Many-Valued Propositional Logics	WNM algebras	Conclusions

Representation of Free Finitely Generated Weak Nilpotent Minimum Algebras

$\label{eq:Diego-Valota} Diego \ Valota$ Artificial Intelligence Research Institute (IIIA), CSIC.

diego@iiia.csic.es

Based on a joint work with: STEFANO AGUZZOLI (UNIMI) and SIMONE BOVA (TU Wien).

TACL 2015

Introduction •	WNM algebras 00000000	Conclusions
Overview		

- Monoidal T-norms based Logic;
- Weak Negations Functions, WNM Algebras and Chains;
- Representation of Free *n*-generated WNM algebras;
- Applications.

	Many-Valued Propositional Logics ●0000	WNM algebras 00000000	Conclusions
MTL			

	Many-Valued Propositional Logics ●0000	WNM algebras 00000000	Conclusions
MTL			

A **T-norm** is a binary operation $\begin{array}{l} \cdot : [0,1]^2 \rightarrow [0,1] \text{ that satisfies:} \\ 1. \quad x \cdot y = y \cdot x \\ 2. \quad (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ 3. \quad x \leq y \text{ then } x \cdot z \leq y \cdot z \\ 4. \quad x \cdot 1 = x \\ \text{for all } x, y, z, \in [0,1]. \end{array}$

	Many-Valued Propositional Logics ●○○○○	WNM algebras	Conclusions
MTL			

A **T-norm** is a binary operation $\therefore [0,1]^2 \rightarrow [0,1]$ that satisfies: 1. $x \cdot y = y \cdot x$ 2. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ 3. $x \leq y$ then $x \cdot z \leq y \cdot z$ 4. $x \cdot 1 = x$ for all $x, y, z, \in [0,1]$.

Residuum: \Rightarrow .: $[0,1]^2 \rightarrow [0,1]$. *Adjunction property*: $(x \cdot z) \leq y$ iff $z \leq (x \Rightarrow y)$ that is $x \Rightarrow y = max\{z|x \cdot z \leq y\}$, for all $x, y, z \in [0,1]$.

	Many-Valued Propositional Logics	WNM algebras	Conclusions
	●0000	00000000	00
MTL			

A **T-norm** is a binary operation $\therefore [0,1]^2 \rightarrow [0,1]$ that satisfies: 1. $x \cdot y = y \cdot x$ 2. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ 3. $x \leq y$ then $x \cdot z \leq y \cdot z$ 4. $x \cdot 1 = x$ for all $x, y, z, \in [0,1]$.

 $\begin{array}{l} \textbf{Residuum:} \Rightarrow :: [0,1]^2 \rightarrow [0,1].\\ \textit{Adjunction property:}\\ (x \cdot z) \leq y \text{ iff } z \leq (x \Rightarrow y)\\ \textit{that is } x \Rightarrow y = max\{z|x \cdot z \leq y\},\\ \textit{for all } x, y, z \in [0,1]. \end{array}$

The necessary and sufficient condition for the residuum's existence is the t-norm's **left-continuity**.

	Many-Valued Propositional Logics	WNM algebras	Conclusions
	●0000	00000000	00
MTL			

A **T-norm** is a binary operation $\therefore [0,1]^2 \rightarrow [0,1]$ that satisfies: 1. $x \cdot y = y \cdot x$ 2. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ 3. $x \leq y$ then $x \cdot z \leq y \cdot z$ 4. $x \cdot 1 = x$ for all $x, y, z, \in [0,1]$.

 $\begin{array}{l} \textbf{Residuum:} \Rightarrow :: [0,1]^2 \rightarrow [0,1].\\ \textit{Adjunction property:}\\ (x \cdot z) \leq y \text{ iff } z \leq (x \Rightarrow y)\\ \textit{that is } x \Rightarrow y = max\{z | x \cdot z \leq y\},\\ \textit{for all } x, y, z \in [0,1]. \end{array}$

The necessary and sufficient condition for the residuum's existence is the t-norm's **left-continuity**.

Monoidal T-norm based Logic (MTL)(Esteva and Godo): Many-Valued logic of all left-continuous t-norms and their residua (Montagna and Jenei).

	Many-Valued Propositional Logics ○●○○○	WNM algebras	Conclusions
MTL			

A commutative integral bounded residuated lattice is an algebra $\mathbf{A} = (A, \land, \lor, \cdot, \rightarrow, \bot, \top)$ of type (2, 2, 2, 2, 0, 0) such that $(A, \land, \lor, \bot, \top)$ is a bounded lattice, (A, \cdot, \top) is a commutative monoid, and the *residuation* equivalence, $x \cdot y \leq z$ if and only if $x \leq y \rightarrow z$, holds.

An **MTL** algebra $\mathbf{A} = (A, \land, \lor, \lor, \to, \bot, \top)$ is a commutative integral bounded residuated lattice satisfying the **prelinearity** equation, $(x \to y) \lor (y \to x) = \top$.

Define

$$a':=a
ightarrow 0,$$

for all $a \in A$.

	Many-Valued Propositional Logics ○●○○○	WNM algebras	Conclusions 00
MTL			

A commutative integral bounded residuated lattice is an algebra $\mathbf{A} = (A, \land, \lor, \cdot, \rightarrow, \bot, \top)$ of type (2, 2, 2, 2, 0, 0) such that $(A, \land, \lor, \bot, \top)$ is a bounded lattice, (A, \cdot, \top) is a commutative monoid, and the *residuation* equivalence, $x \cdot y \leq z$ if and only if $x \leq y \rightarrow z$, holds.

An **MTL** algebra $\mathbf{A} = (A, \land, \lor, \lor, \to, \bot, \top)$ is a commutative integral bounded residuated lattice satisfying the **prelinearity** equation, $(x \to y) \lor (y \to x) = \top$.

Define

$$a':=a
ightarrow 0$$
,

for all $a \in A$.

The class of unary operation ': $[0,1] \rightarrow [0,1]$ arising as negation operations of MTL algebras over [0,1] coincides with the class of weak negation operations.

	Many-Valued Propositional Logics	Conclusions
	00000	
Weak Negations		

A weak negation is a unary operations ': $[0,1] \rightarrow [0,1]$ such that, for all $a, b \in [0,1]$:

$$0' = 1;$$
 $a \le b$ implies $b' \le a';$ and, $a \le a''.$

	Many-Valued Propositional Logics ○○●○○	WNM algebras	Conclusions 00
Weak Negations			

A weak negation is a unary operations ': $[0,1] \rightarrow [0,1]$ such that, for all $a, b \in [0,1]$:

$$0' = 1;$$
 $a \le b$ implies $b' \le a';$ and, $a \le a''.$

Given a weak negation ': $[0,1] \rightarrow [0,1]$, it is possible to define a t-norm as follows, for all $x,y \in [0,1]$:

$$x \cdot y = \begin{cases} 0 & \text{if } x \leq y', \\ x \wedge y & \text{otherwise.} \end{cases}$$

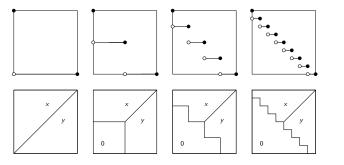
	Many-Valued Propositional Logics ○●●○○	WNM algebras	Conclusions 00
Weak Negations			

A weak negation is a unary operations ': $[0,1] \rightarrow [0,1]$ such that, for all $a, b \in [0,1]$:

$$0' = 1;$$
 $a \le b$ implies $b' \le a';$ and, $a \le a''.$

Given a weak negation ': $[0,1] \rightarrow [0,1]$, it is possible to define a t-norm as follows, for all $x, y \in [0,1]$:

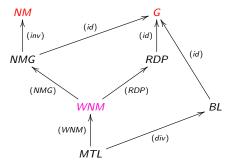
 $x \cdot y = \begin{cases} 0 & \text{if } x \leq y', \\ x \wedge y & \text{otherwise.} \end{cases}$



The first four members of the family of weak negations $\{f_n \mid n = 0, 1, 2, \dots\}$ and their induce t-norms.

 f_n is the step function over [0, 1] that maps 0 to 1, and ((i - 1)/n, i/n)to (n - i)/n for $i = 1, 2, \dots, n$, so that f_n has 2^n discontinuities.

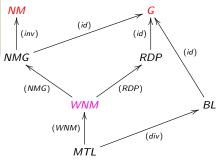
	Many-Valued Propositional Logics	WNM algebras	Conclusions
	00000		
Subvarieties of MTL Algebra	s		



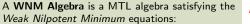
	Many-Valued Propositional Logics ○○○●○	WNM algebras	Conclusions 00
Subvarieties of MTL Algebra	s		

A **WNM Algebra** is a MTL algebra satisfying the *Weak Nilpotent Minimum* equations:

$$\neg (x \cdot y) \lor ((x \land y) \to (x \cdot y)) = \top.$$

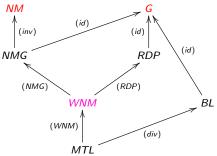


	Many-Valued Propositional Logics ○○○●○	WNM algebras	Conclusions 00
Subvarieties of MTL Algebra	s		



$$\neg (x \cdot y) \lor ((x \land y) \to (x \cdot y)) = \top.$$

A **Gödel Algebra** is an *idempotent* (MTL) WNM Algebra.



	Many-Valued Propositional Logics ○○○●○	WNM algebras	Conclusions 00
Subvarieties of MTL Algebra	s		

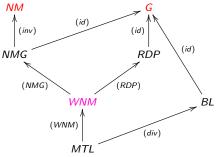
A WNM Algebra is a MTL algebra satisfying the Weak Nilpotent Minimum equations:

$$\neg (x \cdot y) \lor ((x \land y) \to (x \cdot y)) = \top.$$

A Gödel Algebra is an idempotent (MTL) WNM Algebra.

A **NM Algebra** is an *involutive* WNM algebra, that is, a WNM algebra satisfying:

$$\neg \neg x = x.$$



	Many-Valued Propositional Logics	WNM algebras	Conclusions
	00000		
Subvarieties of MTL Algebras	:		

- The *subdirectly irreducible* members of the variety V(*MTL*) are totally ordered (Esteva and Godo);
- ② The variety V(WNM) is locally finite (Noguera, Esteva and Gispert);

	Many-Valued Propositional Logics	WNM algebras	Conclusions
	00000		
Subvarieties of MTL Algebras	:		

- The subdirectly irreducible members of the variety V(MTL) are totally ordered (Esteva and Godo);
- ② The variety V(WNM) is locally finite (Noguera, Esteva and Gispert);
- \Rightarrow The finitely generated free algebras in subvarieties of $\mathbb{V}(WNM)$ are finite.

	Many-Valued Propositional Logics	WNM algebras	Conclusions
	00000		
Subvarieties of MTL Algebras	;		

- The subdirectly irreducible members of the variety V(MTL) are totally ordered (Esteva and Godo);
- The variety V(WNM) is locally finite (Noguera, Esteva and Gispert);
- \Rightarrow The finitely generated free algebras in subvarieties of $\mathbb{V}(WNM)$ are finite.

Given a set of generators x_1, \ldots, x_n ,

the WNM algebra \mathbf{F}_n freely generated by $x_i^{\mathbf{F}_n} = (x_i^{\mathbf{C}_1}, \dots, x_i^{\mathbf{C}_m})$ for $i = 1, \dots, n$, is isomorphic to the subalgebra \mathbf{A} of $\mathbf{C}_1 \times \dots \times \mathbf{C}_m$ generated by $x_i^{\mathbf{A}} = (x_i^{\mathbf{C}_1}, \dots, x_i^{\mathbf{C}_m})$ for $i = 1, \dots, n$.

	WNM algebras ●○○○○○○○	Conclusions 00
WNM Chains		

The variety $\mathbb{V}(WNM)$ is generated by WNM chains, and for all WNM chains **C**, the operations $\cdot^{\mathbf{C}}$ and $\rightarrow^{\mathbf{C}}$ are uniquely determined by the lattice and negation operations, as follows (for all $a, b \in C$):

$$a \cdot^{\mathbf{C}} b = \begin{cases} 0^{\mathbf{C}} & \text{if } a \leq^{\mathbf{C}} b'^{\mathbf{C}}, \\ a \wedge^{\mathbf{C}} b & \text{otherwise;} \end{cases}$$
$$a \to^{\mathbf{C}} b = \begin{cases} 1^{\mathbf{C}} & \text{if } a \leq^{\mathbf{C}} b, \\ a'^{\mathbf{C}} \vee^{\mathbf{C}} b & \text{otherwise.} \end{cases}$$

	WNM algebras ●○○○○○○○	Conclusions 00
WNM Chains		

The variety $\mathbb{V}(WNM)$ is generated by WNM chains, and for all WNM chains **C**, the operations $\cdot^{\mathbf{C}}$ and $\rightarrow^{\mathbf{C}}$ are uniquely determined by the lattice and negation operations, as follows (for all $a, b \in C$):

$$a \cdot^{\mathbf{C}} b = \begin{cases} 0^{\mathbf{C}} & \text{if } a \leq^{\mathbf{C}} b'^{\mathbf{C}}, \\ a \wedge^{\mathbf{C}} b & \text{otherwise;} \end{cases}$$
$$a \rightarrow^{\mathbf{C}} b = \begin{cases} 1^{\mathbf{C}} & \text{if } a \leq^{\mathbf{C}} b, \\ a'^{\mathbf{C}} \vee^{\mathbf{C}} b & \text{otherwise.} \end{cases}$$

Proposition (Esteva, Noguera, Gispert)

For all WNM chains C:

$$x \le x'' = \bigwedge \{z \in C \mid x \le z, z = z''\},$$

$$x = x^2 \text{ iff } x' < x \text{ or } x = 0,$$

$$x \le y \text{ implies } y' \le x',$$

$$x' < x \text{ and } y' < y \text{ implies } x' < y,$$

$$x \le x' \text{ and } y' < y \text{ implies } x \le y,$$

$$x' < x \text{ and } y \le y' \text{ implies } x' < y'.$$

	WNM algebras ○●0000000	Conclusions 00
Blockwise Representation		

Let $C_n = {C_1, ..., C_m}$ be the set of (pairwise non-isomorphic) subdirectly irreducible *n*-generated WNM algebras.

Let **C** be a WNM chain generated by $x_1^{\mathbf{C}}, \ldots, x_n^{\mathbf{C}} \in C$. Then

$$bk(\mathbf{C}) = B_1 < \cdots < B_k.$$

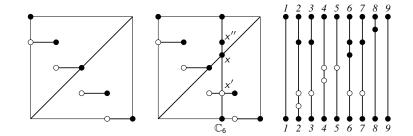
is the *n*-generated WNM chain such that:

$$bk(\mathbf{C}_{15}) = 0 < xx'' < y < y'y'' < x' < 1$$

$${\rm bk}({\bm C}_6) = 0 < x < x'' < yy'y'' < x' < 1$$

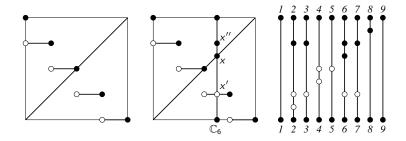
	WNM algebras	Conclusions 00
Blockwise Representation		

The class \mathcal{C}_1 of singly generated WNM chains $\mathcal{C}_1 = \{ \textbf{C}_i \mid i=1,\ldots,9 \}$ is:

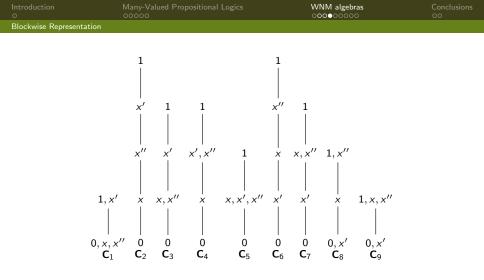


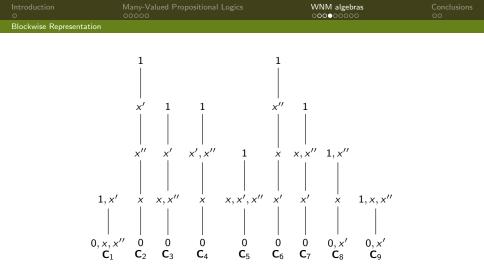
	WNM algebras ○O●OOOOOO	Conclusions 00
Blockwise Representation		

The class C_1 of singly generated WNM chains $C_1 = \{\mathbf{C}_i \mid i = 1, \dots, 9\}$ is:



$$\begin{split} \mathrm{bk}(\textbf{C}_1) &= 0x_1x_1'' < x_1'1, & \mathrm{bk}(\textbf{C}_2) = 0 < x_1 < x_1'' < x_1' < 1, \\ \mathrm{bk}(\textbf{C}_3) &= 0 < x_1x_1'' < x_1' < 1, & \mathrm{bk}(\textbf{C}_4) = 0 < x_1 < x_1'x_1'' < 1, \\ \mathrm{bk}(\textbf{C}_5) &= 0 < x_1x_1'x_1'' < 1, & \mathrm{bk}(\textbf{C}_6) = 0 < x_1' < x_1 < x_1'' < 1, \\ \mathrm{bk}(\textbf{C}_7) &= 0 < x_1' < x_1x_1'' < 1, & \mathrm{bk}(\textbf{C}_8) = 0x_1' < x_1 < x_1''1, & \mathrm{bk}(\textbf{C}_9) = 0x_1' < x_1x_1''1, \end{split}$$

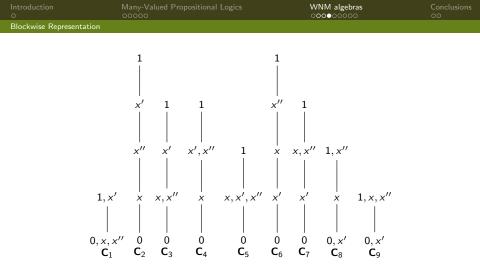




Let $C \in C_n$. For i = 1, ..., n, the **orbit** of x_i in C is the subalgebra of C generated by x_i^{C} . We define $\operatorname{orbit}(\mathsf{C}, 0) := 1$, $\operatorname{orbit}(\mathsf{C}, 1) := 9$, and for i = 1, ..., n,

$$\operatorname{orbit}(\mathbf{C}, x_i) = \operatorname{orbit}(\mathbf{C}, x_i') = \operatorname{orbit}(\mathbf{C}, x_i'') := j,$$

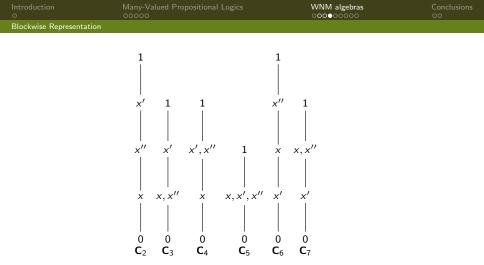
iff the orbit of x_i in **C** is isomorphic to $\mathbf{C}_j \in C_1$, where $j \in \{1, \dots, 9\}$.



 $\mathcal{K}_n \subseteq \mathcal{C}_n$

be such that $C \in \mathcal{K}_n$ iff $C \in \mathcal{C}_n$ and there does not exist $D \in \mathcal{C}_n$ and a congruence \equiv on D above the identity such that $C = D / \equiv$.

 $C \in \mathcal{K}_n$ iff $\operatorname{orbit}(C, x_i) \in \{2, 3, \dots, 7\}$ for all $i = 1, \dots, n$



 $\mathcal{K}_n \subseteq \mathcal{C}_n$

be such that $C \in \mathcal{K}_n$ iff $C \in \mathcal{C}_n$ and there does not exist $D \in \mathcal{C}_n$ and a congruence \equiv on D above the identity such that $C = D / \equiv$.

 $C \in \mathcal{K}_n$ iff orbit $(C, x_i) \in \{2, 3, \dots, 7\}$ for all $i = 1, \dots, n$

	WNM algebras ○○○○●○○○○	Conclusions 00
Free Algebras		

Let
$$\mathbf{D} \in \mathcal{K}_{n}, i = 1, ..., n$$
. We write,
 $D_{0} := \{0\},$
 $D_{1} := \{x_{i}, x_{i}'' \mid \operatorname{orbit}(\mathbf{D}, x_{i}) \in \{2, 3\}\}$
 $\cup \{x_{i}' \mid \operatorname{orbit}(\mathbf{D}, x_{i}) \in \{6, 7\}\},$
 $D_{2} := \{x_{i} \mid \operatorname{orbit}(\mathbf{D}, x_{i}) = 4\},$
 $D_{3} := \{x_{i}' \mid \operatorname{orbit}(\mathbf{D}, x_{i}) = 4\},$
 $\cup \{x_{i}, x_{i}', x_{i}'' \mid \operatorname{orbit}(\mathbf{D}, x_{i}) = 4\}$
 $\cup \{x_{i}, x_{i}', x_{i}'' \mid \operatorname{orbit}(\mathbf{D}, x_{i}) = 5\},$
 $D_{4} := \{x_{i}' \mid \operatorname{orbit}(\mathbf{D}, x_{i}) \in \{2, 3\}\},$
 $\cup \{x_{i}, x_{i}'' \mid \operatorname{orbit}(\mathbf{D}, x_{i}) \in \{6, 7\}\},$
 $D_{5} := \{1\}.$
 $l_{\mathbf{D}} = \bigwedge_{y \in D_{4} \cup D_{5}} y, \quad g_{\mathbf{D}} = \bigvee_{y \in \{\bigcup_{i \in [3]} D_{i}\}} y$

$$\begin{split} &l_{\mathbf{D}} \text{ is the least element } y \in D \text{ such that } \\ &y' < y, \\ &g_{\mathbf{D}} \text{ is the greatest element } y \in D \text{ such } \\ &\text{that } y \leq y'. \\ &l_{\mathbf{D}} \prec g_{\mathbf{D}} \end{split}$$

	WNM algebras ○○○○●○○○○	Conclusions 00
Free Algebras		

Let
$$\mathbf{D} \in \mathcal{K}_n, i = 1, ..., n$$
. We write,
 $D_0 := \{0\},$
 $D_1 := \{x_i, x_i'' \mid \operatorname{orbit}(\mathbf{D}, x_i) \in \{2, 3\}\}$
 $\cup \{x_i' \mid \operatorname{orbit}(\mathbf{D}, x_i) \in \{6, 7\}\},$
 $D_2 := \{x_i \mid \operatorname{orbit}(\mathbf{D}, x_i) = 4\},$
 $D_3 := \{x_i', x_i'' \mid \operatorname{orbit}(\mathbf{D}, x_i) = 4\},$
 $\cup \{x_i, x_i', x_i'' \mid \operatorname{orbit}(\mathbf{D}, x_i) = 5\},$
 $D_4 := \{x_i' \mid \operatorname{orbit}(\mathbf{D}, x_i) \in \{2, 3\}\},$
 $\cup \{x_i, x_i'' \mid \operatorname{orbit}(\mathbf{D}, x_i) \in \{6, 7\}\},$
 $D_5 := \{1\}.$

$$l_{\mathbf{D}} = \bigwedge_{y \in D_4 \cup D_5} y, \quad g_{\mathbf{D}} = \bigvee_{y \in \{\bigcup_{j \in [3]} D_j\}} y.$$

$$\begin{split} & l_{\mathbf{D}} \text{ is the least element } y \in D \text{ such that } \\ & y' < y, \\ & g_{\mathbf{D}} \text{ is the greatest element } y \in D \text{ such that } \\ & \text{that } y \leq y'. \\ & l_{\mathbf{D}} \prec g_{\mathbf{D}} \end{split}$$

	WNM algebras ○○○○●○○○○	Conclusions 00
Free Algebras		

Let $\mathbf{D} \in \mathcal{K}_n, i = 1, ..., n$. We write, $D_0 := \{0\},$ $D_1 := \{x_i, x_i'' \mid \operatorname{orbit}(\mathbf{D}, x_i) \in \{2, 3\}\}$ $\cup \{x_i' \mid \operatorname{orbit}(\mathbf{D}, x_i) \in \{6, 7\}\},$ $D_2 := \{x_i \mid \operatorname{orbit}(\mathbf{D}, x_i) = 4\},$ $D_3 := \{x_i', x_i'' \mid \operatorname{orbit}(\mathbf{D}, x_i) = 4\},$ $\cup \{x_i, x_i', x_i'' \mid \operatorname{orbit}(\mathbf{D}, x_i) = 5\},$ $D_4 := \{x_i' \mid \operatorname{orbit}(\mathbf{D}, x_i) \in \{2, 3\}\}$ $\cup \{x_i, x_i'' \mid \operatorname{orbit}(\mathbf{D}, x_i) \in \{6, 7\}\},$ $D_5 := \{1\}.$

$$l_{\mathbf{D}} = \bigwedge_{y \in D_4 \cup D_5} y, \quad g_{\mathbf{D}} = \bigvee_{y \in \{\bigcup_{j \in [3]} D_j\}} y.$$

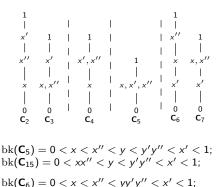
$$\begin{split} & l_{\mathbf{D}} \text{ is the least element } y \in D \text{ such that } \\ & y' < y, \\ & g_{\mathbf{D}} \text{ is the greatest element } y \in D \text{ such that } \\ & y \leq y'. \end{split}$$

$$l_{\rm D} \prec g_{\rm D}$$

C and **D** in \mathcal{K}_n have the same **signature** (in symbols, $\mathbf{C} \sim \mathbf{D}$) iff:

$$S_1$$
) $C_i = D_i$ for $i = 1, 2, 3, 4;$

$$\begin{array}{l} (S_2) \quad x \diamond_{\mathbf{C}} y \text{ iff } x \diamond_{\mathbf{D}} y \text{ for all} \\ x, y \in C_2, \diamond \in \{<,=\}. \end{array}$$



 $bk(\mathbf{C}_{16}) = 0 < xx'' < yy'y'' < x' < 1;$

	WNM algebras ○○○○●○○○○	Conclusions 00
Free Algebras		

Let
$$\mathbf{D} \in \mathcal{K}_n, i = 1, ..., n$$
. We write,
 $D_0 := \{0\},$
 $D_1 := \{x_i, x_i'' \mid \operatorname{orbit}(\mathbf{D}, x_i) \in \{2, 3\}\}$
 $\cup \{x_i' \mid \operatorname{orbit}(\mathbf{D}, x_i) \in \{6, 7\}\},$
 $D_2 := \{x_i \mid \operatorname{orbit}(\mathbf{D}, x_i) = 4\},$
 $D_3 := \{x_i', x_i'' \mid \operatorname{orbit}(\mathbf{D}, x_i) = 4\},$
 $\cup \{x_i, x_i', x_i'' \mid \operatorname{orbit}(\mathbf{D}, x_i) = 5\},$
 $D_4 := \{x_i' \mid \operatorname{orbit}(\mathbf{D}, x_i) \in \{2, 3\}\}$
 $\cup \{x_i, x_i'' \mid \operatorname{orbit}(\mathbf{D}, x_i) \in \{6, 7\}\},$
 $D_5 := \{1\}.$

$$I_{\mathbf{D}} = \bigwedge_{y \in D_4 \cup D_5} y, \quad g_{\mathbf{D}} = \bigvee_{y \in \{\bigcup_{j \in [3]} D_j\}} y.$$

 l_{D} is the least element $y \in D$ such that y' < y,

 $g_{\mathbf{D}}$ is the greatest element $y \in D$ such that $y \leq y'$.

$$l_{\rm D} \prec g_{\rm D}$$

C and **D** in \mathcal{K}_n have the same signature (in symbols, $\mathbf{C} \sim \mathbf{D}$) iff:

$$S_1$$
) $C_i = D_i$ for $i = 1, 2, 3, 4;$

$$\begin{array}{l} (S_2) \quad x \diamond_{\mathbf{C}} y \text{ iff } x \diamond_{\mathbf{D}} y \text{ for all} \\ x, y \in C_2, \diamond \in \{<,=\}. \end{array}$$

An infix of C is an interval I in bk(C) such that:

 (l_1) There exists $x \in I$ such that $x = g_{\mathbb{C}}$ or $x = l_{\mathbb{C}}$.

Let $C \sim D$ in \mathcal{K}_n . Then, infix(C, D) is the greatest common infix I of C and D such that:

$$(I_2)$$
 $x_i \in I$ and $x'_i, x''_i \notin I$, or $x_i, x'_i, x''_i \in I$ for all $i = 1, \ldots, n$.

$$\begin{aligned} & \operatorname{bk}(\mathbf{C}_5) = 0 < x < x'' < y < y'y'' < x' < 1; \\ & \operatorname{bk}(\mathbf{C}_{15}) = 0 < xx'' < y < y'y'' < x' < 1; \\ & \operatorname{bk}(\mathbf{C}_6) = 0 < x < x'' < yy'y'' < x' < 1; \\ & \operatorname{bk}(\mathbf{C}_{16}) = 0 < xx'' < yy'y'' < x' < 1; \end{aligned}$$

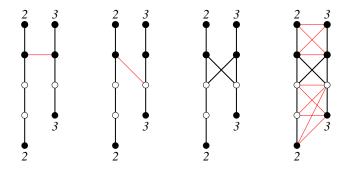
			WNM algebras ○○○○●○○○	Conclusions 00
Free /	Algebras			
	Theorem			
	Let t be a term,	and $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_n .		
	(<i>i</i>) $t' < t$ in (C iff $t' < t$ in D .		
	(ii) For all $x \in$	$= \inf(\mathbf{C}, \mathbf{D}), t = x \text{ in } \mathbf{C} \text{ iff } t = x$	x in D .	

		WNM algebras ○○○○●○○○	Conclusions 00
Free Algebras			
Theorem			
Let t be a	term and $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_{-}		

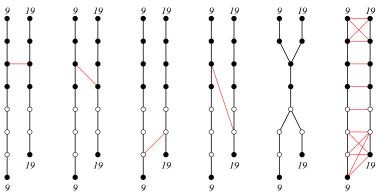
(i)
$$t' < t$$
 in **C** iff $t' < t$ in **D**.

(ii) For all
$$x \in infix(\mathbf{C}, \mathbf{D})$$
, $t = x$ in \mathbf{C} iff $t = x$ in \mathbf{D} .

$$\begin{array}{l} \mathrm{bk}(\boldsymbol{\mathsf{C}}_2) = 0 < x_1 < x_1'' < x_1' < 1, \\ \mathrm{bk}(\boldsymbol{\mathsf{C}}_3) = 0 < x_1 x_1'' < x_1' < 1. \end{array}$$



	uction		Many-Valued 00000	Propositional Logic	s	WNM algebras ○○○○●○○○	Con 00	clusions
Free A	lgebras							
	Theorem	l						
	Let t be	a term,	and $\mathbf{C}\sim\mathbf{D}$	in \mathcal{K}_n .				
	(<i>i</i>) <i>t</i> ′	< tin	C iff $t' < t$ in	n D .				
	(ii) Fo	or all $x \in$	infix(C,D)	, $t = x$ in C if	$f t = x in \mathbf{D}$).		
			$\mathrm{bk}(\mathbf{C}_9) = \\ \mathrm{bk}(\mathbf{C}_{19})$	0 < x < x'' < 0 < x < x'' < 0 < xx'' < 0 < xx'' < 0 < xx'' < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 <	$\langle y' < y < y < y' < y < y' < y < y' < y < y$	y'' < x' < 1, '' < x' < 1.		
	9 . ¶	19 ¶	9 19 ¶ ¶	9 19 ● ●	9 19 ¶ ¶	9 19 ● ●	9 19	



	WNM algebras ○○○○○●○○○	Conclusions 00
Free Algebras		

Theorem

Let t be a term, and $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_n .

(i)
$$t' < t$$
 in **C** iff $t' < t$ in **D**.

(ii) For all
$$x \in infix(\mathbf{C}, \mathbf{D})$$
, $t = x$ in \mathbf{C} iff $t = x$ in \mathbf{D} .

$$A\subseteq\prod_{\mathbf{C}\in\mathcal{K}_n}C$$

be such that $a \in A$ iff, for all $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_n :

(*i*)
$$\pi_{\mathbf{C}}(a)' < \pi_{\mathbf{C}}(a)$$
 iff $\pi_{\mathbf{D}}(a)' < \pi_{\mathbf{D}}(a)$

(ii) If $x \in infix(\mathbf{C}, \mathbf{D})$, then $\pi_{\mathbf{C}}(a) = x$ iff $\pi_{\mathbf{D}}(a) = x$.

	WNM algebras ○○○○○●○○○	Conclusions 00
Free Algebras		

Theorem

Let t be a term, and $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_n .

(i)
$$t' < t$$
 in **C** iff $t' < t$ in **D**.

(ii) For all
$$x \in infix(\mathbf{C}, \mathbf{D})$$
, $t = x$ in \mathbf{C} iff $t = x$ in \mathbf{D} .

$$A\subseteq\prod_{\mathbf{C}\in\mathcal{K}_n}C$$

be such that
$$a \in A$$
 iff, for all $\mathbf{C} \sim \mathbf{D}$ in \mathcal{K}_n :
(i) $\pi_{\mathbf{C}}(a)' < \pi_{\mathbf{C}}(a)$ iff $\pi_{\mathbf{D}}(a)' < \pi_{\mathbf{D}}(a)$;
(ii) If $x \in infix(\mathbf{C}, \mathbf{D})$, then $\pi_{\mathbf{C}}(a) = x$ iff $\pi_{\mathbf{D}}(a) = x$.

$$\mathbf{A} = (A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \rightarrow^{\mathbf{A}}, 0^{\mathbf{A}}, 1^{\mathbf{A}}) \text{ where:}$$

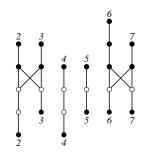
$$0^{\mathbf{A}} \text{ is the least antichain in } A;$$

$$1^{\mathbf{A}} \text{ is the greatest antichain in } A;$$
for $\circ^{\mathbf{A}} \in \{\wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \cdot^{\mathbf{A}}, \rightarrow^{\mathbf{A}}\} \text{ and } a, b \in A, \circ^{\mathbf{A}} \text{ is defined chainwise,}$
that is $a \circ^{\mathbf{A}} b = a_{C} \circ b_{C}$, for every $\mathbf{C} \in \mathcal{K}_{n}$.

Theorem (Free Algebras)

The algebra A is isomorphic to the free n-generated WNM algebra F_n .

	WNM algebras ○○○○○●○○	Conclusions
Free Algebras		



$$|\mathbf{F}_1| = 1200$$

	WNM algebras ○○○○○○●○	Conclusions 00
Free Algebras		

$$poset(n) = \sum_{\substack{a,b,c \in \{0\} \cup \mathbb{N}, \\ a+b+c=n}} {\binom{n}{a,b,c}} \mathbf{X}_{a,b,c},$$
$$\mathbf{X}_{a,b,c} = \begin{cases} \mathbf{Y}_{a,c}^{d} \oplus \mathbf{Z}_{a,c} & \text{if } b = 0, \\ \sum\limits_{i=1}^{b} i! {\binom{b}{i}} \left(\left(\mathbf{Y}_{a,c}^{d} \oplus \mathbf{i} \oplus \mathbf{Z}_{a,c} \right) + \left(\mathbf{Y}_{a,c}^{d} \oplus \mathbf{i} \oplus \mathbf{1} \oplus \mathbf{Z}_{a,c} \right) \right) & \text{otherwise}; \end{cases}$$

$$\mathbf{Y}_{a,c} = \begin{cases} \mathbf{1} & \text{if } a = c = 0, \\ \sum_{i=0}^{a-1} \sum_{j=0}^{c-1} {a \choose i} {c \choose j} \left(\mathbf{S}_{i,j} + \mathbf{S}_{i,j}^{-} \right) + \\ \sum_{i=0}^{c-1} {c \choose i} \left(\mathbf{S}_{a,j} + \mathbf{S}_{a,j}^{+} \right) + \\ \sum_{i=0}^{a-1} {a \choose i} \left(\mathbf{S}_{i,c} + \mathbf{S}_{i,c}^{-} \right) & \text{otherwise;} \end{cases}$$

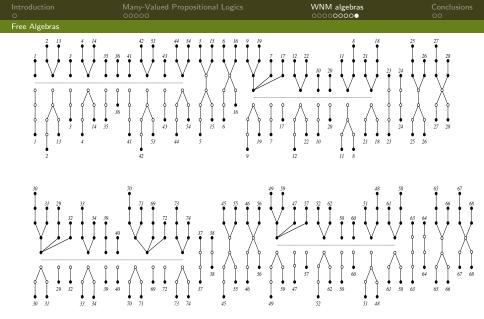
$$\begin{split} &\mathbf{S}_{i,j} = \mathbf{1} \oplus \mathbf{Y}_{i,j}, \\ &\mathbf{S}^+_{i,j} = \begin{cases} \mathbf{2} & \text{if } i = j = \mathbf{0}, \\ &\mathbf{S}_{i,j} + \mathbf{Y}_{i,j} & \text{otherwise;} \end{cases} \\ &\mathbf{S}^-_{i,j} = (\mathbf{1} \oplus \mathbf{S}_{i,j}) + \sum_{k=0}^{i-1} \binom{i}{k} \left((\mathbf{1} \oplus \mathbf{S}_{k,j}) + (\mathbf{1} \oplus \mathbf{S}^-_{k,j}) \right). \end{split}$$

$$\begin{split} \mathbf{P} + \mathbf{Q} &:= (P \cup Q, \leq^{\mathbf{P} + \mathbf{Q}}) \text{ where } p \leq^{\mathbf{P} + \mathbf{Q}} q \text{ if and} \\ \text{only if either } p, q \in P \text{ and } p \leq^{\mathbf{P}} q, \text{ or } p, q \in Q \\ \text{and } p \leq^{\mathbf{Q}} q. \end{split}$$

$$\mathbf{Z}_{a,c} = \begin{cases} 1 & \text{if } a = c = 0, \\ \sum_{i=0}^{a-1} \sum_{j=0}^{c-1} {a \choose i} {c \choose j} \left(\mathbf{T}_{i,j} + \mathbf{T}_{i,j}^{-} \right) + \\ \sum_{j=0}^{c-1} {c \choose j} \left(\mathbf{T}_{a,j} + \mathbf{T}_{a,j}^{+} \right) + \\ a_{a-1}^{-1} {a \choose i} \left(\mathbf{T}_{i,c} + \mathbf{T}_{i,c}^{-} \right) & \text{otherwise;} \end{cases}$$

$$\begin{split} \mathbf{T}_{i,j} &= \mathbf{1} \oplus \mathbf{Z}_{i,j}, \\ \mathbf{T}_{i,j}^{+} &= \begin{cases} \mathbf{3} & \text{if } i = j = \mathbf{0}, \\ \mathbf{1} \oplus (\mathbf{T}_{i,j} + \mathbf{Z}_{i,j}) & \text{otherwise;} \end{cases} \\ \mathbf{T}_{i,j}^{-} &= \mathbf{T}_{i,j} + \sum_{k=0}^{i-1} \binom{i}{k} \left(\mathbf{T}_{k,j} + \mathbf{T}_{k,j}^{-} \right). \end{split}$$

$$\begin{split} \mathbf{P} \oplus \mathbf{Q} &:= (P \cup Q, \leq^{P \oplus \mathbf{Q}}) \text{ where } p \leq^{P \oplus \mathbf{Q}} q \text{ if and} \\ \text{only if either } p, q \in P \text{ and } p \leq^{\mathbf{P}} q, \text{ or } p, q \in Q \\ \text{and } p \leq^{\mathbf{Q}} q, \text{ or } p \in P \text{ and } q \in Q. \end{split}$$



 $|\textbf{F}_2| = 1.2495275042442405 \cdot 10^{32} = 124,952,750,424,424,055,667,787,038,720,000$

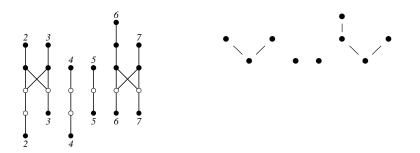
.

	WNM algebras	Conclusions ●○
Applications		

- Normal Forms;
- Recurrence Formulas;
- Interpolation Properties;
- Unification;
- Spectral Duality.

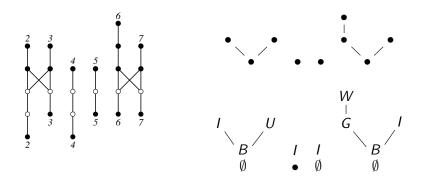
	WNM algebras	Conclusions ●○
Applications		

- Normal Forms;
- Recurrence Formulas;
- Interpolation Properties;
- Unification;
- Spectral Duality.



	WNM algebras	Conclusions ●○
Applications		

- Normal Forms;
- Recurrence Formulas;
- Interpolation Properties;
- Unification;
- Spectral Duality.



	WNM algebras 00000000	Conclusions ○●
References		

WNM Logic:

- F. Esteva and L. Godo. Monoidal t-Norm Based Logic: Towards a Logic for Left-Continuous t-Norms. *Fuzzy Sets and Systems*, 124(3):271–288, 2001.
- C. Noguera, F. Esteva, and J. Gispert.On Triangular Norm Based Axiomatic Extensions of the Weak Nilpotent Minimum logic. *Mathematical Logic Quarterly*, 54(4):387–409, 2008.

Poset Representations:

- S. Aguzzoli and B. Gerla. Normal Forms and Free Algebras for Some Extensions of MTL. *Fuzzy Sets and Systems*, 159(10):1131–1152, 2008.
- D. Valota. Poset Representation for Free RDP-Algebras. In H. Hosni and F. Montagna, editors, *Probability, Uncertainty and Rationality*, volume 10 of *CRM Series*. Edizioni della Scuola Normale Superiore, Pisa 2010.

Interpolation and Unification via Poset Representation:

- S. Bova. Combinatorics of Interpolation in Gödel Logic. In 4th Conference on Topology, Algebra and Categories in Logic (TACL), 2009.
- S. Bova and D. Valota. Finitely Generated RDP-Algebras: Spectral Duality, Finite Coproducts and Logical Properties. *Journal of Logic and Computation*, 22(3):417–450, 2012.