Representation of Free Finitely Generated Weak Nilpotent Minimum Algebras

Diego Valota
Artificial Intelligence Research Institute (IIIA), CSIC.
diego@iiia.csic.es

Based on a joint work with:

Stefano Aguzzoli (UNIMI) and Simone Bova (TU Wien).

TACL 2015

- Monoidal T-norms based Logic;
- Weak Negations Functions, WNM Algebras and Chains;
- Representation of Free n-generated WNM algebras;
- Applications.

Many-Valued Logics are truth-functional propositional logics where the set of truth degree is the real interval $[0,1]$.

Many-Valued Logics are truth-functional propositional logics where the set of truth degree is the real interval $[0,1]$.

```
A T-norm is a binary operation
    :[0,1] 2}->[0,1] that satisfies
    1. }x\cdoty=y\cdot
    2. }(x\cdoty)\cdotz=x\cdot(y\cdotz
    3. }x\leqy\mathrm{ then }x\cdotz\leqy\cdot
    4. }x\cdot1=
for all }x,y,z,\in[0,1]
```

Many-Valued Logics are truth-functional propositional logics where the set of truth degree is the real interval $[0,1]$.

A \mathbf{T}-norm is a binary operation
$\cdot:[0,1]^{2} \rightarrow[0,1]$ that satisfies:

1. $x \cdot y=y \cdot x$
2. $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
3. $x \leq y$ then $x \cdot z \leq y \cdot z$
4. $x \cdot 1=x$
for all $x, y, z, \in[0,1]$.

Residuum: $\Rightarrow::[0,1]^{2} \rightarrow[0,1]$.
Adjunction property:
$(x \cdot z) \leq y$ iff $z \leq(x \Rightarrow y)$
that is $x \Rightarrow y=\max \{z \mid x \cdot z \leq y\}$, for all $x, y, z \in[0,1]$.

Many-Valued Logics are truth-functional propositional logics where the set of truth degree is the real interval $[0,1]$.

A \mathbf{T}-norm is a binary operation
$\cdot:[0,1]^{2} \rightarrow[0,1]$ that satisfies:

1. $x \cdot y=y \cdot x$
2. $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
3. $x \leq y$ then $x \cdot z \leq y \cdot z$
4. $x \cdot 1=x$
for all $x, y, z, \in[0,1]$.
The necessary and sufficient condition for the residuum's existence is the t-norm's left-continuity.

$$
\begin{aligned}
& \text { Residuum: } \Rightarrow::[0,1]^{2} \rightarrow[0,1] \text {. } \\
& \text { Adjunction property: } \\
& (x \cdot z) \leq y \text { iff } z \leq(x \Rightarrow y) \\
& \text { that is } x \Rightarrow y=\max \{z \mid x \cdot z \leq y\} \text {, } \\
& \text { for all } x, y, z \in[0,1] \text {. }
\end{aligned}
$$

Many-Valued Logics are truth-functional propositional logics where the set of truth degree is the real interval $[0,1]$.

A \mathbf{T}-norm is a binary operation
$\cdot:[0,1]^{2} \rightarrow[0,1]$ that satisfies:

1. $x \cdot y=y \cdot x$
2. $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
3. $x \leq y$ then $x \cdot z \leq y \cdot z$
4. $x \cdot 1=x$
for all $x, y, z, \in[0,1]$.

$$
\begin{aligned}
& \text { Residuum: } \Rightarrow::[0,1]^{2} \rightarrow[0,1] \text {. } \\
& \text { Adjunction property: } \\
& (x \cdot z) \leq y \text { iff } z \leq(x \Rightarrow y) \\
& \text { that is } x \Rightarrow y=\max \{z \mid x \cdot z \leq y\} \text {, } \\
& \text { for all } x, y, z \in[0,1] \text {. }
\end{aligned}
$$

The necessary and sufficient condition for the residuum's existence is the t-norm's left-continuity.

Monoidal T-norm based Logic (MTL)(Esteva and Godo): Many-Valued logic of all left-continuous t -norms and their residua (Montagna and Jenei).

A commutative integral bounded residuated lattice is an algebra $\mathbf{A}=(A, \wedge, \vee, \cdot, \rightarrow, \perp, \top)$ of type $(2,2,2,2,0,0)$ such that ($A, \wedge, \vee, \perp, \top$) is a bounded lattice, (A, \cdot, T) is a commutative monoid, and the residuation equivalence, $x \cdot y \leq z$ if and only if $x \leq y \rightarrow z$, holds.

An MTL algebra $\mathbf{A}=(A, \wedge, \vee, \cdot, \rightarrow, \perp, \top)$ is a commutative integral bounded residuated lattice satisfying the prelinearity equation, $(x \rightarrow y) \vee(y \rightarrow x)=T$.

Define

$$
a^{\prime}:=a \rightarrow 0,
$$

for all $a \in A$.

A commutative integral bounded residuated lattice is an algebra $\mathbf{A}=(A, \wedge, \vee, \cdot, \rightarrow, \perp, \top)$ of type $(2,2,2,2,0,0)$ such that ($A, \wedge, \vee, \perp, \top$) is a bounded lattice, (A, \cdot, T) is a commutative monoid, and the residuation equivalence, $x \cdot y \leq z$ if and only if $x \leq y \rightarrow z$, holds.

An MTL algebra $\mathbf{A}=(A, \wedge, \vee, \cdot, \rightarrow, \perp, \top)$ is a commutative integral bounded residuated lattice satisfying the prelinearity equation, $(x \rightarrow y) \vee(y \rightarrow x)=T$.

Define

$$
a^{\prime}:=a \rightarrow 0,
$$

for all $a \in A$.
The class of unary operation ' : $[0,1] \rightarrow[0,1]$ arising as negation operations of MTL algebras over $[0,1]$ coincides with the class of weak negation operations.

A weak negation is a unary operations ${ }^{\prime}:[0,1] \rightarrow[0,1]$ such that, for all $a, b \in[0,1]$:

$$
0^{\prime}=1 ; \quad a \leq b \text { implies } b^{\prime} \leq a^{\prime} ; \quad \text { and, } a \leq a^{\prime \prime}
$$

A weak negation is a unary operations ${ }^{\prime}:[0,1] \rightarrow[0,1]$ such that, for all $a, b \in[0,1]$:

$$
0^{\prime}=1 ; \quad a \leq b \text { implies } b^{\prime} \leq a^{\prime} ; \quad \text { and, } a \leq a^{\prime \prime}
$$

Given a weak negation ${ }^{\prime}:[0,1] \rightarrow[0,1]$, it is possible to define a t-norm as follows, for all $x, y \in[0,1]$:

$$
x \cdot y= \begin{cases}0 & \text { if } x \leq y^{\prime} \\ x \wedge y & \text { otherwise }\end{cases}
$$

A weak negation is a unary operations ${ }^{\prime}:[0,1] \rightarrow[0,1]$ such that, for all $a, b \in[0,1]$:

$$
0^{\prime}=1 ; \quad a \leq b \text { implies } b^{\prime} \leq a^{\prime} ; \quad \text { and, } a \leq a^{\prime \prime} .
$$

Given a weak negation ${ }^{\prime}:[0,1] \rightarrow[0,1]$, it is possible to define a t-norm as follows, for all $x, y \in[0,1]$:

$$
x \cdot y= \begin{cases}0 & \text { if } x \leq y^{\prime} \\ x \wedge y & \text { otherwise }\end{cases}
$$

The first four members of the family of weak negations $\left\{f_{n} \mid n=\right.$ $0,1,2, \ldots\}$ and their induce t-norms.
f_{n} is the step function over $[0,1]$ that maps 0 to 1 , and $((i-1) / n, i / n)$ to $(n-i) / n$ for $i=1,2, \ldots, n$, so that f_{n} has 2^{n} discontinuities.

A WNM Algebra is a MTL algebra satisfying the Weak Nilpotent Minimum equations:

$$
\neg(x \cdot y) \vee((x \wedge y) \rightarrow(x \cdot y))=T
$$

A WNM Algebra is a MTL algebra satisfying the Weak Nilpotent Minimum equations:

$$
\neg(x \cdot y) \vee((x \wedge y) \rightarrow(x \cdot y))=T
$$

A Gödel Algebra is an idempotent (MTL) WNM Algebra.

A WNM Algebra is a MTL algebra satisfying the Weak Nilpotent Minimum equations:

$$
\neg(x \cdot y) \vee((x \wedge y) \rightarrow(x \cdot y))=T
$$

A Gödel Algebra is an idempotent (MTL) WNM Algebra.

A NM Algebra is an involutive WNM algebra, that is, a WNM algebra satisfying:

$$
\neg \neg x=x
$$

(1) The subdirectly irreducible members of the variety $\mathbb{V}(M T L)$ are totally ordered (Esteva and Godo);
(2) The variety $\mathbb{V}(W N M)$ is locally finite (Noguera, Esteva and Gispert);
(1) The subdirectly irreducible members of the variety $\mathbb{V}(M T L)$ are totally ordered (Esteva and Godo);
(2) The variety $\mathbb{V}(W N M)$ is locally finite (Noguera, Esteva and Gispert);
\Rightarrow The finitely generated free algebras in subvarieties of $\mathbb{V}($ WNM $)$ are finite.
(1) The subdirectly irreducible members of the variety $\mathbb{V}(M T L)$ are totally ordered (Esteva and Godo);
(2) The variety $\mathbb{V}(W N M)$ is locally finite (Noguera, Esteva and Gispert);
\Rightarrow The finitely generated free algebras in subvarieties of $\mathbb{V}($ WNM $)$ are finite.

Given a set of generators x_{1}, \ldots, x_{n},
the WNM algebra \mathbf{F}_{n} freely generated by $x_{i}^{\mathbf{F}_{n}}=\left(x_{i}^{\mathbf{C}_{1}}, \ldots, x_{i}^{\mathbf{C}_{m}}\right)$ for $i=1, \ldots, n$, is isomorphic to the subalgebra \mathbf{A} of $\mathbf{C}_{1} \times \cdots \times \mathbf{C}_{m}$ generated by $x_{i}^{\mathbf{A}}=\left(x_{i}^{\mathbf{C}_{1}}, \ldots, x_{i}^{\mathbf{C}_{m}}\right)$ for $i=1, \ldots, n$.

WNM Chains

The variety $\mathbb{V}(W N M)$ is generated by WNM chains, and for all WNM chains \mathbf{C}, the operations. ${ }^{\mathrm{C}}$ and \rightarrow^{C} are uniquely determined by the lattice and negation operations, as follows (for all $a, b \in C$):

$$
\begin{aligned}
a \cdot{ }^{\mathrm{C}} b & = \begin{cases}0^{\mathrm{C}} & \text { if } a \leq b^{\mathrm{C}}, \\
a \wedge^{\mathrm{C}} b & \text { otherwise; }\end{cases} \\
a \rightarrow^{\mathrm{C}} b & = \begin{cases}1^{\mathrm{C}} & \text { if } a \leq^{\mathrm{C}} b, \\
a^{\prime} \vee^{\mathrm{C}} b & \text { otherwise }\end{cases}
\end{aligned}
$$

WNM Chains

The variety $\mathbb{V}(W N M)$ is generated by WNM chains, and for all WNM chains \mathbf{C}, the operations ${ }^{\mathrm{C}}$ and \rightarrow^{C} are uniquely determined by the lattice and negation operations, as follows (for all $a, b \in C$):

$$
\begin{aligned}
a \cdot{ }^{\mathrm{C}} b & = \begin{cases}0^{\mathrm{C}} & \text { if } a \leq^{\mathrm{C}} b^{\prime} \mathrm{C}, \\
a \wedge^{\mathrm{C}} b & \text { otherwise; }\end{cases} \\
a \rightarrow^{\mathrm{C}} b & = \begin{cases}1^{\mathrm{C}} & \text { if } a \leq^{\mathrm{C}} b, \\
a^{\prime} \mathrm{C} \vee^{\mathrm{C}} b & \text { otherwise } .\end{cases}
\end{aligned}
$$

Proposition (Esteva, Noguera, Gispert)

For all WNM chains \mathbf{C} :

$$
\begin{array}{r}
x \leq x^{\prime \prime}=\bigwedge\left\{z \in C \mid x \leq z, z=z^{\prime \prime}\right\}, \\
x=x^{2} \text { iff } x^{\prime}<x \text { or } x=0, \\
x \leq y \text { implies } y^{\prime} \leq x^{\prime}, \\
x^{\prime}<x \text { and } y^{\prime}<y \text { implies } x^{\prime}<y, \\
x \leq x^{\prime} \text { and } y^{\prime}<y \text { implies } x \leq y, \\
x^{\prime}<x \text { and } y \leq y^{\prime} \text { implies } x^{\prime}<y^{\prime} .
\end{array}
$$

Let $\mathcal{C}_{n}=\left\{\mathbf{C}_{1}, \ldots, \mathbf{C}_{m}\right\}$ be the set of (pairwise non-isomorphic) subdirectly irreducible n-generated WNM algebras.

Let \mathbf{C} be a WNM chain generated by $x_{1}^{\mathrm{C}}, \ldots, x_{n}^{\mathrm{C}} \in \mathrm{C}$. Then

$$
\mathrm{bk}(\mathbf{C})=B_{1}<\cdots<B_{k} .
$$

is the n-generated WNM chain such that:
(1) the blocks B_{1}, \ldots, B_{k} form a partition of $\left\{0,1, x_{i}, x_{i}^{\prime}, x_{i}^{\prime \prime} \mid i=1, \ldots, n\right\}$;
(2) the generator $x_{i}^{\mathrm{bk}(\mathrm{C})}$ is the block containing x_{i} for $i=1, \ldots, n$;
(3) $x, y \in B_{j}$ iff $x=y$ for $j=1, \ldots, k$;
(4) $B_{j}<B_{j+1}$ iff $x<y$, where $x \in B_{j}, y \in B_{j+1}, j=1, \ldots, k-1$;
(5) $B_{j}^{\prime}=B_{l}$ iff $x^{\prime}=y$, where $x \in B_{j}, y \in B_{1}, j=1, \ldots, k$.

$$
\begin{aligned}
& \operatorname{bk}\left(\mathbf{C}_{15}\right)=0<x x^{\prime \prime}<y<y^{\prime} y^{\prime \prime}<x^{\prime}<1 \\
& \operatorname{bk}\left(\mathbf{C}_{6}\right)=0<x<x^{\prime \prime}<y y^{\prime} y^{\prime \prime}<x^{\prime}<1
\end{aligned}
$$

The class \mathcal{C}_{1} of singly generated WNM chains $\mathcal{C}_{1}=\left\{\mathbf{C}_{i} \mid i=1, \ldots, 9\right\}$ is:

The class \mathcal{C}_{1} of singly generated WNM chains $\mathcal{C}_{1}=\left\{\mathbf{C}_{i} \mid i=1, \ldots, 9\right\}$ is:

$\operatorname{bk}\left(\mathbf{C}_{1}\right)=0 x_{1} x_{1}^{\prime \prime}<x_{1}^{\prime} 1$,
$\operatorname{bk}\left(\mathbf{C}_{2}\right)=0<x_{1}<x_{1}^{\prime \prime}<x_{1}^{\prime}<1$,
$\operatorname{bk}\left(\mathbf{C}_{3}\right)=0<x_{1} x_{1}^{\prime \prime}<x_{1}^{\prime}<1$,
$\operatorname{bk}\left(\mathbf{C}_{4}\right)=0<x_{1}<x_{1}^{\prime} x_{1}^{\prime \prime}<1$,
$\operatorname{bk}\left(\mathbf{C}_{5}\right)=0<x_{1} x_{1}^{\prime} x_{1}^{\prime \prime}<1, \quad \operatorname{bk}\left(\mathbf{C}_{6}\right)=0<x_{1}^{\prime}<x_{1}<x_{1}^{\prime \prime}<1$,
$\operatorname{bk}\left(\mathbf{C}_{7}\right)=0<x_{1}^{\prime}<x_{1} x_{1}^{\prime \prime}<1$,

Let $\mathbf{C} \in \mathcal{C}_{n}$. For $i=1, \ldots, n$, the orbit of x_{i} in \mathbf{C} is the subalgebra of \mathbf{C} generated by x_{i}^{C}. We define orbit $(\mathbf{C}, 0):=1, \operatorname{orbit}(\mathbf{C}, 1):=9$, and for $i=1, \ldots, n$,

$$
\operatorname{orbit}\left(\mathbf{C}, x_{i}\right)=\operatorname{orbit}\left(\mathbf{C}, x_{i}^{\prime}\right)=\operatorname{orbit}\left(\mathbf{C}, x_{i}^{\prime \prime}\right):=j
$$

iff the orbit of x_{i} in \mathbf{C} is isomorphic to $\mathbf{C}_{j} \in \mathcal{C}_{1}$, where $j \in\{1, \ldots, 9\}$.

be such that $\mathbf{C} \in \mathcal{K}_{n}$ iff $\mathbf{C} \in \mathcal{C}_{n}$ and there does not exist $\mathbf{D} \in \mathcal{C}_{n}$ and a congruence \equiv on \mathbf{D} above the identity such that $\mathbf{C}=\mathbf{D} / \equiv$.
$\mathbf{C} \in \mathcal{K}_{n}$ iff orbit $\left(\mathbf{C}, x_{i}\right) \in\{2,3, \ldots, 7\}$ for all $i=1, \ldots, n$

$$
\mathcal{K}_{n} \subseteq \mathcal{C}_{n}
$$

be such that $\mathbf{C} \in \mathcal{K}_{n}$ iff $\mathbf{C} \in \mathcal{C}_{n}$ and there does not exist $\mathbf{D} \in \mathcal{C}_{n}$ and a congruence \equiv on \mathbf{D} above the identity such that $\mathbf{C}=\mathbf{D} / \equiv$.

$$
\mathbf{C} \in \mathcal{K}_{n} \text { iff orbit }\left(\mathbf{C}, x_{i}\right) \in\{2,3, \ldots, 7\} \text { for all } i=1, \ldots, n
$$

Let $\mathrm{D} \in \mathcal{K}_{n}, i=1, \ldots, n$. We write, $D_{0}:=\{0\}$,
$D_{1}:=\left\{x_{i}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{2,3\}\right\}$ $\cup\left\{x_{i}^{\prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{6,7\}\right\}$,
$D_{2}:=\left\{x_{i} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right)=4\right\}$,
$D_{3}:=\left\{x_{i}^{\prime}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right)=4\right\}$ $\cup\left\{x_{i}, x_{i}^{\prime}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right)=5\right\}$,
$D_{4}:=\left\{x_{i}^{\prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{2,3\}\right\}$ $\cup\left\{x_{i}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{6,7\}\right\}$,
$D_{5}:=\{1\}$.
$I_{D}=\bigwedge_{y \in D_{4} \cup D_{5}} y, \quad g_{\mathrm{D}}=\bigvee_{y \in\left\{\bigcup_{j \in[3]} D_{j}\right\}} y$.
I_{D} is the least element $y \in D$ such that $y^{\prime}<y$,
g_{D} is the greatest element $y \in D$ such that $y \leq y^{\prime}$.

$$
I_{D} \prec g_{D}
$$

Let $\mathrm{D} \in \mathcal{K}_{n}, i=1, \ldots, n$. We write, $D_{0}:=\{0\}$,
$D_{1}:=\left\{x_{i}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{2,3\}\right\}$ $\cup\left\{x_{i}^{\prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{6,7\}\right\}$,
$D_{2}:=\left\{x_{i} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right)=4\right\}$,
$D_{3}:=\left\{x_{i}^{\prime}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right)=4\right\}$
$\cup\left\{x_{i}, x_{i}^{\prime}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right)=5\right\}$,
$D_{4}:=\left\{x_{i}^{\prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{2,3\}\right\}$
$\cup\left\{x_{i}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{6,7\}\right\}$,
$D_{5}:=\{1\}$.
$I_{D}=\bigwedge_{y \in D_{4} \cup D_{5}} y, \quad g_{\mathrm{D}}=\bigvee_{y \in\left\{\bigcup_{j \in[3]} D_{j}\right\}} y$.
I_{D} is the least element $y \in D$ such that $y^{\prime}<y$,
g_{D} is the greatest element $y \in D$ such that $y \leq y^{\prime}$.

$$
I_{D} \prec g_{D}
$$

$\operatorname{bk}\left(\mathbf{C}_{5}\right)=0<x<x^{\prime \prime}<y<y^{\prime} y^{\prime \prime}<x^{\prime}<1$;
$\operatorname{bk}\left(\mathbf{C}_{15}\right)=0<x x^{\prime \prime}<y<y^{\prime} y^{\prime \prime}<x^{\prime}<1$;
$\operatorname{bk}\left(\mathbf{C}_{6}\right)=0<x<x^{\prime \prime}<y y^{\prime} y^{\prime \prime}<x^{\prime}<1$;
$\operatorname{bk}\left(\mathbf{C}_{16}\right)=0<x x^{\prime \prime}<y y^{\prime} y^{\prime \prime}<x^{\prime}<1$;

Let $\mathrm{D} \in \mathcal{K}_{n}, i=1, \ldots, n$. We write, $D_{0}:=\{0\}$,
$D_{1}:=\left\{x_{i}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{2,3\}\right\}$ $\cup\left\{x_{i}^{\prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{6,7\}\right\}$,
$D_{2}:=\left\{x_{i} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right)=4\right\}$,
$D_{3}:=\left\{x_{i}^{\prime}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right)=4\right\}$
$\cup\left\{x_{i}, x_{i}^{\prime}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right)=5\right\}$,
$D_{4}:=\left\{x_{i}^{\prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{2,3\}\right\}$
$\cup\left\{x_{i}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{6,7\}\right\}$,
$D_{5}:=\{1\}$.
$I_{D}=\bigwedge_{y \in D_{4} \cup D_{5}} y, \quad g_{\mathrm{D}}=\bigvee_{y \in\left\{\bigcup_{j \in[3]} D_{j}\right\}} y$.
I_{D} is the least element $y \in D$ such that $y^{\prime}<y$,
g_{D} is the greatest element $y \in D$ such that $y \leq y^{\prime}$.

$$
I_{D} \prec g_{D}
$$

\mathbf{C} and \mathbf{D} in \mathcal{K}_{n} have the same signature (in symbols, $\mathbf{C} \sim \mathbf{D}$) iff:
$\left(S_{1}\right) \quad C_{i}=D_{i}$ for $i=1,2,3,4$;
$\left(S_{2}\right) x \diamond_{\boldsymbol{c}} y$ iff $x \diamond_{\boldsymbol{D}} y$ for all $x, y \in C_{2}, \diamond \in\{<,=\}$.

$\operatorname{bk}\left(\mathbf{C}_{5}\right)=0<x<x^{\prime \prime}<y<y^{\prime} y^{\prime \prime}<x^{\prime}<1$;
$\operatorname{bk}\left(\mathbf{C}_{15}\right)=0<x x^{\prime \prime}<y<y^{\prime} y^{\prime \prime}<x^{\prime}<1$;
$\operatorname{bk}\left(\mathbf{C}_{6}\right)=0<x<x^{\prime \prime}<y y^{\prime} y^{\prime \prime}<x^{\prime}<1$;
$\operatorname{bk}\left(\mathbf{C}_{16}\right)=0<x x^{\prime \prime}<y y^{\prime} y^{\prime \prime}<x^{\prime}<1$;

Let $\mathbf{D} \in \mathcal{K}_{n}, i=1, \ldots, n$. We write, $D_{0}:=\{0\}$,
$D_{1}:=\left\{x_{i}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{2,3\}\right\}$ $\cup\left\{x_{i}^{\prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{6,7\}\right\}$,
$D_{2}:=\left\{x_{i} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right)=4\right\}$,
$D_{3}:=\left\{x_{i}^{\prime}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right)=4\right\}$
$\cup\left\{x_{i}, x_{i}^{\prime}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right)=5\right\}$,
$D_{4}:=\left\{x_{i}^{\prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{2,3\}\right\}$
$\cup\left\{x_{i}, x_{i}^{\prime \prime} \mid \operatorname{orbit}\left(\mathbf{D}, x_{i}\right) \in\{6,7\}\right\}$,
$D_{5}:=\{1\}$.
$I_{D}=\bigwedge_{y \in D_{4} \cup D_{5}} y, \quad g_{\mathrm{D}}=\bigvee_{y \in\left\{\bigcup_{j \in[3]} D_{j}\right\}} y$.
I_{D} is the least element $y \in D$ such that $y^{\prime}<y$,
g_{D} is the greatest element $y \in D$ such that $y \leq y^{\prime}$.

$$
I_{D} \prec g_{D}
$$

\mathbf{C} and \mathbf{D} in \mathcal{K}_{n} have the same signature (in symbols, $\mathbf{C} \sim \mathbf{D}$) iff:
$\left(S_{1}\right) \quad C_{i}=D_{i}$ for $i=1,2,3,4$;
$\left(S_{2}\right) x \diamond_{\boldsymbol{c}} y$ iff $x \diamond_{\boldsymbol{D}} y$ for all $x, y \in C_{2}, \diamond \in\{<,=\}$.

An infix of \mathbf{C} is an interval $/$ in $\mathrm{bk}(\mathbf{C})$ such that:
(I_{1}) There exists $x \in I$ such that $x=g c$ or $x=1 /$.
Let $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_{n}. Then, $\operatorname{infix}(\mathbf{C}, \mathbf{D})$ is the greatest common infix I of \mathbf{C} and \mathbf{D} such that:
(I2) $x_{i} \in I$ and $x_{i}^{\prime}, x_{i}^{\prime \prime} \notin I$, or $x_{i}, x_{i}^{\prime}, x_{i}^{\prime \prime} \in I$ for all $i=1, \ldots, n$.
$\operatorname{bk}\left(\mathbf{C}_{5}\right)=0<x<x^{\prime \prime}<y<y^{\prime} y^{\prime \prime}<x^{\prime}<1$;
$\operatorname{bk}\left(\mathbf{C}_{15}\right)=0<x x^{\prime \prime}<y<y^{\prime} y^{\prime \prime}<x^{\prime}<1$;
$\operatorname{bk}\left(\mathbf{C}_{6}\right)=0<x<x^{\prime \prime}<y y^{\prime} y^{\prime \prime}<x^{\prime}<1$;
$\operatorname{bk}\left(\mathbf{C}_{16}\right)=0<x x^{\prime \prime}<y y^{\prime} y^{\prime \prime}<x^{\prime}<1$;

Theorem

Let t be a term, and $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_{n}.
(i) $t^{\prime}<t$ in \mathbf{C} iff $t^{\prime}<t$ in \mathbf{D}.
(ii) For all $x \in \operatorname{infix}(\mathbf{C}, \mathbf{D}), t=x$ in \mathbf{C} iff $t=x$ in \mathbf{D}.

Theorem

Let t be a term, and $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_{n}.
(i) $t^{\prime}<t$ in \mathbf{C} iff $t^{\prime}<t$ in \mathbf{D}.
(ii) For all $x \in \operatorname{infix}(\mathbf{C}, \mathbf{D}), t=x$ in \mathbf{C} iff $t=x$ in \mathbf{D}.

$$
\begin{gathered}
\operatorname{bk}\left(\mathbf{C}_{2}\right)=0<x_{1}<x_{1}^{\prime \prime}<x_{1}^{\prime}<1, \\
\operatorname{bk}\left(\mathbf{C}_{3}\right)=0<x_{1} x_{1}^{\prime \prime}<x_{1}^{\prime}<1 .
\end{gathered}
$$

Theorem

Let t be a term, and $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_{n}.
(i) $t^{\prime}<t$ in \mathbf{C} iff $t^{\prime}<t$ in \mathbf{D}.
(ii) For all $x \in \operatorname{infix}(\mathbf{C}, \mathbf{D}), t=x$ in \mathbf{C} iff $t=x$ in \mathbf{D}.

$$
\begin{gathered}
\operatorname{bk}\left(\mathbf{C}_{9}\right)=0<x<x^{\prime \prime}<y^{\prime}<y<y^{\prime \prime}<x^{\prime}<1, \\
\operatorname{bk}\left(\mathbf{C}_{19}\right)=0<x x^{\prime \prime}<y^{\prime}<y<y^{\prime \prime}<x^{\prime}<1
\end{gathered}
$$

Theorem

Let t be a term, and $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_{n}.
(i) $t^{\prime}<t$ in \mathbf{C} iff $t^{\prime}<t$ in \mathbf{D}.
(ii) For all $x \in \operatorname{infix}(\mathbf{C}, \mathbf{D}), t=x$ in \mathbf{C} iff $t=x$ in \mathbf{D}.

$$
A \subseteq \prod_{C \in \mathcal{K}_{n}} c
$$

be such that $a \in A$ iff, for all $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_{n} :
(i) $\pi_{\mathbf{C}}(a)^{\prime}<\pi_{\mathbf{C}}(a)$ iff $\pi_{\mathrm{D}}(a)^{\prime}<\pi_{\mathrm{D}}(a)$;
(ii) If $x \in \operatorname{infix}(\mathbf{C}, \mathbf{D})$, then $\pi_{\mathbf{C}}(a)=x$ iff $\pi_{\mathbf{D}}(a)=x$.

Theorem

Let t be a term, and $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_{n}.
(i) $t^{\prime}<t$ in \mathbf{C} iff $t^{\prime}<t$ in \mathbf{D}.
(ii) For all $x \in \operatorname{infix}(\mathbf{C}, \mathbf{D}), t=x$ in \mathbf{C} iff $t=x$ in \mathbf{D}.

$$
A \subseteq \prod_{C \in \mathcal{K}_{n}} c
$$

be such that $a \in A$ iff, for all $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_{n} :
(i) $\pi_{\mathbf{C}}(a)^{\prime}<\pi_{\mathbf{C}}(a)$ iff $\pi_{\mathbf{D}}(a)^{\prime}<\pi_{\mathbf{D}}(a)$;
(ii) If $x \in \operatorname{infix}(\mathbf{C}, \mathbf{D})$, then $\pi_{\mathbf{C}}(a)=x$ iff $\pi_{\mathbf{D}}(a)=x$.
$\mathbf{A}=\left(A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \cdot{ }^{\mathbf{A}}, \rightarrow^{\mathbf{A}}, 0^{\mathbf{A}}, 1^{\mathbf{A}}\right)$ where:
$0^{\mathbf{A}}$ is the least antichain in A;
$1^{\mathbf{A}}$ is the greatest antichain in A; for $\circ^{\mathbf{A}} \in\left\{\wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, .^{\mathbf{A}}, \rightarrow^{\mathbf{A}}\right\}$ and $a, b \in A, \circ^{\mathbf{A}}$ is defined chainwise, that is $a \circ^{\mathbf{A}} b=a_{C} \circ b_{C}$, for every $\mathbf{C} \in \mathcal{K}_{n}$.

Theorem (Free Algebras)

The algebra \mathbf{A} is isomorphic to the free n-generated $W N M$ algebra \mathbf{F}_{n}.

$\left|\mathbf{F}_{1}\right|=1200$

$$
\begin{aligned}
& \operatorname{poset}(n)=\sum_{\substack{a, b, c \in\{0\} \cup \mathbb{N}, a+b+c=n}}\binom{n}{a, b, c} \mathbf{X}_{a, b, c}, \\
& \mathbf{X}_{a, b, c}= \begin{cases}\mathbf{Y}_{a, c}^{d} \oplus \mathbf{Z}_{a, c} & \text { if } b=0, \\
\sum_{i=1}^{b} i!\left\{\begin{array}{l}
b \\
i
\end{array}\right\}\left(\left(\mathbf{Y}_{a, c}^{d} \oplus \mathbf{i} \oplus \mathbf{Z}_{a, c}\right)+\left(\mathbf{Y}_{a, c}^{d} \oplus \mathbf{i} \oplus \mathbf{1} \oplus \mathbf{Z}_{a, c}\right)\right) & \text { otherwise; }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{S}_{i, j}=\mathbf{1} \oplus \mathbf{Y}_{i, j}, \\
& \mathbf{S}_{i, j}^{+}= \begin{cases}\mathbf{2} & \text { if } i=j=0, \\
\mathbf{S}_{i, j}+\mathbf{Y}_{i, j} & \text { otherwise } ;\end{cases} \\
& \mathbf{S}_{i, j}^{-}=\left(\mathbf{1} \oplus \mathbf{S}_{i, j}\right)+\sum_{k=0}^{i-1}\binom{i}{k}\left(\left(\mathbf{1} \oplus \mathbf{S}_{k, j}\right)+\left(\mathbf{1} \oplus \mathbf{S}_{k, j}^{-}\right)\right) \text {. } \\
& \mathbf{T}_{i, j}=\mathbf{1} \oplus \mathbf{Z}_{i, j}, \\
& \mathbf{T}_{i, j}^{+}= \begin{cases}\mathbf{3} & \text { if } i=j=0, \\
\mathbf{1} \oplus\left(\mathbf{T}_{i, j}+\mathbf{Z}_{i, j}\right) & \text { otherwise; }\end{cases} \\
& \mathbf{T}_{i, j}^{-}=\mathbf{T}_{i, j}+\sum_{k=0}^{i-1}\binom{i}{k}\left(\mathbf{T}_{k, j}+\mathbf{T}_{k, j}^{-}\right) \text {. } \\
& \mathbf{P}+\mathbf{Q}:=\left(P \cup Q, \leq^{\mathbf{P}+\mathbf{Q}}\right) \text { where } p \leq^{\mathbf{P}+\mathbf{Q}} q \text { if and } \\
& \text { only if either } p, q \in P \text { and } p \leq^{\mathbf{P}} \quad q \text {, or } p, q \in Q \\
& \text { and } p \leq \leq^{\mathbf{Q}} q \text {. } \\
& \mathbf{P} \oplus \mathbf{Q}:=\left(P \cup Q, \leq^{\mathbf{P} \oplus \mathbf{Q}}\right) \text { where } p \leq^{\mathbf{P} \oplus \mathbf{Q}} q \text { if and } \\
& \text { only if either } p, q \in P \text { and } p \leq^{\mathbf{P}} q \text {, or } p, q \in Q \\
& \text { and } p \leq^{\mathbf{Q}} q \text {, or } p \in P \text { and } q \in Q \text {. }
\end{aligned}
$$

$\left|\mathbf{F}_{2}\right|=1.2495275042442405 \cdot 10^{32}=124,952,750,424,424,055,667,787,038,720,000$

- Normal Forms;
- Recurrence Formulas;
- Interpolation Properties;
- Unification;
- Spectral Duality.
- Normal Forms;
- Recurrence Formulas;
- Interpolation Properties;
- Unification;
- Spectral Duality.

- Normal Forms;
- Recurrence Formulas;
- Interpolation Properties;
- Unification;
- Spectral Duality.

WNM Logic:

- F. Esteva and L. Godo. Monoidal t-Norm Based Logic: Towards a Logic for Left-Continuous t-Norms. Fuzzy Sets and Systems, 124(3):271-288, 2001.
- C. Noguera, F. Esteva, and J. Gispert.On Triangular Norm Based Axiomatic Extensions of the Weak Nilpotent Minimum logic. Mathematical Logic Quarterly, 54(4):387-409, 2008.
Poset Representations:
- S. Aguzzoli and B. Gerla. Normal Forms and Free Algebras for Some Extensions of MTL. Fuzzy Sets and Systems, 159(10):1131-1152, 2008.
- D. Valota. Poset Representation for Free RDP-Algebras. In H. Hosni and F. Montagna, editors, Probability, Uncertainty and Rationality, volume 10 of CRM Series. Edizioni della Scuola Normale Superiore, Pisa 2010.
Interpolation and Unification via Poset Representation:
- S. Bova. Combinatorics of Interpolation in Gödel Logic. In 4th Conference on Topology, Algebra and Categories in Logic (TACL), 2009.
- S. Bova and D. Valota. Finitely Generated RDP-Algebras: Spectral Duality, Finite Coproducts and Logical Properties. Journal of Logic and Computation, 22(3):417-450, 2012.

