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Introduction
[ ]

Overview

@ Monoidal T-norms based Logic;
@ Weak Negations Functions, WNM Algebras and Chains;
@ Representation of Free n-generated WNM algebras;

@ Applications.
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Many-Valued Logics are truth-functional propositional logics where the set of truth
degree is the real interval [0, 1].
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Many-Valued Logics are truth-functional propositional logics where the set of truth
degree is the real interval [0, 1].

A T-norm is a binary operation

- [0,1]% — [0, 1] that satisfies:
1. x-y=y-x
2. (xy)z=x-(y-2)
3. x<ythenx-z<y-z
4. x-1=x

for all x,y, z, € [0,1].
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Many-Valued Logics are truth-functional propositional logics where the set of truth
degree is the real interval [0, 1].

A T-norm is a binary operation

- [0,1]% — [0, 1] that satisfies: Residuum: =.: [0, 1]?> — [0, 1].
1. x-y=y-x Adjunction property:
2. (xy)z=x-(y-2) (x-2)<yiffz< (x=y)
3. x<ythenx-z<y-z that is x = y = max{z|x -z < y},
4. x-l=x for all x,y,z € [0, 1].

for all x,y, z, € [0,1].

The necessary and sufficient condition for the residuum’s existence is the t-norm’s
left-continuity.

Monoidal T-norm based Logic (MTL)(Esteva and Godo): Many-Valued logic of all
left-continuous t-norms and their residua (Montagna and Jenei).
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A commutative integral bounded residuated lattice is an algebra

A= (A NV, ,—, L T)of type (2,2,2,2,0,0) such that

(A,A,V, L, T) is a bounded lattice,

(A,-, T) is a commutative monoid,

and the residuation equivalence, x - y < z if and only if x < y — z, holds.

An MTL algebra A = (A, A,V,,—, L, T) is a commutative integral bounded
residuated lattice satisfying the prelinearity equation, (x = y)V (y = x) = T.

Define

a:=a—0,

for all a € A.
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A commutative integral bounded residuated lattice is an algebra

A= (A NV, ,—, L T)of type (2,2,2,2,0,0) such that

(A,A,V, L, T) is a bounded lattice,

(A,-, T) is a commutative monoid,

and the residuation equivalence, x - y < z if and only if x < y — z, holds.

An MTL algebra A = (A, A,V,,—, L, T) is a commutative integral bounded
residuated lattice satisfying the prelinearity equation, (x = y)V (y = x) = T.

Define

a:=a—0,

for all a € A.

The class of unary operation ’: [0, 1] — [0, 1] arising as negation operations of MTL
algebras over [0, 1] coincides with the class of weak negation operations.
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Weak Negations

A weak negation is a unary operations : [0, 1] — [0, 1] such that, for all a, b € [0, 1]:

0 =1, a < b implies b’ < a’; and, a < a”.
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A weak negation is a unary operations : [0, 1] — [0, 1] such that, for all a, b € [0, 1]:

0 =1, a < b implies b’ < a’; and, a < a”.

Given a weak negation ’: [0,1] — [0, 1], it is possible to define a t-norm as follows, for
all x,y € [0,1]:

0 if x <y,
X y= ’
x Ay otherwise.
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Weak Negations

A weak negation is a unary operations : [0, 1] — [0, 1] such that, for all a, b € [0, 1]:

0 =1, a < b implies b’ < a’; and, a < a”.
Given a weak negation ’: [0,1] — [0, 1], it is possible to define a t-norm as follows, for
all x,y € [0,1]:

0 if x <y,

X y= g
x Ay otherwise.

g_. The first four
members of the
o—e family of weak
N o—e o—e negations
e {faln=
o—=e o-e 0,1,2,...} and
their induce t-norms.

fn is the step
function over [0, 1]
X x x x that maps 0 to 1,
and ((i — 1)/n,i/n
i i i i to (IS(— f)/z/for /n
i=1,2,...,n, s0
0 0 0 that f, has 2"
discontinuities.
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Subvarieties of MTL Algebras
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Subvarieties of MTL Algebras
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Subvarieties of MTL Algebras

A WNM Algebra is a MTL algebra satisfying the p/py G
Weak Nilpotent Minimum equations: (id)
T(inv) (id)T

) VxAy) = (x-y)=T. (id)
NMG RDP

A Gédel Algebra is an idempotent (MTL) WNM :m A
Algebra.

WNM BL
A NM Algebra is an involutive WNM algebra, (W"’M)] /
that is, a WNM algebra satisfying: MTL

X = X.
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Subvarieties of MTL Algebras

@ The subdirectly irreducible members of the variety V(MTL) are totally ordered
(Esteva and Godo);

@ The variety V(WNM) is locally finite (Noguera, Esteva and Gispert);
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Subvarieties of MTL Algebras

@ The subdirectly irreducible members of the variety V(MTL) are totally ordered
(Esteva and Godo);

@ The variety V(WNM) is locally finite (Noguera, Esteva and Gispert);
= The finitely generated free algebras in subvarieties of V(WNM) are finite.

Given a set of generators xi, ..., Xn,

the WNM algebra F, freely generated by XI-F" = (XI.Cl, . ,x,.(:’") fori=1,...,n,
is isomorphic to the subalgebra A of C; X --- x Cp, generated by
xf‘:(xl.cl,..,,xic’”) fori=1,...,n.
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WNM Chains

The variety V(WNM) is generated by WNM chains, and for all WNM chains C, the
operations -€ and —C are uniquely determined by the lattice and negation operations,
as follows (for all a, b € C):

o¢ if a <C b€,
aCh= c ha= .
a A~ b otherwise;

c 1€ if a <€ b,
a—>- b= CoC .
a’~ v*& b otherwise.
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WNM Chains

The variety V(WNM) is generated by WNM chains, and for all WNM chains C, the

operations -€ and —C are uniquely determined by the lattice and negation operations,
as follows (for all a, b € C):

¢ o¢ if a <€ b'C,
a-- b= c i
a A~ b otherwise;

c 1€ if a <€ b,
a—>- b= CoC .
a’~ v*& b otherwise.

Proposition (Esteva, Noguera, Gispert)
For all WNM chains C:

xSx”:/\{zEC|x§z,z:z”},
x=x2iff X' < xorx=0,

x < y implies y/ < X/,

x' < xand y’ <y implies x’ < y,

x < x" and y’ < y implies x < y,

x" < x and y <y’ implies x’ < y'.
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Blockwise Representation

Let C, = {Cy,...,Cm} be the set of (pairwise non-isomorphic) subdirectly irreducible
n-generated WNM algebras.

Let C be a WNM chain generated by xf, ...,x¢ € C. Then
bk(C) =B1 < --- < By.

is the n-generated WNM chain such that:
@ the blocks By, ..., B form a partition of {0,1,x;,x/,x/" | i=1,...,n};

@ the generator x,.bk(c) is the block containing x; for i =1,...,n;

@ x,yeBjiffx=yforj=1,...,k
Q B <Bj1iffx<y wherex€Bj,y€Bj1,j=1,...,k—1;
(5] ij:B/ iff X' =y, wherexe B, y € B;, j=1,...,k.

bk(Ci5) =0 < xx"" <y <y'y" <x' <1

ro 0

bk(Cs) =0 < x < x" <yy'y” <x' <1
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WNM algebras
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The class C; of singly generated WNM chains C; = {C; | i =1,...,9} is:

Ce

i
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The class C; of singly generated WNM chains C; = {C; | i =1,...,9} is:

bk(Cy) = 0X1X1 < Xll
bk(C3) =0 < x1x7' < x| <1,
bk(Cs) =0 < x1x1x{’ < 1,

bk(C7) =0 < x{ < x1x7' < 1,

123456789
X
X/
J
Ce 123456789
bk(C)=0<x < x/ <x{ <1,
bk(Cs) =0 < x1 < x{x7' < 1,

bk(Ce) =0 < x; < x1 < x{/ <1,
bk(Cg) = 0x] < x1 < x{'1, bk(Cg) = 0x; < x1x{'1,



WNM algebras
ooe

Blockwise Representation

1 1
x’ 1 1 x" 1
x" X X X" 1 x  x,x" 1, x"
1L,x  x x,x" x x,x,x" x' X x  1,x,x"
|
0,x,x"" 0 0 0 0 0 0 0ox" 0,

C, C GC3 Cy Cs Ce Cy Cg Cy
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Blockwise Representation

1 1

x’ 1 1 x" 1

XX X X" 1 x x,x" 1,x"
1L,x  x x,x" x x,x,x" x' X x  1,x,x"

0,x,x"” 0 0 0 0 0 0 0,x" 0,x

C; C G C, Cs C C; Cg Co

Let C € Cp. For i =1,...,n, the orbit of x; in C is the subalgebra of C generated by
xC. We define orbit(C,0) := 1, orbit(C,1) :== 9, and for i = 1,...,n,

orbit(C, x;) = orbit(C, x/) = orbit(C, x/") := j,

iff the orbit of x; in C is isomorphic to C; € C1, where j € {1,...,9}.
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Blockwise Representation
1 1

x/ 1 1 x" 1

XX XX 1 x x,x" 1,x"
1L,x  x x,x" x  x,x',x" x' X x  1,x,x"

0,x,x” 0 0 0 0 0 0 0,x 0,x
C; C G Cy Cs C C; Cg Co
Kn CCn

be such that C € IC,, iff C € C, and there does not exist D € C, and a congruence =
on D above the identity such that C =D/ =.

C € K, iff orbit(C,x;) € {2,3,..., 7} foralli=1,...,n
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Blockwise Representation

1 1

x! 1 1 x" 1
x" N X/, x" 1 x X, X"

x  x,x" x  x,x",x" x' X

0 0 0 0 0 0

C GCs Cy Cs C C7

Kn CCn

be such that C € IC,, iff C € C, and there does not exist D € C, and a congruence =
on D above the identity such that C=D/ =.

C € K, iff orbit(C, x;) € {2,3,...,7} forall i=1,...,n
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Free Algebras

Let D € Kp,i =1,...,n. We write,
Dy := {0},

Dy := {x;,x!" | orbit(D, x;) € {2,3}}
U{x/ | orbit(D, x;) € {6,7}},

D, := {x; | orbit(D, x;) = 4},

D3 := {x{,x!" | orbit(D, x;) = 4}
U{x;, x/, x!" | orbit(D, x;) = 5},

Dy := {x! | orbit(D, x;) € {2,3}}
U{x;, x!" | orbit(D, x;) € {6,7}},

Ds := {1}.

b= A v &= Vo

y€ED4UDs ye{Ujep Oj}

Ip is the least element y € D such that
y' <y,
gp is the greatest element y € D such
that y < y’.

Ib < gp
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1 1
| | | [

x' 1 1 | | X" 1
N rl
X! x! | X/Y X! | 1 | M X, X!
[
X x,x” X x,x/,x” | x! x
e B |
0 0 | 0 | 0 | 0 0
C, C3 Cy Cs C Cr

bk(Cs) =0< x < x" <y <yy’"<x' <1;
bk(Ci5) =0 < xx"" <y <y'y"” <x' <1;

bk(Ce) =0 < x < x"" < yy'y" <x' <1,
bk(Ci6) = 0 < xx"" < yy'y"” < x' < 1;
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Free Algebras

Let D € Kp,i =1,...,n. We write,
Dy := {0},

Dy := {x;,x!" | orbit(D, x;) € {2,3}}
U{x/ | orbit(D, x;) € {6,7}},

D, := {x; | orbit(D, x;) = 4},

D3 := {x{,x!" | orbit(D, x;) = 4}
U{x;, x/, x!" | orbit(D, x;) = 5},

Dy := {x! | orbit(D, x;) € {2,3}}
U{x;, x!" | orbit(D, x;) € {6,7}},

Ds := {1}.

b= A v &= Vo

y€ED4UDs ye{Ujep Oj}

Ip is the least element y € D such that
y' <y,
gp is the greatest element y € D such
that y < y’.

Ib < gp

C and D in K have the same signature (in
symbols, C ~ D) iff:

(51) C,' = D,' for i = 1,2,3,4;

(S2) xocy iff xop y for all
x,y € G,0 € {<,=}

1 1
| | | [

x' 1 1 | | X" 1
N rl
N N | X/Y X | 1 | X x, N
| | | I I
X X, x" I X I X, x/7 x" : x! x
e B |
0 0 | 0 | 0 | 0 0
G G Cy Cs C G

bk(Cs) =0< x < x" <y <yy’"<x' <1;
bk(Ci5) =0 < xx"" <y <y'y"” <x' <1;

bk(Ce) =0 < x < x"" < yy'y" <x' <1,
bk(Ci6) = 0 < xx"" < yy'y"” < x' < 1;
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Free Algebras

Let D € Kp,i =1,...,n. We write,
Dy := {0},

Dy := {x;,x!" | orbit(D, x;) € {2,3}}
U{x/ | orbit(D, x;) € {6,7}},

D, := {x; | orbit(D, x;) = 4},

D3 := {x{,x!" | orbit(D, x;) = 4}
U{x;, x/, x!" | orbit(D, x;) = 5},

Dy := {x! | orbit(D, x;) € {2,3}}
U{x;, x!" | orbit(D, x;) € {6,7}},

Ds := {1}.

b= A v &= Vo

y€ED4UDs ye{Ujep Oj}

Ip is the least element y € D such that
y' <y,
gp is the greatest element y € D such
that y < y’.

Ib < gp

C and D in K have the same signature (in
symbols, C ~ D) iff:
(S]_) C,' = D,' for i = 1,2,3,4;
(S2) xocy iff xop y for all
x,y € G,0 € {<,=}.

An infix of C is an interval / in bk(C) such
that:
(h) There exists x € | such that x = gc or
x = lc.
Let C ~ D in K,. Then, infix(C, D) is the
greatest common infix / of C and D such that:
(h) xi € land x/,x/" &I, or xj,x/,x/" € | for
alli=1,...,n.

bk(Cs) =0<x<x'<y<yy’"<x <1,
bk(Ci5) =0 < xx"" <y <y'y" <x' <1,

bk(Cs) =0 < x < x"" < yy'y"” < x' <1;
bk(C16) =0 < xx” < yy'y" < x' < 1;
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Free Algebras

Let t be a term, and C ~ D in K.
(i) ' <tinCifft' <tinD.
(i) For all x € infix(C,D), t = x in C iff t = x in D.
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Free Algebras
Theorem
Let t be a term, and C ~ D in IC,.
(i)  <tinCifft’ <tinD.
(i) For all x € infix(C,D), t = x in C iff t = x in D.
bk(C2) =0<x1 < x{ <x{ <1,
bk(C3) =0 < x1x’ < x{ < 1.
2 3 2 3 2 3 2 3
[ ] ® [ ]
3 3 3 3

N @
N @
N @
\§)
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Free Algebras

Let t be a term, and C ~ D in IC,.
(i) ' <tinCifft' <tinD.
(i) For all x € infix(C,D), t = x in C iff t = x in D.

bk(Co) =0<x<x'" <y <y<y” <x' <1,
bk(Cio) =0< xx"" <y’ <y <y’ <x' <1

19 9 19 9 19 9 19 9 19 9 19

O

19 19 19 19 19 19

o
)
o
o
o
<)
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Free Algebras

Let t be a term, and C ~ D in K.
(i) t' <tinCifft' <tinD.
(i) For all x € infix(C,D), t = x in C iff t = x in D.

Ac ] ¢

Cekp
be such that a € A iff, for all C ~ D in K,:

(i) mc(a) < mc(a) iff mp(a)’ < mp(a);
(i) If x € infix(C, D), then m¢c(a) = x iff mp(a) = x.
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Free Algebras

Let t be a term, and C ~ D in K.
(i) t' <tinCifft' <tinD.
(i) For all x € infix(C,D), t = x in C iff t = x in D.

Ac ] ¢

Cekp
be such that a € A iff, for all C ~ D in K,:
(i) mc(a)" < mc(a) iff mp(a)’ < mp(a);
(i) If x € infix(C, D), then m¢c(a) = x iff mp(a) = x.
A= (A AR VA A A OR 1A) where:
0A is the least antichain in A:
1A is the greatest antichain in A;

for of € {AR VA A AY and a,b € A, o is defined chainwise,
that is ao® b = ac o bc, for every C € K.

Theorem (Free Algebras)

The algebra A is isomorphic to the free n-generated WINM algebra F.
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Free Algebras

IF1| = 1200



Free Algebras

WNM algebras
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n
poset(n) = a,b,cgw, (a, i Xase:
atb+c=n
ch@zac if b=0,
Xabie = ,.{ (Y4, ®i@Zae) + (Ye, ®id162,,)) otherwise;
1 ifa=c=0, 1 ifa=c=0,
) (uvs)- ) () -
Yoo o C_l ( ) (Sas+85;) + fe jg (5) (Tas+13,) +
a—l ( ) (sc +57.) otherwise; Zol () (Tie+772) otherwise;
Sf,j=1®Yi,jv =182

+ _ 2 ifi=j=0,
' Sij+Yi; otherwise;

i—1 .
s=(es)t g (L) (tesi)+aes)).

P+Q:=(PUQ,<PtQ) where p <P*Q gifand
only if either p, g € P and p §P g,orp,q € Q
and p SQ q.

3 ifi=j=0,
i 1@ (T;; +2Z;;) otherwise;

_ =i _
T =T+ ;’ (k) (Tk,j + Tk,j) .

P®Q:=(PUQ,<PP9) where p <P®Q gifand
only if either p, g € Pand p <P q, or p,g € Q
andpSQ g,orp€ Pand g € Q.
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Free Algebras
2053 “4 545 IS 6 16 9 19 25 27

1 3 4. 2 2
I I I U If 2I0 23 M

} { ¥ { " I I

3 435 43 54 5 6 17 20 24 27 28
1 3 41 53 44 5 9 7 2 10 7l 8 23 25 26

42

35036 41 707

©
S

70 49 59 48 38 65 67

39 7169 73 45 55 46 56 47 57 52 62 31 61 66 68
39 72 M 30 60 63 64
I I I I 38 36 57 } 60 ﬁ 64 67 68
29 32 39 40 69 72 37 55 46 39 47 62 50 61 58 63 65 66

30 31 3? 34 70 71 3 H 45 49 52 5148

IS

|F2| = 1.2495275042442405-10%2 = 124, 952, 750, 424, 424, 055, 667, 787, 038, 720, 000
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Interpolation Properties;
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Spectral Duality.
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Applications

@ Normal Forms;
@ Recurrence Formulas;

@ Interpolation Properties;
@ Unification;
°

Spectral Duality.

6 °
2 3 7 ° ° lo
N S N S
4 5 ®e e e e
w
|
3 5 6 7 /| U G /
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