
Higher-order model-checking,
categorical semantics,

and linear logic

Charles Grellois (joint work with Paul-André Melliès)

PPS & LIAFA — Université Paris 7

TACL conference — June 21, 2015

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 1 / 23

Model-checking higher-order programs

Construct a model M of a program

Specify a property ϕ in an appropriate logic

Make them interact: the result is whether

M � ϕ

If M is a word, a tree. . . of actions: translate ϕ to an equivalent
automaton:

ϕ 7→ Aϕ

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 2 / 23

Model-checking higher-order programs

For higher-order programs with recursion:

M is a higher-order tree:
a tree produced by a higher-order recursion schemes (HORS)

over which we run

an alternating parity tree automaton (APT) Aϕ

corresponding to a

modal µ-calculus formula ϕ.

(NB: here modal µ-calculus is equivalent to MSO)

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 3 / 23

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

A HORS is a kind of deterministic higher-order grammar.

Rewrite rules have (higher-order) parameters.

“Everything” is simply-typed.

Rewriting produces a tree 〈G〉.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 4 / 23

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

Rewriting starts from the start symbol S:

S →G
L

Nil

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 4 / 23

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

L

Nil

→G

if

L

data

Nil

Nil

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 4 / 23

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 4 / 23

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

〈G〉 is an infinite
non-regular tree.

It is our model M.

How to model-check a
non-regular tree?

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 4 / 23

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

HORS can alternatively be seen as simply-typed λ-terms with

free variables of order at most 1 (= tree constructors)

and

simply-typed recursion operators Yσ : (σ ⇒ σ)⇒ σ.

Here : G ! (Yo⇒o (λL.λx .if x (L (data x)))) Nil

So, we can interpret HORS in models of the λY -calculus.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 4 / 23

Alternating parity tree automata

For a modal µ-calculus formula ϕ,

〈G〉 � ϕ

iff an equivalent APT Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.

Our goal: interpret HORS in a model reflecting the behavior of Aφ.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 5 / 23

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 6 / 23

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 6 / 23

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

This infinite process produces a run-tree of Aϕ over 〈G〉.

It is an infinite, unranked tree.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 6 / 23

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

δ(q0, if) = (2, q0) ∧ (2, q1)

can be seen as the intersection typing

if : ∅ ⇒ (q0 ∧ q1)⇒ q0

refining the simple typing

if : o ⇒ o ⇒ o

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 7 / 23

Alternating tree automata and intersection types

In a derivation typing if T1 T2 :

δ ∅ ` if : ∅ ⇒ (q0 ∧ q1)⇒ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)⇒ q0

...
Γ1 ` T2 : q0

...
Γ1 ` T2 : q1

App
∅ ` if T1 T2 : q0

Intersection types naturally lift to higher-order – and thus to G, which
finitely represents 〈G〉.

Theorem (Kobayashi)

∅ ` G : q0 iff the ATA Aϕ has a run-tree over 〈G〉.

A step towards decidability. . .

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 8 / 23

Intersection types and linear logic

A⇒ B = !A(B

A program of type A⇒ B

duplicates or drops elements of A

and then

uses linearly (= once) each copy

Just as intersection types and APT.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 9 / 23

Intersection types and linear logic

A⇒ B = !A(B

Two interpretations of the exponential modality:

Qualitative models
(Scott semantics)

!A = Pfin(A)

[[o ⇒ o]] = Pfin(Q)× Q

{q0, q0, q1} = {q0, q1}

Order closure

Quantitative models
(Relational semantics)

!A = Mfin(A)

[[o ⇒ o]] = Mfin(Q)× Q

[q0, q0, q1] 6= [q0, q1]

Unbounded multiplicities

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 9 / 23

Intersection types and linear logic

Models of linear logic and intersection types (refining simple types):

Rel

Ehrhard

��

Rel!oooo

��

// Non-idempotent types

Ehrhard , G−M

��

oo

Scott Scott!
oooo

Terui
// Idempotent typesoo

[q0, q0, q1](q0_

��

� // q0 ∧ q0 ∧ q1 → q0_

��
{q0, q1}(q0

� // q0 ∧ q1 → q0

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 10 / 23

Intersection types and linear logic

Models of linear logic and intersection types (refining simple types):

Rel

Ehrhard

��

Rel!oooo

��

// Non-idempotent types

Ehrhard , G−M

��

oo

Scott Scott!
oooo

Terui
// Idempotent typesoo

Fundamental idea: derivations of the intersection type systems compute
denotations in the associated model.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 10 / 23

Four theorems: inductive version

We obtain a theorem for every corner of our “equivalence square”:

Theorem

In the relational (resp. Scott) semantics,

q0 ∈ [[G]] iff the ATA Aφ has a finite run-tree over 〈G〉.

Theorem

With non-idempotent (resp. idempotent with subtyping) intersection
types,

` G : q0 iff the ATA Aφ has a finite run-tree over 〈G〉.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 11 / 23

An infinitary model of linear logic

Rel and non-idempotent types lack of a countable multiplicity ω.
Recall that tree constructors are free variables. . .

In Rel , we introduce a new exponential A 7→ A s.t.

[[A]] = Mcount([[A]])

(finite-or-countable multisets), so that

[[A⇒ B]] = [[A]]([[B]] = Mcount([[A]])× [[B]]

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 12 / 23

An infinitary model of linear logic

This defines an infinitary model of linear logic, which corresponds to

non-idempotent intersection types with countable multiplicities

and derivations of countable depth.

It admits a coinductive fixpoint, which we use to interpret Y .

The four theorems generalize to all ATA (→ infinite runs).

And the parity condition ?

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 13 / 23

Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 14 / 23

Alternating parity tree automata

Each state of an APT receives a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a modal µ-calculus formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � φ

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 15 / 23

Alternating parity tree automata

Kobayashi and Ong’s type system has a quite complex handling of colors.

We reformulate it in a very simple way:

δ(q0, if) = (2, q0) ∧ (2, q1)

now corresponds to

if : ∅ ⇒
(
�Ω(q0) q0 ∧�Ω(q1) q1

)
⇒ q0

Application computes the “local” maximum of colors, and the fixpoint
deals with the acceptance condition.

In this reformulation, the colors behave as a family of modalities.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 16 / 23

The coloring comonad

Since coloring is a modality, it defines a comonad in the semantics:

� A = Col × A

which can be composed with thanks to a distributive law.

Now:

[[A⇒ B]] = � [[A]]([[B]] = Mcount(Col × [[A]])× [[B]]

We obtain a model of the λ-calculus which reflects the coloring by Aφ.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 17 / 23

An inductive-coinductive fixpoint operator

We define a fixpoint operator:

On typing derivations: rephrasal of the parity condition over
derivations −→ winning derivations.

On denotations: it composes inductively or coinductively elements of
the semantics, according to the current color.

The key here: parity conditions can be lifted to higher-order.

The fixpoint can also be defined using µ and ν.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 18 / 23

The final picture

Rel + � + Y

��

// Non-idempotent types + � + Y

��

oo

Scott + � + Y // Idempotent types + � + Yoo

Open question: are the dotted lines an extensional collapse again?

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 19 / 23

Four theorems: full version

We obtain a theorem for every corner of our “colored equivalence square”:

Theorem (G-Melliès 2015)

In the colored relational (resp. colored Scott) semantics,

q0 ∈ [[G]] iff the APT Aφ has a winning run-tree over 〈G〉.

Theorem (G-Melliès 2015)

With colored non-idempotent (resp. colored idempotent with subtyping)
intersection types, there is a winning derivation of

` G : q0 iff the APT Aφ has a winning run-tree over 〈G〉.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 20 / 23

The selection problem

In the Scott/idempotent case, finiteness ⇒ decidability of the higher-order
model-checking problem.

Even better: the selection problem is decidable.

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 21 / 23

The selection problem{
S = L Nil

L = λx . if x (L (data x))

becomes e.g.

Sq0 = L{q0, q1}(q0 Nilq0 Nilq1

L{q0, q1}(q0 = λx{q0, q1}.

if∅({q0, q1}(q0

L{q0}(q1

data{q0,q1}(q0

xq1xq0

L{q1}(q0

data{q0}(q1

xq0

L{q0}(q1 = · · ·
L{q1}(q0 = · · ·

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 22 / 23

Conclusion

Higher-order model-checking → verification of non-regular trees.

Semantic methods allow to study the term generating them.

Models of linear logic can be extended to capture parity conditions.

The semantic of a term reflects whether it satisfies a given property.

Decidability → existence of a finite model.

Thank you for your attention!

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 23 / 23

Conclusion

Higher-order model-checking → verification of non-regular trees.

Semantic methods allow to study the term generating them.

Models of linear logic can be extended to capture parity conditions.

The semantic of a term reflects whether it satisfies a given property.

Decidability → existence of a finite model.

Thank you for your attention!

Charles Grellois (PPS & LIAFA) Model-checking and linear logic June 21, 2015 23 / 23

