces

Proposition
Let (X,T) be a test space. Let us write (A, +,0) for the partial
commutative monoid of the events of (X, 7). The following are
equivalent.

1. (X, T) is algebraic.

2. ~ is an equivalence relation and an oplax endomorphism of A.



A characterization of algebraic test spaces

Proposition
Let (X,T) be a test space. Let us write (A, +,0) for the partial
commutative monoid of the events of (X, 7). The following are
equivalent.
1. (X, T) is algebraic.
2. ~ is an equivalence relation and an oplax endomorphism of A.
3. ~ is a preorder and an oplax endomorphism of A.



A characterization of algebraic test spaces

Proposition

Let (X,T) be a test space. Let us write (A, +,0) for the partial
commutative monoid of the events of (X, 7). The following are
equivalent.

1. (X, T) is algebraic.

2. ~ is an equivalence relation and an oplax endomorphism of A.
3. ~ is a preorder and an oplax endomorphism of A.

4. (A, ) is associative, where + = ~ o+.



A characterization of algebraic test spaces

Proposition

Let (X,T) be a test space. Let us write (A, +,0) for the partial
commutative monoid of the events of (X, 7). The following are
equivalent.

1. (X, T) is algebraic.

2. ~ is an equivalence relation and an oplax endomorphism of A.
3. ~ is a preorder and an oplax endomorphism of A.

4. (A, ) is associative, where + = ~ o+.

Moreover, if ~ is a preorder and ~ is an lax and oplax
endomorphism of A, then A/ ~ is a Boolean algebra.



Thank you for your attention.
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