INTERPOLATION IN BROUWER LOGICS DETERMINED BY k-BRANCHING NETS OF CLUSTERS

Zofia Kostrzycka

Opole University of Technology

TACL, Ischia, June 2015

* Supported by the NCN, research grant DEC-2013/09/B/HS1/00701

Brouwerian logic **KTB**

Axioms CL and

$$\begin{split} K &:= \Box (p \to q) \to (\Box p \to \Box q) \\ T &:= \Box p \to p \\ B &:= p \to \Box \Diamond p \end{split}$$

and rules: (MP), (Sub) i (RG).

Theorem

Logic **KTB** is complete with respect to the class of reflexive and symmetric Kripke frames.

Axioms CL and

$$\begin{split} K &:= \Box (p \to q) \to (\Box p \to \Box q) \\ T &:= \Box p \to p \\ B &:= p \to \Box \Diamond p \end{split}$$

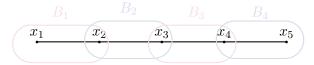
and rules: (MP), (Sub) i (RG).

Theorem

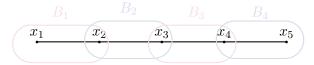
Logic **KTB** is complete with respect to the class of reflexive and symmetric Kripke frames.

$$alt_3 := \Box p \lor \Box (p \to q) \lor \Box ((p \land q) \to r) \lor \Box ((p \land q \land r) \to s)$$

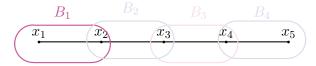
$$alt_3 := \Box p \lor \Box (p \to q) \lor \Box ((p \land q) \to r) \lor \Box ((p \land q \land r) \to s)$$



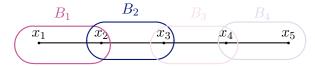
$$alt_3 := \Box p \lor \Box (p \to q) \lor \Box ((p \land q) \to r) \lor \Box ((p \land q \land r) \to s)$$



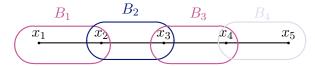
$$alt_3 := \Box p \lor \Box (p \to q) \lor \Box ((p \land q) \to r) \lor \Box ((p \land q \land r) \to s)$$



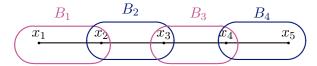
$$alt_3 := \Box p \lor \Box (p \to q) \lor \Box ((p \land q) \to r) \lor \Box ((p \land q \land r) \to s)$$



$$alt_3 := \Box p \lor \Box (p \to q) \lor \Box ((p \land q) \to r) \lor \Box ((p \land q \land r) \to s)$$



$$alt_3 := \Box p \lor \Box (p \to q) \lor \Box ((p \land q) \to r) \lor \Box ((p \land q \land r) \to s)$$



Linear Brouwerian modal logics - more general approach

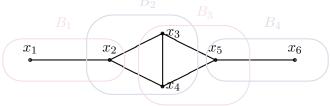
Linear Brouwerian modal logics $\mathbf{KTB.3'} := \mathbf{KTB} \oplus (3')$ where

$$(3') := \Box p \lor \Box (\Box p \to \Box q) \lor \Box ((\Box p \land \Box q) \to r).$$

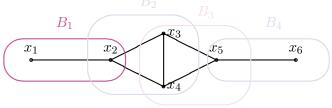
$$(3') := \Box p \lor \Box (\Box p \to \Box q) \lor \Box ((\Box p \land \Box q) \to r).$$



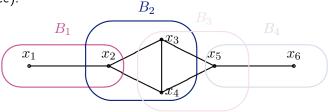
$$(3') := \Box p \lor \Box (\Box p \to \Box q) \lor \Box ((\Box p \land \Box q) \to r).$$



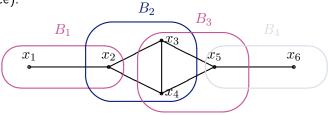
$$(3') := \Box p \lor \Box (\Box p \to \Box q) \lor \Box ((\Box p \land \Box q) \to r).$$



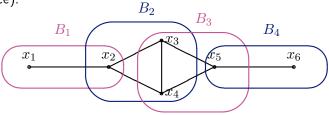
$$(3') := \Box p \lor \Box (\Box p \to \Box q) \lor \Box ((\Box p \land \Box q) \to r).$$



$$(3') := \Box p \lor \Box (\Box p \to \Box q) \lor \Box ((\Box p \land \Box q) \to r).$$



$$(3') := \Box p \lor \Box (\Box p \to \Box q) \lor \Box ((\Box p \land \Box q) \to r).$$



The logic $\mathbf{KTB.3'}$ has the finite model property (f.m.p).

The class of reflexive and symmetric frames with linearly ordered blocks of tolerance is denoted by \mathcal{LOB} .

Theorem

Let $L \in NEXT(\mathbf{KTB.3'})$. Then L is Kripke complete with respect to the class of frames from \mathcal{LOB} and has f.m.p.

The logic **KTB**.3' has the finite model property (f.m.p).

The class of reflexive and symmetric frames with linearly ordered blocks of tolerance is denoted by \mathcal{LOB} .

Theorem

Let $L \in NEXT(\mathbf{KTB.3'})$. Then L is Kripke complete with respect to the class of frames from \mathcal{LOB} and has f.m.p.

The logic **KTB**.3' has the finite model property (f.m.p).

The class of reflexive and symmetric frames with linearly ordered blocks of tolerance is denoted by \mathcal{LOB} .

Theorem

Let $L \in NEXT(\mathbf{KTB.3'})$. Then L is Kripke complete with respect to the class of frames from \mathcal{LOB} and has f.m.p.

The logic **KTB**.3' has the finite model property (f.m.p).

The class of reflexive and symmetric frames with linearly ordered blocks of tolerance is denoted by \mathcal{LOB} .

Theorem

Let $L \in NEXT(\mathbf{KTB.3'})$. Then L is Kripke complete with respect to the class of frames from \mathcal{LOB} and has f.m.p.

The cardinality of the family $NEXT(\mathbf{KTB.alt3})$ is countably infinite.

Theorem

The cardinality of the family NEXT(**KTB.3**') is uncountably infinite.

Z. Kostrzycka, Y.Miyazaki, *Normal modal logics determined by aligned clusters*, submitted.

The cardinality of the family $NEXT(\mathbf{KTB.alt3})$ is countably infinite.

Theorem

The cardinality of the family $NEXT(\mathbf{KTB.3'})$ is uncountably infinite.

Z. Kostrzycka, Y.Miyazaki, *Normal modal logics determined by aligned clusters*, submitted.

The cardinality of the family $NEXT(\mathbf{KTB.alt3})$ is countably infinite.

Theorem

The cardinality of the family $NEXT(\mathbf{KTB.3'})$ is uncountably infinite.

Z. Kostrzycka, Y.Miyazaki, Normal modal logics determined by aligned clusters, submitted.

3-branching Brouwerian modal logics

Brouwerian modal logics $\mathbf{KTB}.\mathbf{alt}_{4} := \mathbf{KTB} \oplus alt_{4}$ where

 $alt_4 := \Box p_1 \lor \Box (p_1 \to p_2) \lor \ldots \lor \Box ((p_1 \land \ldots \land p_4) \to p_5)$

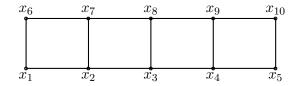
Logic $\mathbf{KTB.alt_4}$ is complete with respect to the class of reflexive and symmetric Kripke frames such that each point sees at most 4 others (including itself).

3-branching Brouwerian modal logics

Brouwerian modal logics $\mathbf{KTB}.\mathbf{alt}_{4} := \mathbf{KTB} \oplus alt_{4}$ where

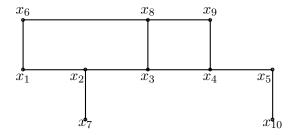
$$alt_4 := \Box p_1 \lor \Box (p_1 \to p_2) \lor \ldots \lor \Box ((p_1 \land \ldots \land p_4) \to p_5)$$

Logic $\mathbf{KTB.alt_4}$ is complete with respect to the class of reflexive and symmetric Kripke frames such that each point sees at most 4 others (including itself).

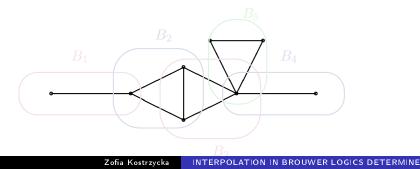


Zofia Kostrzycka INTERPOLATION IN BROUWER LOGICS DETERMINE

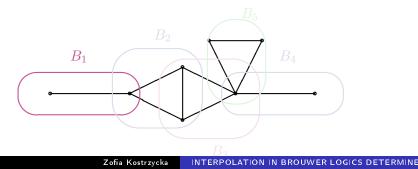
Other example



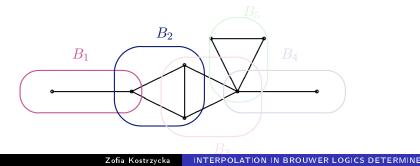
3-branching Brouwerian modal logics $\mathbf{KTB.4'}:=\mathbf{KTB}\oplus(4')$ where



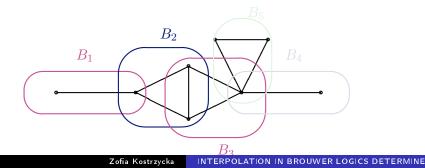
3-branching Brouwerian modal logics $\mathbf{KTB.4'}:=\mathbf{KTB}\oplus(4')$ where



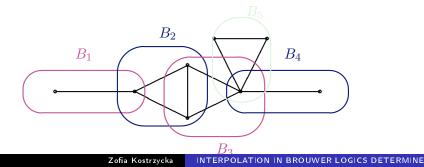
3-branching Brouwerian modal logics $\mathbf{KTB.4'}:=\mathbf{KTB}\oplus(4')$ where



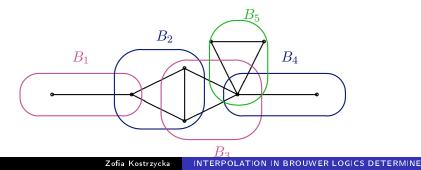
3-branching Brouwerian modal logics $\mathbf{KTB.4'}:=\mathbf{KTB}\oplus(4')$ where



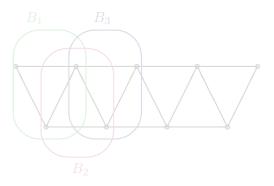
3-branching Brouwerian modal logics $\mathbf{KTB.4'}:=\mathbf{KTB}\oplus(4')$ where



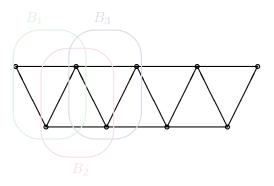
3-branching Brouwerian modal logics $\mathbf{KTB.4'}:=\mathbf{KTB}\oplus(4')$ where



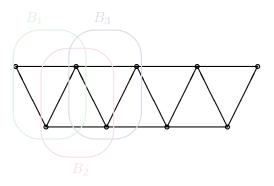
Other example of 3-branching Brouwerian frame



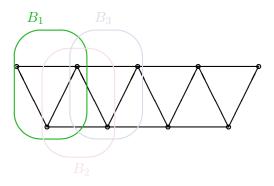
Other example of 3-branching Brouwerian frame



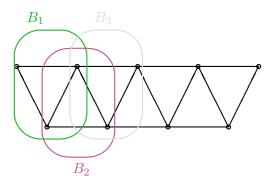
Other example of 3-branching Brouwerian frame



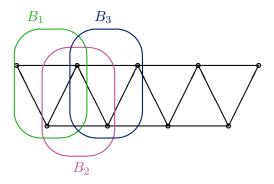
Other example of 3-branching Brouwerian frame



Other example of 3-branching Brouwerian frame



Other example of 3-branching Brouwerian frame



$\mathbf{KTB.alt_n}$ - logic determined by *n*-branching nets:

$$(alt_n) := \Box p_1 \lor \Box (p_1 \to p_2) \lor \ldots \lor \Box ((p_1 \land \ldots \land p_n) \to \Box p_{n+1})$$

 $\mathbf{KTB.n'}$ - logic determined by n-branching nets of clusters:

 $(n') := \Box p_1 \lor \Box (\Box p_1 \to \Box p_2) \lor \ldots \lor \Box ((\Box p_1 \land \ldots \land \Box p_{n-1}) \to \Box p_n)$

 $\mathbf{KTB.alt_n}$ - logic determined by *n*-branching nets:

$$(alt_n) := \Box p_1 \lor \Box (p_1 \to p_2) \lor \ldots \lor \Box ((p_1 \land \ldots \land p_n) \to \Box p_{n+1})$$

 $\mathbf{KTB.n'}$ - logic determined by *n*-branching nets of clusters:

$$(n') := \Box p_1 \lor \Box (\Box p_1 \to \Box p_2) \lor \ldots \lor \Box ((\Box p_1 \land \ldots \land \Box p_{n-1}) \to \Box p_n)$$

 A logic L has the Craig interpolation property (CIP) if for every implication α → β in L, there exists a formula γ such that

$$lpha
ightarrow \gamma \in L$$
 and $\gamma
ightarrow eta \in L$

and $Var(\gamma) \subseteq Var(\alpha) \cap Var(\beta)$.

 A logic L has interpolation for deducibility (IPD) if for any α and β the condition α ⊢_L β implies that there exists a formula γ such that

 $\alpha \vdash_L \gamma \text{ and } \gamma \vdash_L \beta$

 $Var(\gamma) \subseteq Var(\alpha) \cap Var(\beta).$

 A logic L has the Craig interpolation property (CIP) if for every implication α → β in L, there exists a formula γ such that

$$\alpha \rightarrow \gamma \in L$$
 and $\gamma \rightarrow \beta \in L$

and $Var(\gamma) \subseteq Var(\alpha) \cap Var(\beta)$.

 A logic L has interpolation for deducibility (IPD) if for any α and β the condition α ⊢_L β implies that there exists a formula γ such that

 $\alpha \vdash_L \gamma \text{ and } \gamma \vdash_L \beta$

 $Var(\gamma) \subseteq Var(\alpha) \cap Var(\beta).$

 A logic L has the Craig interpolation property (CIP) if for every implication α → β in L, there exists a formula γ such that

$$\alpha
ightarrow \gamma \in L$$
 and $\gamma
ightarrow \beta \in L$

and $Var(\gamma) \subseteq Var(\alpha) \cap Var(\beta)$.

 A logic L has interpolation for deducibility (IPD) if for any α and β the condition α ⊢_L β implies that there exists a formula γ such that

$$\alpha \vdash_L \gamma \text{ and } \gamma \vdash_L \beta$$

 $Var(\gamma) \subseteq Var(\alpha) \cap Var(\beta).$

Conjecture

The Brouwer logic **KTB** have (CIP).

Proof.(?) The method of construction of inseparable tableaux should work.

Conjecture

All the logics $\mathbf{KTB.alt_n}$ and $\mathbf{KTB.n'}$, $n \ge 3$ do not have (CIP) and (IPD).

Conjecture

The Brouwer logic **KTB** have (CIP).

Proof.(?) The method of construction of inseparable tableaux should work.

Conjecture

All the logics $\mathbf{KTB}.\mathbf{alt_n}$ and $\mathbf{KTB}.\mathbf{n}'$, $n \ge 3$ do not have (CIP) and (IPD).

Conjecture

The Brouwer logic **KTB** have (CIP).

Proof.(?) The method of construction of inseparable tableaux should work.

Conjecture

All the logics $\mathbf{KTB.alt_n}$ and $\mathbf{KTB.n'}$, $n \ge 3$ do not have (CIP) and (IPD).

How many normal extensions of $\mathbf{KTB.alt_3}$ and $\mathbf{KTB.3'}$ have (CIP) (or IDP)?

Theorem

If L has only one Post-complete extension and is Halldén-incomplete, then interpolation fails in L. [Schumm, 1986]

Definition

A logic L is Halldén complete if

 $arphi ee \psi \in L$ implies $arphi \in L$ or $\psi \in L$

for all φ and ψ containing no common variables.

How many normal extensions of $\mathbf{KTB.alt_3}$ and $\mathbf{KTB.3'}$ have (CIP) (or IDP)?

Theorem

If L has only one Post-complete extension and is Halldén-incomplete, then interpolation fails in L. [Schumm, 1986]

Definition

A logic L is Halldén complete if

 $\varphi \lor \psi \in L$ implies $\varphi \in L$ or $\psi \in L$

for all φ and ψ containing no common variables.

How many normal extensions of $\mathbf{KTB.alt}_3$ and $\mathbf{KTB.3'}$ have (CIP) (or IDP)?

Theorem

If L has only one Post-complete extension and is Halldén-incomplete, then interpolation fails in L. [Schumm, 1986]

Definition

A logic L is Halldén complete if

$$\varphi \lor \psi \in L$$
 implies $\varphi \in L$ or $\psi \in L$

for all φ and ψ containing no common variables.

Lemma

[van Benthem and Humberstone, 1983] If a modal logic L is determined by one Kripke frame, which is homogeneous, then L is Halldén complete.

_emma

[ZK and Y.Miyazaki 2013] Let $L = L(\mathfrak{F})$ is determined by one finite KTB-frame. Logic L is Halldén complete iff \mathfrak{F} is homogeneous.

Lemma

[van Benthem and Humberstone, 1983] If a modal logic L is determined by one Kripke frame, which is homogeneous, then L is Halldén complete.

emma

[ZK and Y.Miyazaki 2013]

Let $L = L(\mathfrak{F})$ is determined by one finite KTB-frame. Logic L is Halldén complete iff \mathfrak{F} is homogeneous.

Lemma

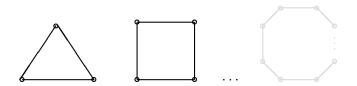
[van Benthem and Humberstone, 1983] If a modal logic L is determined by one Kripke frame, which is homogeneous, then L is Halldén complete.

Lemma

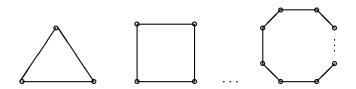
[ZK and Y.Miyazaki 2013]

Let $L = L(\mathfrak{F})$ is determined by one finite KTB-frame. Logic L is Halldén complete iff \mathfrak{F} is homogeneous.

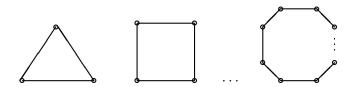
Two trivial circular frames:



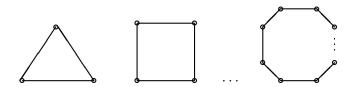
Two trivial circular frames:



Two trivial circular frames:

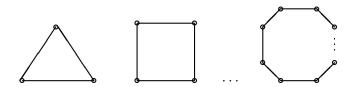


Two trivial circular frames:



Two trivial circular frames:

o o-----o



Two trivial circular frames:

o

Corollary

All tabular and Halldén complete logics in $NEXT(\mathbf{KTB.alt_3})$ are determined by the circular frames: \mathfrak{C}_n , $n \in \mathbb{N}$.

Question

Which logics $L(\mathfrak{C}_n)$, $n \in \mathbb{N}$ have (IPD) or (CIP)?

Corollary

All tabular and Halldén complete logics in $NEXT(\mathbf{KTB.alt_3})$ are determined by the circular frames: \mathfrak{C}_n , $n \in \mathbb{N}$.

Question

Which logics $L(\mathfrak{C}_n)$, $n \in \mathbb{N}$ have (IPD) or (CIP)?

[Maksimowa 1979]For any logic $L \in NEXT(\mathbf{K})$ the following are equivalent:

- L possesses CIP
- $\bullet \ V(L)$ has the superamalgamation property

Theorem

[Czelakowski 1982] For any logic $L \in NEXT(\mathbf{K})$ the following are equivalent:

- L possesses IPD
- V(L) has the amalgamation property

[Maksimowa 1979]For any logic $L \in NEXT(\mathbf{K})$ the following are equivalent:

- L possesses CIP
- V(L) has the superamalgamation property

Theorem

[Czelakowski 1982] For any logic $L \in NEXT(\mathbf{K})$ the following are equivalent:

- L possesses IPD
- V(L) has the amalgamation property

Amalgamation property for frames (APK) For any \mathfrak{F}_0 , \mathfrak{F}_1 and \mathfrak{F}_2 in class K and for any p-morphism $f_1: \mathfrak{F}_1 \to \mathfrak{F}_0$ and $f_2: \mathfrak{F}_2 \to \mathfrak{F}_0$ there exist \mathfrak{F} in K and p-morphisms $g_1: \mathfrak{F} \to \mathfrak{F}_1$ and $g_2: \mathfrak{F} \to \mathfrak{F}_2$ such that $f_1 \circ g_1 = f_2 \circ g_2$.

Superamalgamation property requires an additional condition (SAPK):

 $\forall_{x \in \mathfrak{F}_1} \forall_{y \in \mathfrak{F}_2} [f_1(x) = f_2(y) \quad \Rightarrow \quad \exists_{z \in \mathfrak{F}} g_1(z) = x \land g_2(z) = y].$

Amalgamation property for frames (APK) For any \mathfrak{F}_0 , \mathfrak{F}_1 and \mathfrak{F}_2 in class K and for any p-morphism $f_1: \mathfrak{F}_1 \to \mathfrak{F}_0$ and $f_2: \mathfrak{F}_2 \to \mathfrak{F}_0$ there exist \mathfrak{F} in K and p-morphisms $g_1: \mathfrak{F} \to \mathfrak{F}_1$ and $g_2: \mathfrak{F} \to \mathfrak{F}_2$ such that $f_1 \circ g_1 = f_2 \circ g_2$.

Superamalgamation property requires an additional condition (SAPK):

 $\forall_{x \in \mathfrak{F}_1} \forall_{y \in \mathfrak{F}_2} [f_1(x) = f_2(y) \quad \Rightarrow \quad \exists_{z \in \mathfrak{F}_2} g_1(z) = x \land g_2(z) = y].$

Amalgamation property for frames (APK) For any \mathfrak{F}_0 , \mathfrak{F}_1 and \mathfrak{F}_2 in class K and for any p-morphism $f_1: \mathfrak{F}_1 \to \mathfrak{F}_0$ and $f_2: \mathfrak{F}_2 \to \mathfrak{F}_0$ there exist \mathfrak{F} in K and p-morphisms $g_1: \mathfrak{F} \to \mathfrak{F}_1$ and $g_2: \mathfrak{F} \to \mathfrak{F}_2$ such that $f_1 \circ g_1 = f_2 \circ g_2$.

Superamalgamation property requires an additional condition (SAPK):

$$\forall_{x \in \mathfrak{F}_1} \forall_{y \in \mathfrak{F}_2} [f_1(x) = f_2(y) \quad \Rightarrow \quad \exists_{z \in \mathfrak{F}_2} g_1(z) = x \land g_2(z) = y].$$

There are only two tabular logics with (CIP) in $NEXT(\mathbf{KTB.alt_3})$. They are $L(\circ)$ and $L(\circ-\circ)$.

Proof. By superamalgamation property for frames.

Theorem

The logic $L(\mathfrak{C}_4)$ has (IPD) and do not has (CIP). It is the only logics among $L(\mathfrak{C}_n)$, $n \geq 3$ and n is finite.

There are only two tabular logics with (CIP) in $NEXT(\mathbf{KTB.alt_3})$. They are $L(\circ)$ and $L(\circ-\circ)$.

Proof. By superamalgamation property for frames.

Theorem

The logic $L(\mathfrak{C}_4)$ has (IPD) and do not has (CIP). It is the only logics among $L(\mathfrak{C}_n)$, $n \geq 3$ and n is finite.

There are only two tabular logics with (CIP) in $NEXT(\mathbf{KTB.alt_3})$. They are $L(\circ)$ and $L(\circ-\circ)$.

Proof. By superamalgamation property for frames.

Theorem

The logic $L(\mathfrak{C}_4)$ has (IPD) and do not has (CIP). It is the only logics among $L(\mathfrak{C}_n)$, $n \geq 3$ and n is finite.

There are only two tabular logics with (CIP) in $NEXT(\mathbf{KTB.alt_3})$. They are $L(\circ)$ and $L(\circ-\circ)$.

Proof. By superamalgamation property for frames.

Theorem

The logic $L(\mathfrak{C}_4)$ has (IPD) and do not has (CIP). It is the only logics among $L(\mathfrak{C}_n)$, $n \geq 3$ and n is finite.

Interpolation in $NEXT(\mathbf{KTB.3'})$

Theorem

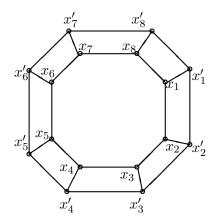
There are only three logics with (CIP) in $NEXT(\mathbf{KTB.3'})$. They are $L(\circ)$ and $L(\circ--\circ)$ and $\mathbf{S5}$. Other logic with (IPD) and without (CIP) is the logic determined by four element chain of clusters.

Interpolation in $NEXT(\mathbf{KTB.3'})$

Theorem

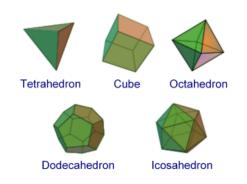
There are only three logics with (CIP) in $NEXT(\mathbf{KTB.3'})$. They are $L(\circ)$ and $L(\circ--\circ)$ and S5. Other logic with (IPD) and without (CIP) is the logic determined by four element chain of clusters.

Finite, homogenous $KTB.alt_4$ - frames



The diagram of reflexive, symmetric double circular frame \mathfrak{DC}_{16}

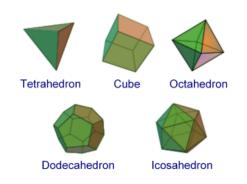
Finite, homogenous $KTB.alt_n$ -frames, $n \ge 4$ - Platonic solids



Picture from wikipedia

Zofia Kostrzycka INTERPOLATION IN BROUWER LOGICS DETERMINE

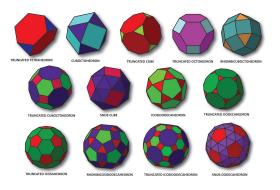
Finite, homogenous $KTB.alt_n$ -frames, $n \ge 4$ - Platonic solids



Picture from wikipedia

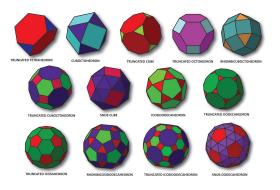
Zofia Kostrzycka INTERPOLATION IN BROUWER LOGICS DETERMINE

Other finite, homogenous $KTB.alt_n$ -frames - Archimedean solids



Picture from wikipedia

Other finite, homogenous $KTB.alt_n$ -frames - Archimedean solids



Picture from wikipedia

Logics with (IPD) in $NEXT(KTB.alt_4)$

Theorem

The logic determined by the frame in a shape of cube has (IPD) and do not has (CIP).

Proof. By amalgamation property for frames.

Logics with (IPD) in $NEXT(KTB.alt_4)$

Theorem

The logic determined by the frame in a shape of cube has (IPD) and do not has (CIP).

Proof. By amalgamation property for frames.

Logics with (IPD) in $NEXT(KTB.alt_5)$

Theorem

The logic determined by the frame in a shape of 16-element Boolean algebra has (IPD) and do not has (CIP).

Proof. By amalgamation property for frames. And so on....

Logics with (IPD) in $NEXT(KTB.alt_5)$

Theorem

The logic determined by the frame in a shape of 16-element Boolean algebra has (IPD) and do not has (CIP).

Proof. By amalgamation property for frames.

And so on....

Theorem

The logic determined by the frame in a shape of 16-element Boolean algebra has (IPD) and do not has (CIP).

Proof. By amalgamation property for frames. And so on....

Description of the class of tabular logic with (IDP) in $NEXT(KTB.alt_4)$ and $NEXT(KTB.alt_5)$. Proving that the Brouwer logic **KTB** have (CIP). Proving that the logics **KTB.alt_n** and **KTB.n'**, $n \ge 3$ do not have (CIP) and (IPD).

Description of the class of tabular logic with (IDP) in $NEXT(KTB.alt_4)$ and $NEXT(KTB.alt_5)$.

Proving that the Brouwer logic \mathbf{KTB} have (CIP). Proving that the logics $\mathbf{KTB.alt_n}$ and $\mathbf{KTB.n'}$, $n \geq 3$ do not have (CIP) and (IPD).

Description of the class of tabular logic with (IDP) in $NEXT(KTB.alt_4)$ and $NEXT(KTB.alt_5)$. Proving that the Brouwer logic **KTB** have (CIP). Proving that the logics **KTB.alt_n** and **KTB.n'**, $n \ge 3$ do the have (CIP) and (IPD).

Description of the class of tabular logic with (IDP) in $NEXT(KTB.alt_4)$ and $NEXT(KTB.alt_5)$. Proving that the Brouwer logic **KTB** have (CIP). Proving that the logics **KTB.alt_n** and **KTB.n'**, $n \ge 3$ do not have (CIP) and (IPD).

- J.F.A.K. van Benthem, I.I.Humberstone, *Halldén-completeness* by Gluing of Kripke Frames, NDJFL 24/4, (1983), 426–430.
- A. Chagrow, M. Zakharyaschev, On Halldén-completeness of intermediate and modal logics, BSL 19/1 (1990), 21--23.
- J. Czelakowski, Logical matrices and the amalgamation property, SL 41, (4), (1981), 329–341.
- S. Halldén, On the semantic non-completeness of certain Lewis calculi, JSL 16, (1951), 127–129.
- Z. Kostrzycka, On interpolation and Halldén-completeness in NEXT(KTB), BSL 41/1-2, 2012, 23–32.
- Z. Kostrzycka, *On linear Brouwerian logics*, Mathematical Logic Quarterly 60 (4-5): (2014), 304-313.
- S. A. Kripke, *Semantical analysis of modal logic I.*, Zeitschr. f.

math. Logik und Grundlagen d. Math., 9 (1963), 67–96.

Thank you for your attention.