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MTL

Many-Valued Logics are truth-functional propositional logics where the set of truth
degree is the real interval [0, 1].

A T-norm is a binary operation
· : [0, 1]2 → [0, 1] that satisfies:

1. x · y = y · x
2. (x · y) · z = x · (y · z)
3. x ≤ y then x · z ≤ y · z
4. x · 1 = x

for all x , y , z,∈ [0, 1].

Residuum: ⇒·: [0, 1]2 → [0, 1].
Adjunction property:
(x · z) ≤ y iff z ≤ (x ⇒ y)
that is x ⇒ y = max{z|x · z ≤ y},
for all x , y , z ∈ [0, 1].

The necessary and sufficient condition for the residuum’s existence is the t-norm’s
left-continuity.

Monoidal T-norm based Logic (MTL)(Esteva and Godo): Many-Valued logic of all
left-continuous t-norms and their residua (Montagna and Jenei).
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MTL

A commutative integral bounded residuated lattice is an algebra
A = (A,∧,∨, ·,→,⊥,>) of type (2, 2, 2, 2, 0, 0) such that
(A,∧,∨,⊥,>) is a bounded lattice,
(A, ·,>) is a commutative monoid,
and the residuation equivalence, x · y ≤ z if and only if x ≤ y → z, holds.

An MTL algebra A = (A,∧,∨, ·,→,⊥,>) is a commutative integral bounded
residuated lattice satisfying the prelinearity equation, (x → y) ∨ (y → x) = >.

Define
a′ := a→ 0,

for all a ∈ A.

The class of unary operation ′ : [0, 1]→ [0, 1] arising as negation operations of MTL
algebras over [0, 1] coincides with the class of weak negation operations.
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Weak Negations

A weak negation is a unary operations ′ : [0, 1]→ [0, 1] such that, for all a, b ∈ [0, 1]:

0′ = 1; a ≤ b implies b′ ≤ a′; and, a ≤ a′′.

Given a weak negation ′ : [0, 1]→ [0, 1], it is possible to define a t-norm as follows, for
all x , y ∈ [0, 1]:

x · y =

{
0 if x ≤ y ′,

x ∧ y otherwise.

x

y y

x x

y y

x

0 0 0

The first four
members of the
family of weak
negations
{fn | n =
0, 1, 2, . . . } and
their induce t-norms.

fn is the step
function over [0, 1]
that maps 0 to 1,
and ((i − 1)/n, i/n)
to (n − i)/n for
i = 1, 2, . . . , n, so
that fn has 2n

discontinuities.
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Subvarieties of MTL Algebras

A WNM Algebra is a MTL algebra satisfying the
Weak Nilpotent Minimum equations:

¬(x · y) ∨ ((x ∧ y)→ (x · y)) = >.

A Gödel Algebra is an idempotent (MTL) WNM
Algebra.

A NM Algebra is an involutive WNM algebra,
that is, a WNM algebra satisfying:

¬¬x = x .

NM G

NMG

(inv)

OO
(id)

55

RDP

(id)

OO

WNM

(NMG)

dd

(RDP)

::

BL

(id)

YY

MTL

(WNM)

OO

(div)

55
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Subvarieties of MTL Algebras

1 The subdirectly irreducible members of the variety V(MTL) are totally ordered
(Esteva and Godo);

2 The variety V(WNM) is locally finite (Noguera, Esteva and Gispert);

⇒ The finitely generated free algebras in subvarieties of V(WNM) are finite.

Given a set of generators x1, . . . , xn,

the WNM algebra Fn freely generated by xFn
i = (xC1

i , . . . , xCm
i ) for i = 1, . . . , n,

is isomorphic to the subalgebra A of C1 × · · · × Cm generated by

xA
i = (xC1

i , . . . , xCm
i ) for i = 1, . . . , n.
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WNM Chains

The variety V(WNM) is generated by WNM chains, and for all WNM chains C, the
operations ·C and →C are uniquely determined by the lattice and negation operations,
as follows (for all a, b ∈ C):

a ·C b =

{
0C if a ≤C b′C,

a ∧C b otherwise;

a→C b =

{
1C if a ≤C b,

a′C ∨C b otherwise.

Proposition (Esteva, Noguera, Gispert)

For all WNM chains C:

x ≤ x ′′ =
∧
{z ∈ C | x ≤ z, z = z ′′},

x = x2 iff x ′ < x or x = 0,

x ≤ y implies y ′ ≤ x ′,

x ′ < x and y ′ < y implies x ′ < y ,

x ≤ x ′ and y ′ < y implies x ≤ y ,

x ′ < x and y ≤ y ′ implies x ′ < y ′.
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Blockwise Representation

Let Cn = {C1, . . . ,Cm} be the set of (pairwise non-isomorphic) subdirectly irreducible
n-generated WNM algebras.

Let C be a WNM chain generated by xC
1 , . . . , x

C
n ∈ C . Then

bk(C) = B1 < · · · < Bk .

is the n-generated WNM chain such that:

1 the blocks B1, . . . ,Bk form a partition of {0, 1, xi , x ′i , x
′′
i | i = 1, . . . , n};

2 the generator x
bk(C)
i is the block containing xi for i = 1, . . . , n;

3 x , y ∈ Bj iff x = y for j = 1, . . . , k;

4 Bj < Bj+1 iff x < y , where x ∈ Bj , y ∈ Bj+1, j = 1, . . . , k − 1;

5 B′j = Bl iff x ′ = y , where x ∈ Bj , y ∈ Bl , j = 1, . . . , k.

bk(C15) = 0 < xx ′′ < y < y ′y ′′ < x ′ < 1

bk(C6) = 0 < x < x ′′ < yy ′y ′′ < x ′ < 1
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Blockwise Representation

The class C1 of singly generated WNM chains C1 = {Ci | i = 1, . . . , 9} is:

4 5 6 7

76543

2 3

21

1 8 9

98

C6

x ′

x

x ′′

bk(C1) = 0x1x
′′
1 < x ′11, bk(C2) = 0 < x1 < x ′′1 < x ′1 < 1,

bk(C3) = 0 < x1x
′′
1 < x ′1 < 1, bk(C4) = 0 < x1 < x ′1x

′′
1 < 1,

bk(C5) = 0 < x1x
′
1x
′′
1 < 1, bk(C6) = 0 < x ′1 < x1 < x ′′1 < 1,

bk(C7) = 0 < x ′1 < x1x
′′
1 < 1, bk(C8) = 0x ′1 < x1 < x ′′1 1, bk(C9) = 0x ′1 < x1x

′′
1 1,
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Blockwise Representation

1

x ′ 1 1

x ′′ x ′ x ′, x ′′ 1

1, x ′ x x , x ′′ x x , x ′, x ′′

0, x , x ′′

C1

0
C2

0
C3

0
C4

0
C5

1

x ′′ 1

x x , x ′′ 1, x ′′

x ′ x ′ x 1, x , x ′′

0
C6

0
C7

0, x ′

C8

0, x ′

C9

Let C ∈ Cn. For i = 1, . . . , n, the orbit of xi in C is the subalgebra of C generated by
xC
i . We define orbit(C, 0) := 1, orbit(C, 1) := 9, and for i = 1, . . . , n,

orbit(C, xi ) = orbit(C, x ′i ) = orbit(C, x ′′i ) := j ,

iff the orbit of xi in C is isomorphic to Cj ∈ C1, where j ∈ {1, . . . , 9}.
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Kn ⊆ Cn

be such that C ∈ Kn iff C ∈ Cn and there does not exist D ∈ Cn and a congruence ≡
on D above the identity such that C = D/ ≡.

C ∈ Kn iff orbit(C, xi ) ∈ {2, 3, . . . , 7} for all i = 1, . . . , n
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Free Algebras

Let D ∈ Kn, i = 1, . . . , n. We write,
D0 := {0},

D1 := {xi , x ′′i | orbit(D, xi ) ∈ {2, 3}}
∪{x ′i | orbit(D, xi ) ∈ {6, 7}},

D2 := {xi | orbit(D, xi ) = 4},

D3 := {x ′i , x
′′
i | orbit(D, xi ) = 4}

∪{xi , x ′i , x
′′
i | orbit(D, xi ) = 5},

D4 := {x ′i | orbit(D, xi ) ∈ {2, 3}}
∪{xi , x ′′i | orbit(D, xi ) ∈ {6, 7}},

D5 := {1}.

lD =
∧

y∈D4∪D5

y , gD =
∨

y∈{
⋃

j∈[3] Dj}
y .

lD is the least element y ∈ D such that
y ′ < y ,
gD is the greatest element y ∈ D such
that y ≤ y ′.

lD ≺ gD

C and D in Kn have the same signature (in
symbols, C ∼ D) iff:

(S1) Ci = Di for i = 1, 2, 3, 4;

(S2) x �C y iff x �D y for all
x , y ∈ C2, � ∈ {<,=}.

bk(C5) = 0 < x < x ′′ < y < y ′y ′′ < x ′ < 1;
bk(C15) = 0 < xx ′′ < y < y ′y ′′ < x ′ < 1;

bk(C6) = 0 < x < x ′′ < yy ′y ′′ < x ′ < 1;
bk(C16) = 0 < xx ′′ < yy ′y ′′ < x ′ < 1;
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D5 := {1}.

lD =
∧

y∈D4∪D5

y , gD =
∨

y∈{
⋃

j∈[3] Dj}
y .

lD is the least element y ∈ D such that
y ′ < y ,
gD is the greatest element y ∈ D such
that y ≤ y ′.

lD ≺ gD

C and D in Kn have the same signature (in
symbols, C ∼ D) iff:

(S1) Ci = Di for i = 1, 2, 3, 4;

(S2) x �C y iff x �D y for all
x , y ∈ C2, � ∈ {<,=}.

1

x′ 1 1

x′′ x′ x′, x′′ 1

x x, x′′ x x, x′, x′′

0
C2

0
C3

0
C4

0
C5

1

x′′ 1

x x, x′′

x′ x′

0
C6

0
C7

bk(C5) = 0 < x < x ′′ < y < y ′y ′′ < x ′ < 1;
bk(C15) = 0 < xx ′′ < y < y ′y ′′ < x ′ < 1;

bk(C6) = 0 < x < x ′′ < yy ′y ′′ < x ′ < 1;
bk(C16) = 0 < xx ′′ < yy ′y ′′ < x ′ < 1;
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D2 := {xi | orbit(D, xi ) = 4},

D3 := {x ′i , x
′′
i | orbit(D, xi ) = 4}
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′′
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D4 := {x ′i | orbit(D, xi ) ∈ {2, 3}}
∪{xi , x ′′i | orbit(D, xi ) ∈ {6, 7}},

D5 := {1}.

lD =
∧

y∈D4∪D5
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∨

y∈{
⋃

j∈[3] Dj}
y .

lD is the least element y ∈ D such that
y ′ < y ,
gD is the greatest element y ∈ D such
that y ≤ y ′.

lD ≺ gD

C and D in Kn have the same signature (in
symbols, C ∼ D) iff:

(S1) Ci = Di for i = 1, 2, 3, 4;

(S2) x �C y iff x �D y for all
x , y ∈ C2, � ∈ {<,=}.

An infix of C is an interval I in bk(C) such
that:

(I1) There exists x ∈ I such that x = gC or
x = lC.

Let C ∼ D in Kn. Then, infix(C,D) is the
greatest common infix I of C and D such that:

(I2) xi ∈ I and x ′i , x
′′
i 6∈ I , or xi , x

′
i , x
′′
i ∈ I for

all i = 1, . . . , n.

aaaa
bk(C5) = 0 < x < x ′′ < y < y ′y ′′ < x ′ < 1;
bk(C15) = 0 < xx ′′ < y < y ′y ′′ < x ′ < 1;
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bk(C16) = 0 < xx ′′ < yy ′y ′′ < x ′ < 1;
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Theorem

Let t be a term, and C ∼ D in Kn.

(i) t′ < t in C iff t′ < t in D.

(ii) For all x ∈ infix(C,D), t = x in C iff t = x in D.

bk(C2) = 0 < x1 < x ′′1 < x ′1 < 1,
bk(C3) = 0 < x1x ′′1 < x ′1 < 1.

bk(C2) = 0 < x1 < x ′′1 < x ′1 < 1,
bk(C3) = 0 < x1x ′′1 < x ′1 < 1. bk(C2) = 0 < x1 < x ′′1 < x ′1 < 1,
bk(C3) = 0 < x1x ′′1 < x ′1 < 1. bk(C2) = 0 < x1 < x ′′1 < x ′1 < 1,
bk(C3) = 0 < x1x ′′1 < x ′1 < 1. bk(C2) = 0 < x1 < x ′′1 < x ′1 < 1,
bk(C3) = 0 < x1x ′′1 < x ′1 < 1. bk(C2) = 0 < x1 < x ′′1 < x ′1 < 1,
bk(C3) = 0 < x1x ′′1 < x ′1 < 1. bk(C2) = 0 < x1 < x ′′1 < x ′1 < 1,
bk(C3) = 0 < x1x ′′1 < x ′1 < 1. bk(C2) = 0 < x1 < x ′′1 < x ′1 < 1,
bk(C3) = 0 < x1x ′′1 < x ′1 < 1. bk(C2) = 0 < x1 < x ′′1 < x ′1 < 1,

bk(C3) = 0 < x1x ′′1 < x ′1 < 1.

A = (A,∧A,∨A, ·A,→A, 0A, 1A) where:
0A is the least antichain in A;
1A is the greatest antichain in A;
for ◦A ∈ {∧A,∨A, ·A,→A} and a, b ∈ A, ◦A is defined chainwise,
that is a ◦A b = aC ◦ bC , for every C ∈ Kn.

Theorem (Free Algebras)

The algebra A is isomorphic to the free n-generated WNM algebra Fn.
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for ◦A ∈ {∧A,∨A, ·A,→A} and a, b ∈ A, ◦A is defined chainwise,
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The algebra A is isomorphic to the free n-generated WNM algebra Fn.
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bk(C9) = 0 < x < x ′′ < y ′ < y < y ′′ < x ′ < 1,
bk(C19) = 0 < xx ′′ < y ′ < y < y ′′ < x ′ < 1.
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0A is the least antichain in A;
1A is the greatest antichain in A;
for ◦A ∈ {∧A,∨A, ·A,→A} and a, b ∈ A, ◦A is defined chainwise,
that is a ◦A b = aC ◦ bC , for every C ∈ Kn.

Theorem (Free Algebras)

The algebra A is isomorphic to the free n-generated WNM algebra Fn.



Introduction Many-Valued Propositional Logics WNM algebras Conclusions

Free Algebras

Theorem

Let t be a term, and C ∼ D in Kn.

(i) t′ < t in C iff t′ < t in D.

(ii) For all x ∈ infix(C,D), t = x in C iff t = x in D.

A ⊆
∏

C∈Kn

C

be such that a ∈ A iff, for all C ∼ D in Kn:

(i) πC(a)′ < πC(a) iff πD(a)′ < πD(a);

(ii) If x ∈ infix(C,D), then πC(a) = x iff πD(a) = x .
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for ◦A ∈ {∧A,∨A, ·A,→A} and a, b ∈ A, ◦A is defined chainwise,
that is a ◦A b = aC ◦ bC , for every C ∈ Kn.

Theorem (Free Algebras)

The algebra A is isomorphic to the free n-generated WNM algebra Fn.
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Free Algebras

poset(n) =
∑

a,b,c∈{0}∪N,
a+b+c=n

( n

a, b, c

)
Xa,b,c ,

Xa,b,c =


Yd
a,c ⊕ Za,c if b = 0,
b∑

i=1
i!
{b
i

} ((
Yd
a,c ⊕ i⊕ Za,c

)
+
(
Yd
a,c ⊕ i⊕ 1⊕ Za,c

))
otherwise;

Ya,c =



1 if a = c = 0,
a−1∑
i=0

c−1∑
j=0

(
a
i

)(
c
j

) (
Si,j + S−i,j

)
+

c−1∑
j=0

(
c
j

) (
Sa,j + S+

a,j

)
+

a−1∑
i=0

(
a
i

) (
Si,c + S−i,c

)
otherwise;

Si,j = 1⊕ Yi,j ,

S+
i,j =

{
2 if i = j = 0,

Si,j + Yi,j otherwise;

S−i,j = (1⊕ Si,j ) +

i−1∑
k=0

(
i

k

)(
(1⊕ Sk,j ) + (1⊕ S−k,j )

)
.

P + Q := (P ∪ Q,≤P+Q) where p ≤P+Q q if and

only if either p, q ∈ P and p ≤P q, or p, q ∈ Q

and p ≤Q q.

Za,c =



1 if a = c = 0,
a−1∑
i=0

c−1∑
j=0

(
a
i

)(
c
j

) (
Ti,j + T−i,j

)
+

c−1∑
j=0

(
c
j

) (
Ta,j + T+

a,j

)
+

a−1∑
i=0

(
a
i

) (
Ti,c + T−i,c

)
otherwise;

Ti,j = 1⊕ Zi,j ,

T+
i,j =

{
3 if i = j = 0,

1⊕ (Ti,j + Zi,j ) otherwise;

T−i,j = Ti,j +

i−1∑
k=0

(
i

k

)(
Tk,j + T−k,j

)
.

P⊕ Q := (P ∪ Q,≤P⊕Q) where p ≤P⊕Q q if and

only if either p, q ∈ P and p ≤P q, or p, q ∈ Q

and p ≤Q q, or p ∈ P and q ∈ Q.
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Applications

Normal Forms;

Recurrence Formulas;

Interpolation Properties;

Unification;

Spectral Duality.
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