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Brouwerian logic KTB

Axioms CL and

K := �(p→ q)→ (�p→ �q)

T := �p→ p

B := p→ �♦p

and rules: (MP), (Sub) i (RG).

Theorem

Logic KTB is complete with respect to the class of re�exive and

symmetric Kripke frames.
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Linear Brouwerian modal logics

Linear Brouwerian modal logics KTB.alt3 := KTB⊕ alt3 where

alt3 := �p ∨�(p→ q) ∨�((p ∧ q)→ r) ∨�((p ∧ q ∧ r)→ s)

Logic KTB.alt3 is complete with respect to the class of re�exive

and symmetric Kripke frames being chains of points.
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Linear Brouwerian modal logics - more general approach

Linear Brouwerian modal logics KTB.3′ := KTB⊕ (3′) where

(3′) := �p ∨�(�p→ �q) ∨�((�p ∧�q)→ r).

Logic KTB.3′ is complete with respect to the class of re�exive and

symmetric Kripke frames with linearly ordered clusters (blocks of

tolerance).
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Main results

Theorem

The logic KTB.3′ has the �nite model property (f.m.p).

The class of re�exive and symmetric frames with linearly ordered

blocks of tolerance is denoted by LOB.

Theorem

Let L ∈ NEXT (KTB.3′). Then L is Kripke complete with

respect to the class of frames from LOB and has f.m.p.

Z. Kostrzycka, On linear Brouwerian logics, Mathematical Logic

Quarterly 60 (4-5): 304�313, (2014).
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Important di�erence

Theorem

The cardinality of the family NEXT (KTB.alt3) is countably

in�nite.

Theorem

The cardinality of the family NEXT (KTB.3′) is uncountably

in�nite.

Z. Kostrzycka, Y.Miyazaki, Normal modal logics determined by

aligned clusters, submitted.
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3-branching Brouwerian modal logics

Brouwerian modal logics KTB.alt4 := KTB⊕ alt4 where

alt4 := �p1 ∨�(p1 → p2) ∨ ... ∨�((p1 ∧ ... ∧ p4)→ p5)

Logic KTB.alt4 is complete with respect to the class of re�exive

and symmetric Kripke frames such that each point sees at most 4

others (including itself).

a a a a a
x1 x2 x3 x4 x5

a a a a ax6 x7 x8 x9 x10
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Other example

a a a a a
x1 x2 x3 x4 x5

a a ax6

x7

x8 x9

x10
a a

Zo�a Kostrzycka INTERPOLATION IN BROUWER LOGICS DETERMINED BY k-BRANCHING NETS OF CLUSTERS



3-branching Brouwerian modal logics - more general

approach

3-branching Brouwerian modal logics KTB.4′ := KTB⊕ (4′)

where

(4′) := �p1 ∨�(�p1 → �p2) ∨ ... ∨�((�p1 ∧ ... ∧�p3)→ �p4)
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Other example of 3-branching Brouwerian frame
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From KTB.altn to KTB.n′

KTB.altn - logic determined by n-branching nets:

(altn) := �p1 ∨�(p1 → p2) ∨ ... ∨�((p1 ∧ ... ∧ pn)→ �pn+1)

KTB.n′ - logic determined by n-branching nets of clusters:

(n′) := �p1 ∨�(�p1 → �p2) ∨ ... ∨�((�p1 ∧ ... ∧�pn−1)→ �pn)
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De�nitions

A logic L has the Craig interpolation property (CIP) if for every

implication α→ β in L, there exists a formula γ such that

α→ γ ∈ L and γ → β ∈ L

and V ar(γ) ⊆ V ar(α) ∩ V ar(β).

A logic L has interpolation for deducibility (IPD) if for any α

and β the condition α `L β implies that there exists a formula

γ such that

α `L γ and γ `L β

V ar(γ) ⊆ V ar(α) ∩ V ar(β).
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Conjecture

The Brouwer logic KTB have (CIP).

Proof.(?) The method of construction of inseparable tableaux

should work.

Conjecture

All the logics KTB.altn and KTB.n′, n ≥ 3 do not have (CIP)

and (IPD).
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How many normal extensions of KTB.alt3 and KTB.3′

have (CIP) (or IDP)?

Theorem

If L has only one Post-complete extension and is

Halldén-incomplete, then interpolation fails in L. [Schumm, 1986]

De�nition

A logic L is Halldén complete if

ϕ ∨ ψ ∈ L implies ϕ ∈ L or ψ ∈ L

for all ϕ and ψ containing no common variables.
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Homogenous frames

Lemma

[van Benthem and Humberstone, 1983]

If a modal logic L is determined by one Kripke frame, which is

homogeneous, then L is Halldén complete.

Lemma

[ZK and Y.Miyazaki 2013]

Let L = L(F) is determined by one �nite KTB-frame. Logic L is

Halldén complete i� F is homogeneous.
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Finite homogeneous KTB.alt3-frames - circular frames
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Corollary

All tabular and Halldén complete logics in NEXT (KTB.alt3) are

determined by the circular frames: Cn, n ∈ N.

Question

Which logics L(Cn), n ∈ N have (IPD) or (CIP)?
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Theorem

[Maksimowa 1979]For any logic L ∈ NEXT (K) the following are

equivalent:

L possesses CIP

V (L) has the superamalgamation property

Theorem

[Czelakowski 1982]For any logic L ∈ NEXT (K) the following are

equivalent:

L possesses IPD

V (L) has the amalgamation property
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Amalgamation for Kripke frames

Amalgamation property for frames (APK)

For any F0, F1 and F2 in class K and for any p-morphism

f1 : F1 → F0 and f2 : F2 → F0 there exist F in K and

p-morphisms g1 : F→ F1 and g2 : F→ F2 such that

f1 ◦ g1 = f2 ◦ g2.

Superamalgamation property requires an additional condition

(SAPK):

∀x∈F1∀y∈F2 [f1(x) = f2(y) ⇒ ∃z∈Fg1(z) = x ∧ g2(z) = y].
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Theorem

There are only two tabular logics with (CIP) in

NEXT (KTB.alt3). They are L(◦) and L(◦�◦).

Proof. By superamalgamation property for frames.

Theorem

The logic L(C4) has (IPD) and do not has (CIP). It is the only

logics among L(Cn), n ≥ 3 and n is �nite.

Proof. By amalgamation property for frames.
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Interpolation in NEXT (KTB.3′)

Theorem

There are only three logics with (CIP) in NEXT (KTB.3′). They

are L(◦) and L(◦�◦) and S5. Other logic with (IPD) and without

(CIP) is the logic determined by four element chain of clusters.

Zo�a Kostrzycka INTERPOLATION IN BROUWER LOGICS DETERMINED BY k-BRANCHING NETS OF CLUSTERS



Interpolation in NEXT (KTB.3′)

Theorem

There are only three logics with (CIP) in NEXT (KTB.3′). They

are L(◦) and L(◦�◦) and S5. Other logic with (IPD) and without

(CIP) is the logic determined by four element chain of clusters.

Zo�a Kostrzycka INTERPOLATION IN BROUWER LOGICS DETERMINED BY k-BRANCHING NETS OF CLUSTERS



Finite, homogenous KTB.alt4- frames
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The diagram of re�exive, symmetric double circular frame DC16
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Finite, homogenous KTB.altn-frames, n ≥ 4 - Platonic

solids

Picture from wikipedia
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Other �nite, homogenous KTB.altn-frames - Archimedean

solids

Picture from wikipedia
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Logics with (IPD) in NEXT (KTB.alt4)

Theorem

The logic determined by the frame in a shape of cube has (IPD)

and do not has (CIP).

Proof. By amalgamation property for frames.
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Logics with (IPD) in NEXT (KTB.alt5)

Theorem

The logic determined by the frame in a shape of 16-element

Boolean algebra has (IPD) and do not has (CIP).

Proof. By amalgamation property for frames.

And so on....
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Future work

Description of the class of tabular logic with (IDP) in

NEXT (KTB.alt4) and NEXT (KTB.alt5).

Proving that the Brouwer logic KTB have (CIP).

Proving that the logics KTB.altn and KTB.n′, n ≥ 3 do not

have (CIP) and (IPD).
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Thank you for your attention.
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